
International Journal of Computer Applications (0975 – 8887)

Volume 24– No.9, June 2011

15

An OS Integrity Measurement System based

on Epidemiology

K. Venugopal Dasarathy
Dept. of Computer Science

& Engineering
NITK Surathkal
Karnataka, India

Samuya Hegde

Asst Prof
Dept. of Computer Science

& Engineering
NITK Surathkal
Karnataka, India

Radhesh Mohandas
Adjunct Faculty

Dept. of Computer Science
& Engineering
NITK Surathkal
Karnataka, India

ABSTRACT

Consider an analogy when dealing with human diseases, when a

person discovers something different happening to him/her, a

common course of action is to know if others have experienced

the same thing. In this paper we propose a design for an integrity

system for a connected network that attempts to measure the

degree of infection of a system on the network using an

epidemiological model. Furthermore we present the outcome of

simulations that model the process of infection over a network

and show how the infectiousness degree of a program varies

with parameter values of the model.

Keywords

Malware, rootkits, epidemiology.

1. INTRODUCTION
Since the first documented reports of microcomputer viruses in

the mid-1980’s, they have spread throughout the world.

Computer viruses have very similar characteristics to biological

diseases; an important aspect is that of a disease epidemic.

Antivirus scanners relying on purely signature based detection

face a losing battle with malware today, due to new viruses

being released daily.

Behavioral based integrity checkers[6] combined with scanners

are a better choice but many legitimate programs also play with

essential resources of the system.

Another aspect of malware that is of interest is the need for it to

spread, much like a biological disease. The spread of a virus

across a network shares common concepts with biological

epidemiology[10]. In what is to follow, we describe a

epidemiological model for the classification of malware.

2. EPIDEMIOLOGY, THE MARKOVIAN

MODEL AND THE AIE VALUE
The model we consider is the one defined by Laura Billings et

all[1]. It is built on the basic model by Kephart and White[2].

To model the spread of viruses throughout a network, we

assume that the network consists of N nodes.

Each node can be in one of two medical conditions: susceptible

(S) or infected (I). We assume discrete time steps of arbitrary

units, so at any given time n, S = N − I . Infected nodes can

remain infected or become susceptible by being cured. Likewise,

susceptible nodes can remain susceptible or. become infected.

Denote the probability that a susceptible node becomes infected

as μ. This rate depends on two parameters, the connectivity of

the network (c) and the probability of transmitting an infection

(β). The probability that an infected node becomes susceptible is

δ. Fig. 1 illustrates the transitions between these two medical

conditions, with their associated probabilities. A discrete-time

Markov chain is a dynamical system composed of S discrete

states. In this Letter, the number of nodes in each medical

condition will define a Markov state, forming the pair (I, S).

Because S is explicitly defined by I , we only refer to I , and in

this case, S = N+1. At each time step n, the Markov chain can

change states. We compute the probability of transitioning from

state I to state I’

Fig 1: State Flow diagram between the two states

Now what we are interested is in finding the probability to infect

one more node. Thus I’=I+1

From[1], we derive this probability as

PI,I’ =

 (1)

This is the probability that a particular virus infects one more

node. At this point we define a value to describe the

infectiousness of a program. We shall call this value as AIE(Am

I Evil). If R is the observed rate of spread, then we define

AIE=(PI,I’ + R)(0.5) (2)

In simple words, the AIE is an estimated threat measure of

malware, based solely on its spread patterns for a network.

The application of such a global measure of threat for malware

over a network is desirable as it may not be possible to identify

malware by monitoring local behavior alone. The proposed

architecture described in section 4 incorporates this concept.

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.9, June 2011

16

3. THREAT ANALYSIS
This project is an inquiry into the behavior of malware, and it

concerns with the spread of malware in particular.

Some key points to be mentioned are described below.

3.1 Rootkits and Hooks
An aspect of focus here is on rootkit detection, particularly

system hooks. Three common hooks that are common amongst

rookits are Import Address Table (IAT) hooks, System Service

Dispatch Table (SSDT) hooks and Interrupt Descriptor Table

(IDT) hooks [4].

Since there can be legitimate software that hook these tables,

just a mere detection of these hooks on a single system seems

insufficient.

3.2 Relationship between Malware and

Rootkits
Rootkits’ relationship to malware is twofold: To put a rootkit on

a computer, other malware has to load it. And after the rootkit is

loaded, it’s often used to hide more malware. Rootkits created

with malicious intent (some rootkits are benign or even

beneficial) collectively make up a specific category of malware;

however, not all malware programs are rootkits.

Thus the detection system must also resolve dependencies in

addition to rootkit detection.

3.3 The Intent to Spread
Most malware have the intent to spread from host to host. Any

computer or network connected to the Internet is a viable target

for a malware or rootkit attack.

4. SYSTEM ARCHITECTURE
The basic block diagram of the architecture is depicted in
figure 2.

The block diagram depicts two functional entities called the

Local Integrity monitor (LIM) and the ISever (IS). As the name

suggests, the LIM is a local monitoring entity running on any of

the nodes of the network. It is upto the LIM to detect local

discrepancies and to intimate the IS the aforementioned. The

block diagram depicts two functional entities called the Local

Integrity monitor (LIM) and the ISever (IS). As the name

suggests, the LIM is a local monitoring entity running on any of

the nodes of the network. It is upto the LIM to detect local

discrepancies and to intimate the IS the aforementioned

Fig 2: Global view of the system

4.1 Local Integrity Monitor (LIM)
This is the integrity monitoring system running on local

machines. The services offered by the Local Imonitor are as

follows

Fig 3 Components of the LIM

4.1.1 Rootkit Resolver
This module is responsible for peering into the SSDT, IAT and

IDT hooks and resolving the address where the hook points to.

If a hook is found, it computes the SHA-1 hash of the resolved

module which is sent to the IServer.

4.1.2 Dependency Resolver

Once a hook has been discovered, the Dependency Resolver

monitors the resolved hook to see if any other process tries to

obtain a handle to it. It also tires to find all open handles by the

monitored process, and also logs if the process is hidden or not.

It also computes hash of this process to be sent to the IServer.

4.1.3 LInterface
Is the communication interface between the LIM and the

IServer.

4.1.4 File Monitor
The IMonitor maintains a store of hashed values of files which

are tagged unsafe by the IServer. This module prevents/ prompts

the user if an attempt is made to load such a file

4.1.5 Reg Monitor
Watches a list of registry keys, updated by the IServer.

4.2 IServer
It is up to the IServer(IS) to fix up probabilities and classify the

discrepancies as good or bad.For example, say an LIM detects

an SSDT hook, but not all hooks are bad, so it tries to resolve

the address of the hook. On resolving the module(which is

probably a sys file) it calculates the hash of the file and sends it

to the IS. The IS then verifies whether the hook is malicious by

checking its database for the file. The maliciousness is

dependent on number of number of LIMs that reported it, the

locality of those that reported it and probably more that are yet

to be discovered. Also, if the IS tells a LIM that a particular file

is malicious, the LIM then uploads the file to the IS, where the

file is analyzed by security analysts, who come up with

 Hook

Resolver

Dependency

Resolver
Reg Monitor

File Monitor
LInterface

LInterface

 Monitors a file for processes which try to access it

Detects Hooks

and resolves

 to image

 location

Communication

Interface

between LIM

and IServer

 . . .

IServer

LIM

LIM

LIM

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.9, June 2011

17

solutions. The LIM is also capable of receiving solutions from

the IS, and thus recover.

Fig 4: Communication between the LIM and IServer; the

traffic between the components is encrypted.

5. SYSTEM OPERATION
If the LIM detects a discrepancy (a kernel hook perhaps), it tries

resolves the cause to a module (if possible). On obtaining it, it

computes the hash of the module and compares it with it’s own

database of stored hashes.

In the database, each detected file has a value associated with it

that represents its degree of maliciousness. This value that we

shall call “AIE” (Am I Evil) has range(0-1) where 1 means a

certainly malicious file. The calculation of this value has been

described.

The LIM only refers to the IS when it detects a previously

unknown module, or one whose hash is less than a critical vale.

(set by user). The relationship between the LIM and IServer is

shown in figure 4.

When the LIM receives the UPDATE message, it chooses

whether to update it’s database or not. If the LIM does not have

the hash in it’s database, and the AIE value in the UPDATE

message is less than the critical value, it may choose to ignore it.

The flow diagram between various components of the LIM is

shown in figure 5. When the Hook monitor detects and resolves

a hook, it adds the complete filename, (say \??\C:\hide.sys) to

Hlist, which is

Fig 5: Conceptual flow between the components of the

system

a shared memory buffer. The dependency resolver monitors the

filename from hlist to reveal additional dependencies. Each

dependency is stored in stored in a unique file (Sfile), the name

of which is present in Hlist.

An Sfile is a file that is written by the dependency resolver when

it monitors detected hooks. Each Sfile has the following: SHA-1

hash of the file, AIE, it’s attributes followed by a list of

filenames (which is also an Sfile) which denote the

dependencies of the file . Finally the LIM sends the packet to the

IS, whose format is shown in figure 6.The attributes filed is a 16

bit value whose format is shown in figure 7. The attribute field

is indented for future work and is not used by the server for

classification or identification of malware. However, since it is

worth noting that most malware arise from existing code, a

classifier can also be

The IS recalculates AIE on every request as

AIE(t) = AIE(t-1) + Average(sum of AIE of

dependencies)/AIE(t-1) (3)

6. SIMULATION AND RESULTS

The network was simulated with 70 nodes by varying the

different parameters. The goal was to test it for different

behaviors and observe the generation of AIE for each test case.

As expected, the case where a program hardly spreads gives a

small value of AIE over time. Whereas a virus that spreads at

fast rates escalates the AIE at high rates.

.Also a virus that spreads at some rate but having a high cure

rate eventually dies out, hence AIE value tends to decrease for

such a case.

In all there are three parameters that affect AIE, i.e. cure rate,

network connectivity and infection rate. Figure 7 shows the

graph of a scenario where the infection rate of the system is

greater than the cure rate.

Fig 6: Packet format of R_Request sent by LIM to IServer

Fig 7: The Attribute field in the R_Request packet

Hook

Monitor

 Hlist

Dependency

Resolver

Sfile

Filename 1 ,

Filename 2 ,

Filename N

L-Interface

IServer

Hash,

Attribute

LIM IServer

R_Update

Update

International Journal of Computer Applications (0975 – 8887)

Volume 24– No.9, June 2011

18

Fig 8 Time series data for the simulation for 70 nodes with β

= 0.1200,δ = 0.2000, and c = 0.0505.

Fig 9: Shows the AIE value v/s time for a simulation for

70nodes with β = 0.1200, δ = 0.2000, and c = 0.0505.

In figure 9, it is seen that as the infection does not spread after

60 nodes, the AIE value tends to decrease. This seems intuitive

as the number of seemingly infected nodes is 60 but still no new

nodes are being infected. Thus the program’s AIE value tends to

decrease

7. CONCLUSIONS
In this paper we have proposed a design for an integrity

measurement system, which uses heuristics from computer

epidemiology. We have validated the proposed integrity

measurement system by simulating the conditions for a viral

epidemic. Tests from the simulation exhibit expected desirable

behavior of the system. From the simulations, it can be verified

that if the infection rate of a virus is higher than the cure rate,

the AIE value escalates. Thus the proposed integrity

measurement system is capable of successfully detecting

rootkits and measuring severity of infectiousness of the system

under test.

The components of the proposed system are designed to be

generic. The future work involves, 1) Extending the

components to encorporate higher details of rootkit detection; 2)

Embedding a signature based detection in the local integrity

monitor.

8. REFERENCES

[1] Lora Billings, William M. Spears, Ira B. Schwartz “A

unified prediction of computer virus spread in connected

networks” Physics Letters A 297(2002) 261-266J

[2] J. Kephart, S. White, in: Proceedings of the 1991 IEEE

Computer Society Symposium on Research in Security and

Privacy, 1991, pp. 343–359.

[3] N. Bailey, The Mathematical Theory of Infectious Diseases

and Its Applications, Oxford University Press, New York,

1975.

[4] Allen W.H., Ford R. , ” How Not to Be Seen II: The

Defenders Fight Back” Security & Privacy, IEEE, Nov.-

Dec. 2007,pp. 65- 68

[5] Y.-M. Wang et al., "Detecting Stealth Software with Strider

GhostBuster," Proc. IEEE Int"l Conf. Dependable Systems

and Networks (DSN 05), IEEE CS Press, 2005, pp. 368–

377.

[6] James Butler and Sherri Sparks. “Shadow walker: Rasing

the bar for windows rootkit detection.” In Phrack 63, July

2005.

[7] Mihai Christodorescu, Somesh Jha, Sanjit Seshia, Dawn

Song, and Randal Bryant. “Semantics-aware malware

detection.” In Proceedings of the 2005 IEEE Security and

Privacy Conference, 2005.

[8] James Butler and Greg Hoglund. “VICE–catch the hookers!”

In BlackHat USA, July 2004.

ttp://www.blackhat.com/presentations/bh-usa-04/ bh-us-

04-butler/bh-us-04-butler.pdf

[9] Joanna Rutkowska. “System virginity verifier: Defining the

roadmap for malware detection on windows systems.” In

Hack In The Box Security Conference, September 2005

[10] J. O. Kephart, S. R. White and D. M. Chess. “Computers

and Epidemiology”. IEEE Spectrum, 20-26. May 1993.

0

10

20

30

40

50

60

70

0 2 4 6 8 9 12 13 16 18 24 36 44 49 54 59 67 79 88 99

Time(simulation cycles)

In
fe

c
te

d
 N

o
d

e
s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 7 13 16 19 26 34 41 49 60 67 73 77 83 89 95 99

Time(simulation cycles)

A
IE

