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ABSTRACT 

Consider an analogy when dealing with human diseases, when a 

person discovers something different happening to him/her, a 

common course of action is to know if others have experienced 

the same thing. In this paper we propose a design for an integrity 

system for a connected network that attempts to measure the 

degree of infection of a system on the network using an 

epidemiological model. Furthermore we present the outcome of 

simulations that model the process of infection over a network 

and show how the infectiousness degree of a program varies 

with parameter values of the model. 
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1. INTRODUCTION 
Since the first documented reports of microcomputer viruses in 

the mid-1980’s, they have spread throughout the world. 

Computer viruses have very similar characteristics to biological 

diseases; an important aspect is that of a disease epidemic.  

Antivirus scanners relying on purely signature based detection 

face a losing battle with malware today, due to new viruses 

being released daily. 

Behavioral based integrity checkers[6] combined with scanners 

are a better choice but many legitimate programs also play with 

essential resources of the system. 

Another aspect of malware that is of interest is the need for it to 

spread, much like a biological disease. The spread of a virus 

across a network shares common concepts with biological 

epidemiology[10]. In what is to follow, we describe a 

epidemiological model for the classification of malware. 

 

2. EPIDEMIOLOGY, THE MARKOVIAN 

MODEL AND THE AIE VALUE 
The model we consider is the one defined by Laura Billings et 

all[1]. It is built on the basic model by Kephart and White[2]. 

To model the spread of viruses throughout a network, we 

assume that the network consists of N nodes. 

Each node can be in one of two medical conditions: susceptible 

(S) or infected (I ). We assume discrete time steps of arbitrary 

units, so at any given time n, S = N − I . Infected nodes can 

remain infected or become susceptible by being cured. Likewise, 

susceptible nodes can remain susceptible or. become infected. 

Denote the probability that a susceptible node becomes infected 

as μ. This rate depends on two parameters, the connectivity of 

the network (c) and the probability of transmitting an infection 

(β). The probability that an infected node becomes susceptible is 

δ. Fig. 1 illustrates the transitions between these two medical 

conditions, with their associated probabilities. A discrete-time 

Markov chain is a dynamical system composed of S discrete 

states. In this Letter, the number of nodes in each medical 

condition will define a Markov state, forming the pair (I, S). 

Because S is explicitly defined by I , we only refer to I , and in 

this case, S = N+1. At each time step n, the Markov chain can 

change states. We compute the probability of transitioning from 

state I to state I’ 

 

Fig 1: State Flow diagram between the two states 

Now what we are interested is in finding the probability to infect 

one more node. Thus I’=I+1 

From[1], we derive this probability as 

PI,I’ =   

        (1) 

This is the probability that a particular virus infects one more 

node. At this point we define a value to describe the 

infectiousness of a program. We shall call this value as AIE(Am 

I Evil). If R is the observed rate of spread, then we define 

AIE=( PI,I’ + R)(0.5)      (2) 

In simple words, the AIE is an estimated threat measure of 

malware, based solely on its spread patterns for a network. 

The application of such a global measure of threat for malware 

over a network is desirable as it may not be possible to identify 

malware by monitoring local behavior alone.  The proposed 

architecture described in section 4 incorporates this concept. 
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3. THREAT ANALYSIS  
This project is an inquiry into the behavior of malware, and it 

concerns with the spread of malware in particular.  

Some key points to be mentioned are described below. 

3.1 Rootkits and Hooks 
An aspect of focus here is on rootkit detection, particularly 

system hooks. Three common hooks that are common amongst 

rookits are Import Address Table (IAT) hooks, System Service 

Dispatch Table (SSDT) hooks and Interrupt Descriptor Table 

(IDT) hooks [4]. 

Since there can be legitimate software that hook these tables, 

just a mere detection of these hooks on a single system seems 

insufficient.  

3.2 Relationship between Malware and 

Rootkits 
Rootkits’ relationship to malware is twofold: To put a rootkit on 

a computer, other malware has to load it. And after the rootkit is 

loaded, it’s often used to hide more malware. Rootkits created 

with malicious intent (some rootkits are benign or even 

beneficial) collectively make up a specific category of malware; 

however, not all malware programs are rootkits. 

Thus the detection system must also resolve dependencies in 

addition to rootkit detection. 

3.3 The Intent to Spread 
Most malware have the intent to spread from host to host. Any 

computer or network connected to the Internet is a viable target 

for a malware or rootkit attack. 

4. SYSTEM ARCHITECTURE 
The basic block diagram of the architecture is depicted in 
figure 2. 

The block diagram depicts two functional entities called the 

Local Integrity monitor (LIM) and the ISever (IS). As the name 

suggests, the LIM is a local monitoring entity running on any of 

the nodes of the network. It is upto the LIM to detect local 

discrepancies and to intimate the IS the aforementioned. The 

block diagram depicts two functional entities called the Local 

Integrity monitor (LIM) and the ISever (IS). As the name 

suggests, the LIM is a local monitoring entity running on any of 

the nodes of the network. It is upto the LIM to detect local 

discrepancies and to intimate the IS the aforementioned 

 

Fig 2: Global view of the system 

4.1 Local Integrity Monitor (LIM) 
This is the integrity monitoring system running on local 

machines. The services offered by the Local Imonitor are as 

follows 

 

Fig 3 Components of the LIM 

4.1.1 Rootkit Resolver 
This module is responsible for peering into the SSDT, IAT and 

IDT hooks and resolving the address where the hook points to.  

If a hook is found, it computes the SHA-1 hash of the resolved 

module which is sent to the IServer. 

4.1.2 Dependency Resolver 

Once a hook has been discovered, the Dependency Resolver 

monitors the resolved hook to see if any other process tries to 

obtain a handle to it. It also tires to find all open handles by the 

monitored process, and also logs if the process is hidden or not. 

It also computes hash of this process to be sent to the IServer. 

4.1.3 LInterface 
Is the communication interface between the LIM and the 

IServer. 

4.1.4 File Monitor 
The IMonitor maintains a store of hashed values of files which 

are tagged unsafe by the IServer. This module prevents/ prompts 

the user if an attempt is made to load such a file 

4.1.5 Reg Monitor 
Watches a list of registry keys, updated by the IServer. 

4.2 IServer 
It is up to the IServer(IS) to fix up probabilities and classify the 

discrepancies as good or bad.For example, say an LIM detects 

an SSDT hook, but not all hooks are bad, so it tries to resolve 

the address of the hook. On resolving the module(which is 

probably a sys file) it calculates the hash of the file and sends it 

to the IS. The IS then verifies whether the hook is malicious by 

checking its database for the file. The maliciousness is 

dependent on number of number of LIMs that reported it, the 

locality of those that reported it and probably more that are yet 

to be discovered. Also, if the IS tells a LIM that a particular file 

is malicious, the LIM then uploads the file to the IS, where the 

file is analyzed by security analysts, who come up with 
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solutions. The LIM is also capable of receiving solutions from 

the IS, and thus recover. 

 

Fig 4: Communication between the LIM and IServer; the 

traffic between the components is encrypted. 

5. SYSTEM OPERATION 
If the LIM detects a discrepancy (a kernel hook perhaps), it tries 

resolves the cause to a module (if possible). On obtaining it, it 

computes the hash of the module and compares it with it’s own 

database of stored hashes. 

In the database, each detected file has a value associated with it 

that represents its degree of maliciousness. This value that we 

shall call “AIE” (Am I Evil)  has range(0-1) where 1 means a 

certainly malicious file. The calculation of this value has been 

described. 

The LIM only refers to the IS when it detects a previously 

unknown module, or one whose hash is less than a critical vale. 

(set by user). The relationship between the LIM and IServer is 

shown in figure 4. 

When the LIM receives the UPDATE message, it chooses 

whether to update it’s database or not. If the LIM does not have 

the hash in it’s database, and the AIE value in the UPDATE 

message is less than the critical value, it may choose to ignore it. 

The flow diagram between various components of the LIM is 

shown in figure 5. When the Hook monitor detects and resolves 

a hook, it adds the complete filename, (say \??\C:\hide.sys) to 

Hlist, which is  

 

Fig 5: Conceptual flow between the components of the 

system 

a shared memory buffer. The dependency resolver monitors the 

filename from hlist to reveal additional dependencies. Each 

dependency is stored in stored in a unique file (Sfile), the name 

of which is present in Hlist. 

An Sfile is a file that is written by the dependency resolver when 

it monitors detected hooks. Each Sfile has the following: SHA-1 

hash of the file, AIE, it’s attributes followed by a list of 

filenames (which is also an Sfile) which denote the 

dependencies of the file . Finally the LIM sends the packet to the 

IS, whose format is shown in figure 6.The attributes filed is a 16 

bit value whose format is shown in figure 7. The attribute field 

is indented for future work and is not used by the server for 

classification or identification of malware. However, since it is 

worth noting that most malware arise from existing code, a 

classifier can also be  

The IS recalculates AIE on every request as 

AIE(t) = AIE(t-1) + Average(sum of AIE of 

dependencies)/AIE(t-1)       (3) 

6. SIMULATION AND RESULTS 

The network was simulated with 70 nodes by varying the 

different parameters. The goal was to test it for different 

behaviors and observe the generation of AIE for each test case. 

As expected, the case where a program hardly spreads gives a 

small value of AIE over time. Whereas a virus that spreads at 

fast rates escalates the AIE at high rates. 

.Also a virus that spreads at some rate but having a high cure 

rate eventually dies out, hence AIE value tends to decrease for 

such a case. 

In all there are three parameters that affect AIE, i.e. cure rate, 

network connectivity and infection rate. Figure 7 shows the 

graph of a scenario where the infection rate of the system is 

greater than the cure rate. 

 

Fig 6: Packet format of R_Request sent by LIM to IServer 

 

Fig 7: The  Attribute field in the R_Request packet 
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Fig 8  Time series data for the simulation for 70 nodes with β 

= 0.1200,δ = 0.2000, and c = 0.0505. 

 

Fig 9: Shows the AIE value v/s time for a simulation for 

70nodes with β = 0.1200, δ = 0.2000, and c = 0.0505. 

In figure 9, it is seen that as the infection does not spread after 

60 nodes, the AIE value tends to decrease. This seems intuitive 

as the number of seemingly infected nodes is 60 but still no new 

nodes are being infected. Thus the program’s AIE value tends to 

decrease 

 

7. CONCLUSIONS 
In this paper we have proposed a design for an integrity 

measurement system, which uses heuristics from computer 

epidemiology. We have validated the proposed integrity 

measurement system by simulating the conditions for a viral 

epidemic. Tests from the simulation exhibit expected desirable 

behavior of the system. From the simulations, it can be verified 

that if the infection rate of a virus is higher than the cure rate, 

the AIE value escalates. Thus the proposed integrity 

measurement system is capable of successfully detecting  

rootkits and measuring  severity of infectiousness of the system 

under test.  

The components of the proposed system are designed to be 

generic. The future work involves, 1)   Extending the 

components to encorporate higher details of rootkit detection; 2) 

Embedding a signature based detection in the local integrity 

monitor. 
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