
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

11

An Efficient Algorithm for Evaluation of

Object-Oriented Models

Manoj Kumar
Sr. Asst. Prof.
Dept. of IT,

IISE, Lucknow, INDIA

Dr.Mohammad
Husain

Professor, AIET,
Lucknow, INDIA

Gyanendra K. Gupta
Asst. Prof., KIT,
Kanpur, INDIA

Amarjeet Singh
Asst., Prof., IEM
Lucknow, INDIA

ABSTRACT

In the current scenario of software development, the object-

oriented technology has become the de-facto for development. It

has become very popular and has been proved to be highly

useful in software development process.

Genetic algorithm is a very effective optimization tool for many

engineering application problems. There are many applications

existing in genetic algorithm, but no one is with object-oriented

systems. This paper approaches the application of genetic

algorithm in object-oriented models. When we implement any

application of genetic algorithm with object-oriented system, it

increased the efficiency of system and gain momentum due to

the availability of worthless processing power in any application.

Object-oriented design, give a more natural representation of

any kind of information. It has one more advantage of better

memory management and code reusability. It would be very

useful to work on defining methods to evaluate different object

oriented models. To achieve the same, we proposed a genetic

algorithm to evaluate object-oriented model.

Keywords

Genetic algorithm, object diagram, binary tree, crossover,

object-oriented.

1. INTRODUCTION
Software modeling approach is a very important part of software

development. Software industry expanded many times for this

process. Well designed software can solve the very complex

problem in a better way. Object-oriented model has become the

standard analysis and design phases within a software

development process, where object-oriented modeling

approaches are becoming more and more the standard ones.

UML plays a very common role in the object-oriented modeling

[1]. Object-oriented modeling approach around the whole

software engineering life cycle, the well-known software

engineering principles and qualities explained in [2], certainly

apply. In the particular context of object-orientation, however,

we can be substantially more specific about many of these

principles and qualities. So, we start studying object-oriented

modeling by re-opening the discussion on software engineering

principles and qualities. Object oriented modeling to be

sufficiently user-friendly to all kinds of possible standards. That

is, for all clients of any model, its relevant parts expressed in the

modeling language, must be understandable, and must be clear

even. For the modeler as well as for all other persons involved in

the modeling activity, any model must be expressive, precise

and clear as well.

In particular, the general software engineering principle of

separation of concerns combined with object-oriented modeling

characteristics has turned out to be very useful. The basic idea of

object-orientation is the consequent application of the abstract

data type concept, combining data and functionality. Secondly,

it advocates their integration. Object-oriented modeling gives a

particular meaning to the software engineering principles of

modularization and of separation of concerns. It should lead to

full scalability of the modeling, since a whole model can be

considered as one package, with the properties of a class, which

can be integrated in a larger model in a consistent manner.

Object-oriented model is using in all areas and it is dominated

by the Unified Modeling Language (UML)[3]. Finally, this

language was accepted as industrial standard in November, 1997

by the OMG (Object Management Group). UML was developed

as solution to the so-called object-oriented method war, which

grow up in the beginning of the 1990s, where more than fifty

different-different object-oriented modeling approaches could be

identified in the software industry.

Object-oriented design is a design strategy, where system

designers think in terms of „things‟ instead of operations or

functions. This executing system is made up of interacting

objects that maintain their own local state and provide

operations on that state (Figure 1)[4].

Figure 1: System Made Up of Interacting Objects

The Genetic algorithm is an adaptive heuristic search method

based on population genetics. Genetic algorithm was introduced

by John Holland in the early 1970s [5]. This algorithm works by

maintaining a population of potential solutions to the population.

In each generation or iteration every potential solution is

evaluated to determine, how well it for solution of problem. The

best individuals are picked out and either “recombined” by

swapping parts of the strings or taken with no change from the

population of the next generation. The algorithm stops after a

specific number of generations or when a suitable solution is

Class1

State 01

Operation1()

Class4

State 04

Operation4()

Class5

State 05

Operation5()

Class6

State 06

Operation6()

Class2

State 02

Operation2()

Class3

State 03

Operation3()

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

12

found [6]. Genetic algorithm is based on probability search. It is

based on the process of natural selection and natural genetics.

Genetic algorithm is started with a set of solutions called

population. A solution is represented by a chromosome. The

population size is preserved throughout each generation. At each

generation, fitness of each chromosome is evaluated, and then

chromosomes for the next generation are probabilistically

selected according to their fitness values. Some of the selected

chromosomes randomly crosses and produce offspring. While

producing offspring, crossover and mutation randomly occurs.

Chromosomes with high fitness values have high probability of

being selected; chromosomes of the new generation may have

higher average fitness value than those of the old generation.

The process of evaluation is repeated until the end condition is

satisfied. The solutions in genetic algorithms are called

chromosomes or strings [7]. In most cases, chromosomes are

represented by lists or strings. A genetic algorithm is a search

technique used in computing to find exact or approximate

solutions to optimization and search problems. Genetic

algorithms are categorized as global search heuristics. Genetic

algorithms are a particular class of evolutionary algorithms (EA)

that use techniques inspired by evolutionary biology such as

inheritance, mutation, selection, and crossover. Genetic

algorithms have been used to find optimal solutions to complex

problems in various domains such as biology, engineering,

computer science, and social science.

In this paper, our approach uses the genetic algorithm in

evaluation of object-oriented models. We use class diagrams

represented in the form of a tree. In section 2, a review of

genetic algorithm with object-oriented techniques is presented.

In section 3, we show the proposal of new development method.

In Section 4, we give an object diagram for a case study. Finally,

section 5 presents conclusion and future work.

2. RELATED WORK
Chartchai Doungsa-ard et al[8] have proposed to generate test

data from UML state diagram, so that test data can be generated

before coding. He implemented to generate sequences of

triggers for UML state diagram as test cases using genetic

algorithm. His proposed algorithm has been demonstrated

manually for an example of a vending machine. C. S.

Krishnamoorthy et al [9] discusses the object-oriented design

aside from give a more natural representation of information, he

also facilitates better memory management and code reusability

and his team shows how classes derived from the implemented

libraries can be used for the practical size optimization of large

space trusses, where several constructability aspects have been

incorporated to simulate real-world design constraints. Strategies

are discussed to model the chromosome and to code genetic

operators to handle such constraints. Strategies are also

suggested for member grouping for reducing the problem size

and implementing move-limit concepts for reducing the search

space adaptively in a phased manner. The implemented libraries

are tested on a number of large previously fabricated space

trusses, and the results are compared with previously reported

values. Federico M. Stefanini and Alessandro Camussi[10]

approach becomes feasible performing a Monte Carlo simulation

of the natural evolution process, in which population

improvement (search for solutions) in a considered environment

(the spec problem domain) is achieved by following the genetic

paradigm. Starting with a randomly constituted sample of

individuals, drawn from the population of admissible values and

expressed as binary strings, random mating brings about

individuals of the next generation. Parents are chosen with a

greater probability as the number of constraints violated by each

individual becomes smaller.

To generate the UML state diagrams there is automatic test case,

which has been suggested by Samuel et al [11]. All the steps

associated with diagrams covered by this test case. Simple

predicates can reduced the number of test cases. They have

taken the example of an ice cream vending machine. But Samuel

et al were not succeeded to achieve globally optimal solution

using alternating variable method. So they proposed genetic

algorithm to achieve the UML state diagrams.

M. Prasanna and K.R. Chandran[12] suggests a model based

approach in dealing with object behavioral aspect of the system

and deriving test cases based on the tree structure coupled with

genetic algorithm. Genetic Algorithm‟s tree crossover has been

proposed to bring out all possible test cases of a given object

diagram.

3. PROPOSAL OF NEW DEVELOPED

 METHOD
We create a class diagram of ATM system by using StarUML

software, showing a short picture of the elaborate condition of

the system. There is tree in this system having root node and

many child nodes. There is an application of genetic algorithms

crossover operators producing new generation of tree. Further

trees are converted into binary trees. Following steps are used in

the method:

a) Making of class diagram by using StarUML software and

store with .uml as extension.

b) Make a tree using class names and application of genetic

algorithms crossover techniques.

c) New generation of trees are forming and converting into

binary trees.

d) Passing new generation of binary tree by the use of depth

first search techniques.

Illustration of the above given steps in the form of flow charts in

figure 1.

 Cross-over

Figure 2: Flowchart of Proposed Methodology

Class Diagram

 Tree

GA Tree Structure

Encoded Tree

Genetic Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

13

4. CASE STUDY
A Bank wishes to introduce ATM service to provide limited

facilities to his customers. Customers may get ATM cards on

request. Users may view their balance or transfer or withdraw

money using these cards. Cards may be used to access many

accounts and an account may be accessed using different cards.

A card may be blocked temporarily or permanently (e.g. If it is

lost) by the Bank. A PIN is associated with each card to verify

the authority of the user. A bank maintains two kinds of account

for customers, one called as saving account and the other as

current account. The saving account provides compound interest

& withdrawal facility, but no cheque book facility .The current

account provides cheque book facility but no interest. Current

account holders should also maintain a minimum balance and if

the balance falls below this level, a service charge is imposed.

4.1 Step 1 Object Diagram

B: Bank

-name
-custid

+createaccount()
+createcheckingaccount()
+veriftamount()

CV: CardVerification

-password
-cashlimit

+addaccount()
+deleteaccount()
+modifyaccount()

A: Account

#typeofaccount
#balance

+checkamount()
+close()

CI: CustomerInformation

-customername
-customerid
-customeraddress

+getamount()
+getaccount()

CA: CurrentAccount

-checkbook
-customerid

+cdeposot()
+cwithdraw()
+cbalance()

S: SavingAccount

-scustomerid
-interest

+sdeposit()
+swithdraw()
+sbalance()

+Issue

0..*1
+card code+card code

1*

*

*

*

1

1

0..1

+account code+account code

Figure 3: Class Diagram of ATM System

4.2 Step 2 Structure
Structure of tree is very much simple, easily understandable and

can be stored in the computer memory. Here, we use an ATM

system in a tree form. To do this we have to make the following

modifications as given in figure 4 (a).

i) Nodes are showing as class and placed vertically one

 after the other.

ii) Attributes are arranged in left side of the branch of the

corresponding node.

iii) Right side of the corresponding node taken by methods.

iv) If there is any possibility of duplication, class name is added

as prefix for the nodes.

C

CV

PD

AC

CL

CSL

B

ToA CA

AA

DA

MA

CIA

C

B

N

CL

CI

CrA

CA

AC

(a) (b)

C

SA

I

CLSCI

SD

SB

(c)

Figure 4: Converting Class Diagram to Tree Structure

4.3 Step 3

 Tree Crossover
Figure no. 4(a) and 4(c) showing a crossover method which is

applied on the trees. In this method first of all, one point is

selected among the main trees and after crossing over it

producing new generation of offspring tree.

C

CV

PD

AC

CL

CSL

B

ToA CA

AA

DA

MA

CLA

C

SA

I

CLSCI

SD

SB

+

C

CV

PD

AC

SA

CSL

B

ToA CA

AA

DA

MA

CLA

CL

I

SCI

SD

SB

 Figure 5: Tree Crossover of figure 3a & 3c in ATM System

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

14

4.4 Step 4 Converting Binary Tree

Figure 5 is not a binary tree. To make the binary tree the nodes

which are placed in left branch of the root node should be

vertically and its sibling in horizontal order. Now Figure 6, this

way a binary tree is formed.

C

CV

CSL

PD AC

TOA

B

SA

I

C

CL SD

SB

AA

DA

MA

CA

CLA

(a)

C

CV

PD

AC

SA

CSL

B

ToA

CA

AA

DA

MA

CLC

I

CLA

SD

SB

(b)

Figure 6: Binary Tree Form of ATM by Crossing Figure 3a

 & 3c

Table 1: Chromosome Mapping Information

S.No. Nodes Object in Sequence model

1 C Customer

2 CV Card Verification

3 CL Close

4 AC Account

5 PD Password

6 CSL CashLimit

7 AA Add Account

8 DA Delete Account

9 MA Modify Account

10 ToA Type of Account

11 B Balance

12 CA Check Amount

13 CLA Close Account

14 BK Bank

15 N Name

16 CP Check Password

17 CI Customer Id

18 CRA Create Account

19 CV Card Verification

20 CIN Customer Information

21 SA Saving Account

22 I Interest

23 CB Check Book

24 SD Saving Deposit

25 SW Saving Withdraw

26 SB Saving Balance

27 SCI Saving Customer Id

5. CONCLUSION & FUTURE SCOPE
A genetic algorithm (GA) is a search technique used in

computing to find exact or approximate solutions to

optimization and search problems. Genetic algorithms are

categorized as global search heuristics. Here, we focus on

genetic algorithm in evaluation of object-oriented model. It

solves the problem of optimization and increases the efficiency

of a system. By this model, we also facilitate better memory

management and code reusability. In future, it may carry out

towards the development of UML using genetic algorithms.

6. REFERENCES
[1] G. Engels, L. Groenewegen, “Object – Oriented Modeling:

 A Roadmap”, In Proceedings of ICSE - Future of SE

 Track, 2000, pp.103-116 .

[2] C. Ghezzi, M. Jazayeri, D. Mandrioli, “Fundamentals

 of Software Engineering”, Prentice - Hall International,

 1991.

[3] G. Booch, J. Zumbaugh, I. Jacobson, “The Unified

 Modeling Language User Guide”, Addison - Wesley,

 Reading, MA., 1999.

[4] I. Sommerville, “Software Engineering”, 6th Edition,

 Chapter 12, 2000.

[5] L. Tsoukalas, and R. Uhrig, “Fuzzy and Neural

 Approaches in Engineering”, Wiley, 1997.

[6] J. R. Koza, M. A. Keare, M. J. Streeter, W. Mydlowec, J.

 Yu, G. Canza, “Genetic Programming IV: Routine Human

 Competitive Machine Intelligence”, Kluwer Academic

 Publishers, Norwell, MA, 2003.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.8, June 2011

15

[7] W. Lee, H. – Yung Kim, “Genetic Algorithm

Implementation in Python”, Electronics and

Telecommunications Research Institute, ACIS International

Conference on Computer and Information Science, IEEE,

2005, pp. 8 - 11.

 [8] C. Doungsa - ard, K. Dahal, A. Hossain, and T.

 Suwannasart, “An Automatic Test Data Generation from

 UML State Diagram Using Genetic Algorithm”,

 Proceedings of International Conference on Software,

 Knowledge, Information Management and Applications

 (SKIMA), 2006, pp. 1-5.

[9] C. S. Krishnamoorthy, P. P. Venkatesh, and R. Sudarshan,

 “Object - Oriented Framework for Genetic Algorithms

 with Application to Space Truss Optimization”, Journal

 Computer in Civil Engineering, vol 16, no 1, 2002, pp.

 66-75.

[10] F. M. Stefanini and A. Camussi, “APLOGEN: An Object

 Oriented Genetic Algorithm Performing Monte Carlo

 Optimization”, Oxford Journal , Life Science

 Bioinformatics, vol 09, no 06, 1993, pp 695- 700.

[11] P. Samuel, R. Mall, and A. K. Bothra , ”Automatic

 Test Case Generation Using UML State Diagrams”, IET

 Software, 2008, pp. 79-93.

[12] M. Prasanna1 and K. R. Chandran, “Automatic Test

 Case Generation for UML Object diagrams Using

 Genetic Algorithm”, International Journal Advance Soft

 Computing Application, vol 1, no 1, 2009, pp. 19-31.

