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ABSTRACT 

This work proposes a computer assisted assessment approach of 

algorithmic competencies. Aside from the fact that this approach 

brings a solution for delicate problem of e-assessment of 

algorithmic, in addition it is formative. Drawing one’s 

inspiration from the basic principles of the algorithmic field 

itself, it recovers an interesting efficiency. It reclines on use of 

scalable solutions basis. Any learner’s production, for a given 

problem, is automatically assessed if it is recognized, or 

assessed by a human expert if necessary. In the last case, it will 

enrich the basis if it is judged pedagogically interesting The 

purpose of this approach is to provide a formative and diagnostic 

assessment in order to empower the learner to acquire problem-

solving skills of algorithmic. 
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1. INTRODUCTION 
Algorithmic is a domain which fosters, especially, acquisition of 

a method of work and reflection, and development of analyze 

abilities, of abstraction, of anticipation and logic [1]. It is the 

kernel of any training of a computer scientist. It is also a 

material which has often been a source of problem for teachers 

and students. For teachers, because they have to find adequate 

methods to do assimilating abstract concepts to students who are 

only in their initiation phase. For students, algorithmic, unlikely 

to other sciences such as physic, does not offer for beginner an 

artless model viable of computer, which they can use it as a base 

to construct mental models more sophisticated. On the contrary, 

the experience student with this seems to favor an 

anthropomorphic modeling, which do not allow student to 

understand the brute error return which it confronted in the 

beginning of her/his algorithmic practice [2]. 

This finding is not recent. Since longtime, many experienced 

teachers in many universities have been in spite of their 

experience confronted to difficulties of their students face this 

material. Consequently, a very high dropout rate or failure is 

engendered during programming course, at the first cycle of  
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university, which varies between 25 and 80% around the world 

as evidenced by Kaasboll in [3] and many students need to 

retake the course. 

This situation drove several specialists to study and to strive to 

understand the reasons of this problem [4] [5] [6]. They show up 

that these difficulties are related principally to the nature of this 

field and situated mainly at the abstraction level of its concepts.  

This abstraction prevents students to rely on real model to 

assimilate. 

Developing solutions to algorithmic problems constitutes a 

major challenge for novices taking a CS1 course. Students have 

difficulties in formulating an idea for a solution, recognizing 

similarities among problems, and identifying familiar subtasks 

in a compound problem; consequently, they frequently end up 

with incorrect and cumbersome algorithms [7] [8] [9] [10]. 

Unfortunately, students are often overwhelmed by the many new 

ideas and details they need to comprehend in this short period of 

time. 

At our university, the problem is more eloquent. The alarming 

failure rate (about 70%) of students in algorithmic material had 

finished by constituting a bottleneck in their progression at the 

2nd to the 3rd year of license (the first cycle of university 

Computer Science CS). The study done by [11], initiated by the 

research group in TEL of Laboratory of Research in Computer 

Science, confirm all the inherent difficulties and that students 

have a difficulty to get around. For this reason, we 

recommended to address to Information and Communication 

Technology ICT in order to improve the training quality and to 

search how constraints of classroom formation can be creatively 

liberating and thus reduce the drop-out rate. In this sense, our 

research group advocated the development of a TEL 

environment of algorithmic able to supervise and to accompany 

disoriented students in algorithmic. 

In this paper, we will discuss our research framework where we 

will introduce the difficulties of algorithmic and assessment in 

algorithmic. After that, in section 3, we propose our approach 

and the demarche followed for modelling and developing the 

assessment approach. 

The fourth section presents the improvement of the approach. 

The paper is ended by a conclusion and a future work. 
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2. RESEARCH FRAMEWORK 
The project where inscribes this work aspires the improvement 

of learning algorithmic at the university of Badji Mokhtar 

Annaba in Algeria. Based on learning by solving problem, this 

project aims to conceive a learning environment dedicated. It 

has as major goals giving responsibility to learners and bringing 

them to take aware of their insufficiencies in knowledge to 

understand, to practice for algorithmic thinking and to train for 

algorithmic problem solving skills. 

In this project, we look after the assessment of competencies of 

algorithmic conception. For learner, this requirement to acquire 

problem solving skills is fundamental [12] [13]. The survey 

shows that many existent environments learning for algorithmic 

are focused on programming, i.e. how to write a set of 

instruction to resolve a problem, and that in the few works about 

algorithmic, assessment has been misconstrued and sometimes 

reduced to its simple expression (Multiple Choice Questions 

‘MCQ’ …). Even if several methods and tools have been 

devoted to the assessment in TEL environment, they suffer 

insufficiency. This insufficiency is characterized either by 

inefficacity, doubtful result, or by uniqueness, i.e. they can’t be 

applied into all fields (e.g. we can’t assess algorithmic skills 

using MCQ). However, the positive impact of an appropriate 

assessment on learning is guaranteed [14] [15] [16]. With an 

appropriate assessment we mean an effective assessment which 

aims depth learning, detection of progress and learners gaps. 

It’s important to remember that assessment holds a preponderant 

place in large number of pedagogical activities [17]. Assessment 

in learning at classroom or in a Technology Enhanced Learning 

(TEL) environment was always source of ambiguity among 

evaluator and learner, and sometimes among evaluators 

themselves. Thus, assessment is rarely considered because it is 

often absent and obsolete [16]. Nevertheless, it is an integrate 

process in pedagogy. Furthermore, assessment is not restricted 

to attribute a mark, although this is important as far as we want 

to quantify skills. Evaluation constitutes a guide hall for 

learner’s progression and intervenes in the interaction level 

between teacher and learner to optimize the transfer and the 

purchase of knowledge, skills and practices. It overtakes so 

theoretical framework. So, its importance is capital.  

In addition, algorithmic is characterized by the multitude of 

solution for a given problem. This characteristic increases 

exponentially the assessment process in learning systems; it’s a 

difficult task to expert of field to find all possible solution for a 

given problem in order to integrate them in the solution basis 

(indeed, expert human always forgets them). 

Through this ensemble of obstacles that we can measure the size 

of difficulties toward pass round to strive for automatic 

assessment of algorithmic competencies. 

3. OUR PROPOSITION 
It is known in algorithmic that to execute complex tasks, every 

task must be decomposed on succession of simplest tasks. This 

decomposition is repeated until having elementary tasks. The 

number of step of decomposition depends on the complexity of 

problem to resolve.  

This descendant approach (also named divide-and-conquer), 

source of our inspiration, allows to pass gradually and with a 

maximum chance to success, from the abstract description of the 

problem solution (with a complex process) to an algorithm 

resolving the problem [18] [19]. We can say that an algorithm is 

on the last level of decomposition when it contains only 

elementary operations, basic operations (known operations) and 

control structures.  

We define a basic operation (BO) such as an operation well-

known in algorithmic like Sorting, Researching, etc. whereas 

elementary operation (EO) is a simple instruction such as 

assignment. 

 

Fig 1: Decomposition of a problem 

Figure 1 illustrates that at level one, the problem is divided into 

an ensemble of decomposable operation (DO), basic operations 

and elementary operations connected by control structures if 

necessary (condition, repetition,…). 

At level two, every decomposable operation of level one is 

decomposed, either at decomposable operation again, or at basic 

operations or elementary operations. This depends on the 

complexity of the problem. 

Etc. 

Thus, in an assessment context, learners may present their 

solutions, to a given problem, in terms of decomposable, basic 

and elementary operations. These operations may be connected 

by control structures (loops, condition). This gradual 

decomposition of solution and the use of high-level concept 

(basic operations) allow firstly an efficient assessment, and next 

totally adapted to the field. 
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Fig 2: Decomposition approach 

This manner to do aims two objectives: 

 To compel learner learning to divide a problem. This 

teaches him/her to decrease gradually the complexity 

of problem and evades him/her drowning in details at 

first,  

 To let learner focus its efforts on the problem and not 

on secondary questions (basis operations). For 

example, in the sorting problem, what interest us is if 

learner opts for a sorting and not how he/she makes 

sorting. However, basic operations may do themselves 

a learning object.  

3.1 Modeling and assessment 
The variety of solutions for an algorithmic problem makes 

situation where learner can take a ‘way’ among several which 

represents a solution of the problem (see Figure 3).  

We call a solution plan, a path constituted with basic and 

elementary operations. This plan describes a correct solution for 

a given problem, as may describe an erroneous solution 

pedagogically interesting. The whole of plans (SP) constitutes a 

Descriptive Map (DM) of the problem (see Figure 3). 

Fig 3: Descriptive Map 

This descriptive map allows to locate learner and to recognize its 

step (right or erroneous) during solving problem. 

Holding BO (organizing in a library) and EO, learner can 

express his/her solution freely without any restriction neither 

influences.  

Teacher, for its part, should define beforehand for every 

problem a DM. We know in advance that it will not be complete 

(describes all solutions/errors of problems), but he/she must 

foresee the most plausible SP (SP having more probability to 

appear), leaning on his/her experience and given for each SP an 

interpretation. During the definition of a SP, teacher attributes 

for each BO/EO a weight expressing its importance in the 

solution. The assignment of weight depends on the pedagogical 

objectives aimed by the problem.  

DMs are scalable. Overtime, they can be enriching by other SP, 

i.e. integrating other solutions proposed by learners but not 

foresee by teacher. Indeed, every solution not recognized, its 

evaluation should be suspended until the intervention of a 

human teacher which if he/she judges it interesting 

(pedagogically interesting), will add it into the DM. 

3.2 Assessment script 
The produced assessment is an individual, summative, 

diagnostic and formative assessment. To assess a plan proposed 

by learner, it must recognize in the DM the nearest SP (called 

the referent SP). This one will serve to calculate the mark. The 

recognition of referent SP is done by the formula (1) which 

calculates the similarity degree of the learner plan with all SP of 

DM of the problem. This formula is conceived on the basis of 

two parameters, succession of BO/EO (the order) and use of an 

inappropriate BO/EO [18] [19] [20].  
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 (Nb’S/Nb): Represents the similarity operation by 

operation, 

 (Nb’SD/Nb): Represents the penalty for BO/EO which 

are disordered, 

 (Nb’I/Nb): Represents the penalty for BO/EO which 

are useless, 

Where: 

 Nb: number of BO/EO of the DMs’ plan, 

 Nb’S: number of BO/EO of the proposed plan, which 

are similar to BO/EO of DMs’ SP, 

 Nb’SD: number of BO/EO of the proposed plan which 

are disordered, 

 Nb’I: number of BO/EO of the proposed plan which 

are useless. 

4. EVOLUTION OF THE APPROACH 
The experimentation of this approach through the realized 

prototype [20] revealed an important heaviness (compound!!) in 

looking for the nearest solution. In fact, two solutions including 
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identical and independent operations in a different order 

constitute two different solutions. This has as result increasing 

exponentially the size of the DM and consequently the basis of 

plans. 

We redefined then the concept of the plan. And, instead of 

considering a plan like a suite of operations (basic and 

elementary), it becomes a canonical formalism for the 

representation of a task. This redefinition will allow a better 

comprehension of learner’s solutions because the explanation of 

their objectives and the identification of their structures, 

conceptions, and execution behaviors will be well translated. 

This is well illustrated with the following section. 

5. AN APPROACH OF UNDERSTANDING 

PROGRAMS BASED PLAN FOR 

AUTOMATIC ASSESSMENT 
Program understanding has been frequently defined as a 

recognition process of program plans in a fragment of source 

code [21] [22] [23] [24] [25].  

Research works on program understanding have as goals to 

identify conceptual information and to develop concepts and 

extraction tools from existent and operational systems.  Two 

types of extraction concepts have been identified: program plans 

and program slice. The first linked to tasks implemented by a 

program, the second concerns the execution behavior of a 

program. 

Our aim is the definitional aspect of a solution and the manner 

for solving problem. The comprehension oriented task 

constitutes an interesting approach for our problem. This 

approach requires knowledge basis containing a set of standard 

forms (tasks description). These standards forms are represented 

under canonical form using the formalism of plan. A program 

plan corresponds to a fragment of code which achieves a 

stereotyped action. 

In program diagnostic approaches based on the concept of plan, 

a program is seen like a set of tasks to make [26]. The set of 

implicit tasks in the program constitutes the conception of the 

last one. Semantically, a program contains implicitly a high 

level of abstract concepts and contains explicitly language 

concepts. 

Indeed, every task corresponds to an abstract concept. We call a 

program plan a description of correspondences between a task 

and its sequence of instructions [22]. In other words, a program 

plan is a recognition rule of an abstract concept from language 

concepts specified in source code. 

A plan is defined as following: 

Plan    c (list of attributs) 

Consist of      cc1, cc2... ccn 

Such that       e1, e2... er 

Where: 

 C: represents the name the plan with a list of 

attributes; 

 Consist of: regroups components of the plan; 

 Such that: constraints representing the different 

dependences between the different components of the 

plan, 

In our case, the plan becomes a description of correspondence 

between a task (problem to resolve) and its operation sequence 

instead a sequence of instructions, i.e. instead using only 

instructions like a component in the plan, it is possible to use 

also a high level of operations. Thus, the plan components (cc1, 

cc2… ccn) represent either basic operation BO which are high 

level concepts, or elementary operations EO, or also other tasks. 

The following example illustrates a plan of a counter. 

Plan counter (c:?c, test:?test, 

body:?body);  

/*c, test and body represent attributes of 

the plan*/ 

Consist of  

EO: Init-counter: zero (var:?c);  

/* initialization of the counter */ 

EO: Inc-counter: increment (var:?c);  

/* to increment the counter */   

BO Repeat:  loop (test:?test, body: ?body);  

/*loop repetition*/ 

Such that  

Init-com: Control-flow (Init-counter, 

Repeat); 

Flow1-of-counter: Data-dep (Inc-counter, 

Init-counter,?c); 

Flow2-of-counter: Data-dep (repeat, inc-

counter,?c); 

 

The dependences considered in constructing of the program 

plans are data flow and control dependencies connecting 

concepts between them to form a high level concepts. These 

relations are described as predefined functions can be assessed 

true or false. 

Our aim is not assessing language concepts (the set of 

instructions), but assessing the high level abstract concepts 

which are used to resolve a problem, i.e. to externalize the 

abstract concepts used (Research, Deleting, etc.) as plan 

components and their organizations (operation chaining and 

constraints) to assess algorithmic problem solving skills of 

learner. 
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5.1 A new solution basis 
These new solutions (using the formalism of plan) constitute 

now the solutions basis. It describes tasks which resolve 

problems in term of basic and elementary operations or also 

using another task (see Figure 4).  

 

 

Fig 4: Solutions cluster with the canonical representation of the solution in the basis 

 

5.2 Library of basic operations 
The basic operations used in the conception of a solution, are 

regrouped in a library. A basic operation has parameters which 

are used in the unification during the plan recognition in the 

assessment phase. The structure of a basic operation is defined 

as following:  

Name-operation (list of parameters); 

5.3 Looking for the referent plan to assess 
The figure 5 resumes the assessment script. Firstly, learner 

conceives a solution plan using three types of bloc: BO bloc, EO 

bloc or control structure bloc. The syntax used to define a bloc is 

a pseudo code. After that, this solution is translated to a plan 

separating operations from their constraints. 

The research of the most similar plan to the learner’s solution in 

the solution basis passes by measuring the similarity between the 

learner’s plan and the basis’s plans using Jaccard similarity 

coefficient [27]. The Jaccard coefficient measures similarity 

between sample sets, and is defined as the size of the 

intersection divided by the size of the union of the sample sets 

(2). Two sets A and B, the coefficient is: 

BA

BA
BAJS




),(  (2) 

To compare two plans, we must measure the similarity 

coefficient between components and constraints of the first plan 

like one set (A), and components and constraints of the second 

plan like another set (B). The comparison is done by comparing 

the learner’s plan with all plans of the treated problem and 

which have higher similarity index is a candidate to be the 

referent plan. 

The referent plan is selected only if the similarity index is 

superior to the threshold fixed by teacher. In this case, the 

solution proposed by learner is recognized. And in order to 

diagnosis the learner’s solution, we have to measure two 

similarity (using Jaccard coefficient).  On the one hand, the first 

similarity S1 is between the components of learner’s plan and 

components of the referent plan, and on the other hand, the 

second similarity S2 is between the constraints of each one. This 

matching between components and constraints allow us to know 

if learner has made the error at the level of choosing the 

appropriate operation to resolve the problem or at the level of 

control structures to link operations.  
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Fig 5: Assessment Script

Using this sub-matching after looking for the referent plan helps 

to diagnosis gaps of learners and to differentiate between the 

skills of solving problem and the knowledge used to resolve a 

problem.   

6. CONCLUSION AND FUTUR WORK 
The proposed approach is an assessment approach of 

algorithmic competencies and specially knowledge which 

intervenes in solving problems. The provided assessment is 

formative (to aid learner to progress) and summative (to quantify 

competences and knowledge really owned and to attribute a 

mark) assessment.  

Each proposed demarche is assessed automatically or by a 

human expert (Deferred assessment). In the last case, the 

solution proposed by learner may be enrich (if expert judges it 

interesting) the solution basis.  

Even if it has been conceived for algorithmic competencies 

assessment, this approach can easily be adapted in any field 

which manipulates procedural knowledge (know how). 
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