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ABSTRACT 
While K-means is one of the most well known methods to 

partition data set into clusters, it still has a problem when clusters 

are of different size and different density. K-means converges to 

one of many local minima. Many methods have been proposed to 
overcome these limitations of K-means, but most of these 

methods do not overcome the limitation of both different density 

and size in the same time. The previous methods success to 

overcome one of them while fails with the others. In this paper we 

propose a novel algorithm of clustering using K-means (CUK). 
Our proposed algorithm uses K-means to cluster data objects by 

using one additional centroid, several partionining and merging 

process are used. Merging decision depends on the average mean 

distance where average distance between each cluster mean and 

each data object is determined, since the least and closet clusters 
in average mean distance are merged in one cluster, this process 

continues until we get the final required clusters in an accurate 

and efficient way. By comparing the results with K-means, it was 

found that the results obtained by the proposed algorithm CUK 

are more effective and accurate. 

General Terms 
Data Clustering, Unsupervised Classification.  

Keywords  
Data Clustering, K-means, Clustering using K-means, Average 

Mean Distance. 

1. INTRODUCTION 
Clustering is an unsupervised classification; the main goal of 

clustering is to group similar objects together so each group 

becomes cluster. While Objects in the same cluster should have 
the most similarity, they should also have the most different from 

other objects of clusters. A good clustering method will produce 

high quality clusters with high intra-cluster similarity and low 

inter-cluster similarity. The quality of a clustering result depends 

on both the similarity measure used by the method and its 
implementation and also by its ability to discover some or all of 

the hidden patterns [1]. 

There are widely used similarity and dissimilarity measures for 

different attribute types. Each types of data, including numerical 

data, categorical data, binary data, and mixed-typed data, has a 
measurement method. 

Euclidean distance is probably the most common distance we 

have ever used for numerical data. For two data points x and y in 

d-dimensional space, the Euclidean distance between them is 

defined to be 

 

 

Where  and  are the values of the jth attribute of x and y, 

respectively [2]. 
Many of clustering algorithm was proposed to solve the clustering 

problem, we can classify these algorithm into partioninal and 

hierarchical [3]. Partioninal clustering algorithms try to determine 

K partitions that optimize a certain objective function. 
In the other hand, a hierarchical clustering is a sequence of 

partitions in which each partition is nested into the next partition 

in the sequence.  

K-means is one of the most commonly-used clustering algorithm 

which developed by Mac Queen in 1967. K-means is a simple and 
efficient partition clustering algorithm. It is most effective for 

relatively smaller data sets. K-means converges to one of many 

local minima because it minimizes a distance measure between 

each data and its nearest cluster center [4]. Many parallel versions 

of the K-means algorithm [5] use the basic serial K-means at their 
core. Besides, a number of stochastic clustering algorithms make 

use of the basic K-means or some of its variations.  

The main problem of K-means is converging to the global optimal 

solution. Every time the K-means converges to local minima 

because of its greedy in nature, it is expected to converge to a 
locally optimal solution only and not to the global optimal 

solution. This problem is partially solved by applying the K-

means in a stochastic framework like simulated annealing (SA) 

and genetic algorithm (GA) etc. 

Unfortunately, K-means is so sensitive to initial starting points - 
centroids. If the initial partitions are not chosen carefully, the 

computation will run the chance of converging to a local 

minimum rather than the global minimum solution. Because of 

initial starting points generated randomly, K-means does not 

guarantee the unique clustering results [6]. 
It may be clear now that we can reach the global minimum if we 

run K-means more than one time until the partitions number be 

the same for many running time, of course this action has the 

drawback of being very time consuming and computationally 

expensive. 
Moreover K-means has problems when clusters are of differing 

sizes, densities and non-globular shapes. Several methods were 

proposed to solve the cluster initialization of K-means.  

In [7], a refinement approach is proposed, where starting with a 

number of initial samples of the data set we can obtain a number 
of sets of center vectors. These center vectors then pass through a 

refinement stage to generate a set of so called good starting 

vectors. 

A variant of a recursive method for initializing the means by  

running clustering problems consists of taking the entire data and 
then randomly perturbing it K times [6]. 

In [8], a genetically guided K-means has been proposed where 

possibility of generation of empty clusters is treated in the 

mutation stage. 

Another approach to initialize cluster centers based on values for 
each attribute of the data set has been proposed in [6]. These 
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methods are time costly and may not be applicable by keeping the 

K-means's inherently simple structure. 

In [9] a new center vector computation strategy enables us to 
redefine the clustering process and to reach our goal. The 

modified algorithm is found to work very satisfactorily, with some 

conditional exceptions, which are very rare in practice.  

In [10] the authors optimize the initial centroids for K-means. It 

utilizes all the clustering results of K-means in certain times, even 
though some of them reach the local optima. Then, we transform 

the result by combining with Hierarchical algorithm in order to 

determine the initial centroids for K-means. 

Authors have used Principal Component Analysis (PCA) in [12] 

for dimension reduction and finding the initial centroid for K-
means. They have used heuristics approach to reduce the number 

of distance calculation to assign the data point to cluster. 

In [13] authors proposed the global k-means clustering algorithm, 

which constitutes a deterministic effective global clustering 

algorithm for the minimization of the clustering error that employs 
the k-means algorithm as a local search procedure.  

In this paper, we will present a novel clustering algorithm using 

K-means (CUK). Our proposed algorithm tries to cluster data 

objects in accurate and efficient when clusters are of different size 

and different density. 
In Section 2, we describe the K-means algorithm and distortion of 

the method. In Section 3, we propose CUK algorithm as a new 

approach to cluster data objects using K-means. Section 4 

performs the experimental results on the artificial data set as well 

as real data set. In Section 5, we will draw conclusions. 

2. RELATED WORK  
The K-means algorithm [12] is very commonly used for clustering 

data. To handle a large data set, a number of different parallel 
implementations of the K-means have also been developed. Here, 

we shall provide a brief description of the serial K-means and 

some of its properties relevant for the current work. 

In crisp partitional clustering, a set D of N patterns {x1, x2, …, 

xN} of dimension d is partitioned into K clusters denoted by {C1, 
C2, …, CK} such that the sum of within cluster dispersions, i.e., 

the Squared Error (SSE) , as given in (1), becomes the minimum. 

 

                                                 
Here, M = {M1 , M2, …, Mk} is the set of cluster mean. 

 

2.1   A basic K-means algorithm 

The basic K-means algorithm is commonly measured by any of 

intra-cluster or inter-cluster criterion. A typical intra-cluster 

criterion is the squared-error criterion (Equation 1). It is the most 

commonly used and a good measure of the within-cluster 

variation across all the partitions. For the current work, we 
consider intra-cluster squared-error function to evaluate the 

present scheme of clustering. In basic K-means algorithm, a set D 

of dimensional data is partitioned into K clusters, starting with a 

set of K randomly generated initial center vectors. 

The process iterates through the following steps: 
• Assignment of data to representative centers upon minimum 

distance, and 

• Computation of the new cluster centers. 

The process stops when cluster centers (or the SSE) become stable 

for two consecutive iterations.  

Algorithm 1: Basic K-means Algorithm. 

 

1. Initialize K center locations (C1, ….., Ck) 

2. Assign each Xi to its nearest cluster center Ci 

3. Update each cluster center Ci as the mean of all Xi that 
have been assigned as closest to it 

4.  

5. calculate   

 

6. If the value of SSE has converged, then return (C1, ..., 
Ck); else go to Step 2. 

3. OUR PROPOSED ALGORITHM 
Our proposed algorithm CUK uses K-means to cluster data 

objects when clusters are of different size and different density . 

We use K-means as a guide to find the optimal solution to assign 

data objects to the correct cluster. Thus CUK is classified as 

partitional clustering algorithm. CUK uses the average mean 
distance between each cluster mean and each data object as a 

metric to take decision of merging. The average mean distance 

acts as a measure of density of objects; the following formula was 

used to determine the Average Mean Distance (AMD) 

 

 

                                                                                                                                                            

Where  is the  cluster,  is the  cluster mean, is  

data object of X, n is the total number of data objects,   is the 

total  number of data objects that belong to cluster  and 

 is the Euclidian distance between  and . 

In this proposed algorithm we try to reach the global optimal as 
possible as we can through multiple splitting using K-means and 

merging with respect to average mean distance. Initially CUK 

runs K-means with one additional centroid, and then we calculate 

the Average Mean Distance from each cluster mean. The two 

clusters with least AMD are merged into one cluster. It is 
important to exclude data objects that have shared in previous 

merging process, so they will not share in merging process next 

time. CUK continues in this manner for K times, where K is the 

cluster number. We will see in the next section that CUK does 

better than K-means in assignment data objects to clusters. CUK 
makes the assignment more accurate and efficient.  

3.1 Proof of merging according to Average 

Mean Distance AMD: 
Let us consider a 1-dimensional data set  

{X1 = 1, X2 = 2, X3 = 4, X4 = 5, X5 = 10, X6 = 11, X7 = 15, X8 

= 16, X9 = 19, X10 = 20, X11 = 23, X12 = 25}. 
Suppose that the required clusters are C1, C2. By using CUK 

algorithm, we run K-means with additional one centroid and thus 

we get three clusters C1, C2, and C3.  

 

Table 1. Description of Clusters Cj 
 

 Cluster 1 Cluster 2 Cluster 3 

Cluster 

Members 

X1, X2, X3, 

X4 

X5, X6, X7, 

X8 

X9, X10, 

X11, X12 

Cluster 
Mean Mj 

3 13 21.75 
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Table 1 shows the members of each cluster Cj along with the 

mean Mj. 

At this stage we calculate the average mean distance for each 
cluster Cj, where Cj is the jth cluster, we get the following results: 

 

Table 2. Average Mean Distance AMD of cluster Cj 
 

AMD of cluster 2 from cluster 1 mean 10 

AMD of cluster 3 from cluster 1 mean 18.75 

AMD of cluster 1 from cluster 2 mean 10 

AMD of cluster 3 from cluster 2 mean 8.75 

AMD of cluster 1 from cluster 3 mean 18.75 

AMD of cluster 2 from cluster 3 mean 8.75 

 

Table 2 shows the average mean distance from each data objects 

of cluster Cj to each cluster mean Mj.  

From the above table it is clear that the C2 and C3 have the 
closest average mean distance, so it is useful to merge C2 and C3 

in one cluster and have C1 in a separate cluster. By generalizing 

this assumption, we get: 

For a d-dimensional data set {X1, X2, X3, ….., Xn} is partitioned 

into K clusters C1, C2, C3, … ,Ck. By using our proposed 
algorithm CUK we get the following clusters C1, C2, C3, … 

,Ck,Ck+1, with Average Mean Distance AMD1,AMD2,AMD3, 

… , AMDk, AMDk+1. Merging the least and closet two clusters 

will result the K clusters. 

3.2  Implementation of proposed algorithm: 
The following table shows the main implementation of CUK 

algorithm 

Algorithm 2: Proposed Algorithm CUK. 

 
1. K= number of clusters 

2. for each cluster Cj 

3. KN=number of clusters + 1 

4. run K-means  

5. get the closest clusters Ca, Cb =   closest_cluster() 
6. merge_cluster(Ca,Cb) 

7. for each data objects Xi in cluster Cj 

8. Update the list of data objects to include  non-merging 

objects X include Xi with merge_flag=0  

9. end 
10. end 

11. if KN == K+1 

12. get the closest clusters Ca, Cb = closest_cluster() 

13. merge_cluster(Ca,Cb) 

14. end 

 

The following table shows the implementation of closest_cluster 

procedure. 

 

Procedure 1:Procedure Of closest_cluster 

 

1. procedure closest_cluster() 

2. { 

3. for each cluster Cj 

4. for each data objects Xi in cluster Cj 
5. average_mean_distance= 

 

 

6. end 
7. end 

8. for each cluster Cj 

9. find two clusters Ca, Cb with least and closet 

average_mean_distance 

10. end 
11. return Ca,Cb 

12. } 

 

The following table shows the implementation of merge_cluster 
procedure. 

 

Procedure 2:Procedure Of merge_cluster 

 

1. procedure merge_cluster(Ca,Cb) 

2. { 
3. if average_mean_distance of Ca >   

        average_mean_distance of Cb 

4. for each data objects Xi in cluster Cb 

5. assign Xi to cluster Ca 

6. merge_flag of Xi=1 to exclude Xi from  the next   
merging process. 

7. end 

8. else 

9. for each data objects Xi in cluster Ca 

10. assign Xi to cluster Cb 
11. merge_flag of Xi=1 to exclude Xi from  the next     

merging process. 

12. end 

13. end 

14. } 

  

Initially CUK takes the number of cluster K as an input, after that 

we add one additional centriod, So the number of clusters NK= 
number of clusters (K) + 1, After running K-means with NK we 

gets NK clusters with a mean Mj for each cluster. Now we 

compute the Average Mean Distance from each data object to 

each cluster mean Mj according to equation 2. The least and 

closest two clusters distance are determined. Merging decision 
depends on the density of cluster, by comparing which of the two 

clusters has the largest Average Mean Distance, we will merge 

cluster of less density  (lowest Average Mean Distance) with the 

other of higher density(largest Average Mean Distance). At this 

stage we have a new cluster; this new cluster will not share again 
in splitting and merging process. It is important to specify which 

data objects should not share in merging process this can be done 

by putting the merge flag to one for each merging data objects. 

CUK makes feedback of those data objects, which do not share in 

merging process, and again runs K-means with these objects to get 
the best clustering. We check the number of resulting clusters K 

after running the CUK for K+1 times, it is possible to get one 

additional cluster. Additional cluster is due to the same Average 

Mean Distance of different clusters. In the case of additional 

cluster, simply get the average mean distance from each data 
object to each cluster mean Mj according to equation 2, the least 

and closest two cluster distance are determined. Now we compare 

which of them is more density (largest AMD) than other, merging 

cluster of less density  (lowest AMD) with the other of higher 

density (largest AMD) so we get one cluster at the end. CUK 
repeats the previous steps for K iterations. 
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4. EXPERIMENTAL RESULTS  
This section provides a comparison of the conventional K-means 

and our proposed algorithm CUK in terms of accuracy and the 

quality of the solution when clusters are of different size and 

different density. 

In order to analyze the accuracy of our proposed algorithm, we 
apply CUK to two kinds of experiments: artificial data set and real 

data sets.  

We represent Error percentage as performance measure in the 

experiments. It is calculated from number of misclassified patterns 

and the total number of patterns in the data sets. 
 

 

4.1 Artificial Data Sets 
This kind of experiment can express the ability of the proposed 

algorithm CUK to solve clustering cases with artificial data sets. 

In the experiment, we use two-dimensional data set (x and y). 

Then, we use normrnd function in Matlab to generate the random 

artificial data sets. Two artificial data sets are considered for this 
experimentation. The artificial data sets are DATA_SET_1, and 

DATA_SET_2. For example, in DATA_SET_1, there are three 

clusters and 2 dimensions, while in DATA_SET_2; there are three 

clusters and 2 dimensions as shown in Table 3.  

 
Table 3. Description of artificial data used 

 

Data Sets Data Size Dimension 
No. of 

clusters 

DATA_SET_1 

 
335 2 3 

DATA_SET_2 

 
156 2 3 

 
We do clustering of the artificial data sets DATA_SET_1 and 

DATA_SET_1 with our proposed algorithm CUK and K-means. 

 

 
Fig 1. DATA_SET_1 clustered by proposed algorithm CUK 

 

Figure 1 shows the result of clustering DATA_SET_1 using our 

proposed algorithm CUK. We have three clusters which are green 

cluster (denoted by stars), red cluster (denoted by triangles), and 

blue cluster (denoted by points). Green cluster is the largest one. 

From the above figure, we see that CUK solves the problem of 

different size clusters in efficient way. 

 

 
Fig 2. DATA_SET_1 clustered by K-means algorithm 

 

Figure 2 shows the result of clustering DATA_SET_1 using K-

means algorithm. We have three clusters which are green cluster 

(denoted by stars), red cluster (denoted by points), and blue 
cluster (denoted by triangles). From the above figure we see that 

K-means has problem when clusters are of different sizes. K-

means fails in classification of red cluster and blue cluster, while 

our proposed algorithm success. 

 

 
Fig 3. DATA_SET_2 clustered by proposed algorithm CUK 

 

Figure 3 shows the result of clustering DATA_SET_2 using our 

proposed algorithm CUK. We have three clusters which are green 

cluster (denoted by stars), red cluster (denoted by triangles) and 
blue cluster (denoted by points). Blue cluster and green cluster 

have different density (AMDs), red cluster is denser (larger AMD) 

than both cluster blue and cluster green. From the above figure, 

we see that CUK solves the problem of clusters with different 

density (AMD) in efficient way. 
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Fig 4. DATA_SET_2 clustered by K-means algorithm 

 

Figure 4 shows the result of clustering DATA_SET_2 using K-
means algorithm. We have three clusters which are green cluster 

(denoted by stars), red cluster (denoted by triangles), and blue 

cluster (denoted by points). From the above figure, we see that K-

means has problem when clusters are of different dense (AMD). 

K-means fails in classification of green cluster and blue cluster, 
while our proposed algorithm success. 

4.2.  Real Data Sets 
In order to analyze the accuracy of our proposed algorithm, we try 

to make experiments using a number of real data sets. The data 

sets, which we use, are Iris data, Glass data, and Haberman data. 

4.2.1.  Iris data set 
We obtained this data set from UCI Repository. This data set 

contains information about Iris flowers. There are three classes of 

Iris flowers, namely Iris Setosa, Iris Versicolor and Iris Virginica. 

The data set consists of 150 examples with 4 attributes. One class 

is well separable the other two. The others have a large overlap. 

4.2.2.  Glass data set 
We obtained this data set from UCI Repository. This data set 

contains information From USA Forensic Science Service; 6 types 

of glass; defined in terms of their oxide content (i.e. Na, Fe, K, 

etc). There are seven classes of glass, namely 
building_windows_float_processed, 

building_windows_non_float_processed, 

vehicle_windows_float_processed, 

vehicle_windows_non_float_processed (none in this database), 

containers, tableware and headlamps. The data set consists of 214 
examples with 10 attributes.  

4.2.3.   Haberman data set 
We obtained this data set from UCI Repository. This data set 

contains cases from study conducted on the survival of patients 

who had undergone surgery for breast cancer. There are two 
classes of Survival status, the patient survived 5 years or longer 

and the patient died within 5 year. The data set consists of 306 

examples with 3 attributes. We used Error percentage to validate 

the results of our proposed algorithm. We compute the real data 

sets with our proposed algorithm CUK and K-means, after 
running them for 100 times we take the average results. The 

results of comparison are given in Table 4. 

Table 4. The Error percentage comparison between our 

proposed algorithm CUK and K-means 
 

Data Set Used Algorithm Error percentage (%) 

Iris data set 
Proposed Algorithm 16.67 

K-means 21.67 

Glass data set 
Proposed Algorithm 40.1215 

K-means 44.8598 

Haberman 

data set 

Proposed Algorithm 37.5817 

K-means 48.7124 

 

Table 4 shows the Error percentage comparison between our 

proposed algorithm CUK and K-means. Using Iris data sets, our 

proposed algorithm CUK has Error percentage equals to 16.67 

while K-means has Error percentage equals to 21.67; our 
proposed algorithm CUK has lower Error percentage than K-

means. 

With Glass data sets, our proposed algorithm CUK has Error 

percentage equals to 40.1215 while  K-means has Error 

percentage equals to 44.8598; our proposed algorithm CUK has 
lower Error percentage than K-means. 

Also experiment on Haberman data sets shows that our proposed 

algorithm CUK has Error percentage equals to 37.5817 while K-

means has Error percentage equals to 48.7124; our proposed 

algorithm CUK has lower Error percentage than K-means. 
 

From Table 4 and by referring to the experimental results on the 

real data sets, it can be observed that our proposed algorithm CUK 

has lower Error percentage than K-means. Since Error percentage 

is an indication of algorithm accuracy this means that our 
proposed algorithm CUK is better than K-means in clustering real 

data sets.  

5. CONCLUSION  
In this paper, we presented a novel algorithm for performing 

clustering using K-means (CUK) when clusters are of different 

size and different density . CUK used one additional centroid, the 

distance measurement depends on the density of data objects from 

all clusters mean. Our experimental results demonstrated that our 
scheme could do better than the conventional K-means algorithm. 

While our proposed algorithm solve the problems when clusters 

are of differing Sizes and Densities, the conventional K-means 

failed.  
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