
International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

15

An e-Assessment Approach of Algorithmic

Problem-Solving Skills

Anis Bey

Laboratory of Research in Computer Science -LRI-
University of Badji Mokhtar

BP 12, Annaba 23000, Algeria

ABSTRACT

This work proposes a computer assisted assessment approach of

algorithmic competencies. Aside from the fact that this approach

brings a solution for delicate problem of e-assessment of

algorithmic, in addition it is formative. Drawing one’s

inspiration from the basic principles of the algorithmic field

itself, it recovers an interesting efficiency. It reclines on use of

scalable solutions basis. Any learner’s production, for a given

problem, is automatically assessed if it is recognized, or

assessed by a human expert if necessary. In the last case, it will

enrich the basis if it is judged pedagogically interesting The

purpose of this approach is to provide a formative and diagnostic

assessment in order to empower the learner to acquire problem-

solving skills of algorithmic.

General Terms

Technology Enhancing Learning, eAssessment, Approach of

understanding program

Keywords

Algorithmic, problem-solving skills, e-assessment,

competencies

1. INTRODUCTION
Algorithmic is a domain which fosters, especially, acquisition of

a method of work and reflection, and development of analyze

abilities, of abstraction, of anticipation and logic [1]. It is the

kernel of any training of a computer scientist. It is also a

material which has often been a source of problem for teachers

and students. For teachers, because they have to find adequate

methods to do assimilating abstract concepts to students who are

only in their initiation phase. For students, algorithmic, unlikely

to other sciences such as physic, does not offer for beginner an

artless model viable of computer, which they can use it as a base

to construct mental models more sophisticated. On the contrary,

the experience student with this seems to favor an

anthropomorphic modeling, which do not allow student to

understand the brute error return which it confronted in the

beginning of her/his algorithmic practice [2].

This finding is not recent. Since longtime, many experienced

teachers in many universities have been in spite of their

experience confronted to difficulties of their students face this

material. Consequently, a very high dropout rate or failure is

engendered during programming course, at the first cycle of

Tahar Bensebaa
Laboratory of Research in Computer Science -LRI-

University of Badji Mokhtar
BP 12, Annaba 23000, Algeria

university, which varies between 25 and 80% around the world

as evidenced by Kaasboll in [3] and many students need to

retake the course.

This situation drove several specialists to study and to strive to

understand the reasons of this problem [4] [5] [6]. They show up

that these difficulties are related principally to the nature of this

field and situated mainly at the abstraction level of its concepts.

This abstraction prevents students to rely on real model to

assimilate.

Developing solutions to algorithmic problems constitutes a

major challenge for novices taking a CS1 course. Students have

difficulties in formulating an idea for a solution, recognizing

similarities among problems, and identifying familiar subtasks

in a compound problem; consequently, they frequently end up

with incorrect and cumbersome algorithms [7] [8] [9] [10].

Unfortunately, students are often overwhelmed by the many new

ideas and details they need to comprehend in this short period of

time.

At our university, the problem is more eloquent. The alarming

failure rate (about 70%) of students in algorithmic material had

finished by constituting a bottleneck in their progression at the

2nd to the 3rd year of license (the first cycle of university

Computer Science CS). The study done by [11], initiated by the

research group in TEL of Laboratory of Research in Computer

Science, confirm all the inherent difficulties and that students

have a difficulty to get around. For this reason, we

recommended to address to Information and Communication

Technology ICT in order to improve the training quality and to

search how constraints of classroom formation can be creatively

liberating and thus reduce the drop-out rate. In this sense, our

research group advocated the development of a TEL

environment of algorithmic able to supervise and to accompany

disoriented students in algorithmic.

In this paper, we will discuss our research framework where we

will introduce the difficulties of algorithmic and assessment in

algorithmic. After that, in section 3, we propose our approach

and the demarche followed for modelling and developing the

assessment approach.

The fourth section presents the improvement of the approach.

The paper is ended by a conclusion and a future work.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

16

2. RESEARCH FRAMEWORK
The project where inscribes this work aspires the improvement

of learning algorithmic at the university of Badji Mokhtar

Annaba in Algeria. Based on learning by solving problem, this

project aims to conceive a learning environment dedicated. It

has as major goals giving responsibility to learners and bringing

them to take aware of their insufficiencies in knowledge to

understand, to practice for algorithmic thinking and to train for

algorithmic problem solving skills.

In this project, we look after the assessment of competencies of

algorithmic conception. For learner, this requirement to acquire

problem solving skills is fundamental [12] [13]. The survey

shows that many existent environments learning for algorithmic

are focused on programming, i.e. how to write a set of

instruction to resolve a problem, and that in the few works about

algorithmic, assessment has been misconstrued and sometimes

reduced to its simple expression (Multiple Choice Questions

‘MCQ’ …). Even if several methods and tools have been

devoted to the assessment in TEL environment, they suffer

insufficiency. This insufficiency is characterized either by

inefficacity, doubtful result, or by uniqueness, i.e. they can’t be

applied into all fields (e.g. we can’t assess algorithmic skills

using MCQ). However, the positive impact of an appropriate

assessment on learning is guaranteed [14] [15] [16]. With an

appropriate assessment we mean an effective assessment which

aims depth learning, detection of progress and learners gaps.

It’s important to remember that assessment holds a preponderant

place in large number of pedagogical activities [17]. Assessment

in learning at classroom or in a Technology Enhanced Learning

(TEL) environment was always source of ambiguity among

evaluator and learner, and sometimes among evaluators

themselves. Thus, assessment is rarely considered because it is

often absent and obsolete [16]. Nevertheless, it is an integrate

process in pedagogy. Furthermore, assessment is not restricted

to attribute a mark, although this is important as far as we want

to quantify skills. Evaluation constitutes a guide hall for

learner’s progression and intervenes in the interaction level

between teacher and learner to optimize the transfer and the

purchase of knowledge, skills and practices. It overtakes so

theoretical framework. So, its importance is capital.

In addition, algorithmic is characterized by the multitude of

solution for a given problem. This characteristic increases

exponentially the assessment process in learning systems; it’s a

difficult task to expert of field to find all possible solution for a

given problem in order to integrate them in the solution basis

(indeed, expert human always forgets them).

Through this ensemble of obstacles that we can measure the size

of difficulties toward pass round to strive for automatic

assessment of algorithmic competencies.

3. OUR PROPOSITION
It is known in algorithmic that to execute complex tasks, every

task must be decomposed on succession of simplest tasks. This

decomposition is repeated until having elementary tasks. The

number of step of decomposition depends on the complexity of

problem to resolve.

This descendant approach (also named divide-and-conquer),

source of our inspiration, allows to pass gradually and with a

maximum chance to success, from the abstract description of the

problem solution (with a complex process) to an algorithm

resolving the problem [18] [19]. We can say that an algorithm is

on the last level of decomposition when it contains only

elementary operations, basic operations (known operations) and

control structures.

We define a basic operation (BO) such as an operation well-

known in algorithmic like Sorting, Researching, etc. whereas

elementary operation (EO) is a simple instruction such as

assignment.

Fig 1: Decomposition of a problem

Figure 1 illustrates that at level one, the problem is divided into

an ensemble of decomposable operation (DO), basic operations

and elementary operations connected by control structures if

necessary (condition, repetition,…).

At level two, every decomposable operation of level one is

decomposed, either at decomposable operation again, or at basic

operations or elementary operations. This depends on the

complexity of the problem.

Etc.

Thus, in an assessment context, learners may present their

solutions, to a given problem, in terms of decomposable, basic

and elementary operations. These operations may be connected

by control structures (loops, condition). This gradual

decomposition of solution and the use of high-level concept

(basic operations) allow firstly an efficient assessment, and next

totally adapted to the field.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

17

Fig 2: Decomposition approach

This manner to do aims two objectives:

 To compel learner learning to divide a problem. This

teaches him/her to decrease gradually the complexity

of problem and evades him/her drowning in details at

first,

 To let learner focus its efforts on the problem and not

on secondary questions (basis operations). For

example, in the sorting problem, what interest us is if

learner opts for a sorting and not how he/she makes

sorting. However, basic operations may do themselves

a learning object.

3.1 Modeling and assessment
The variety of solutions for an algorithmic problem makes

situation where learner can take a ‘way’ among several which

represents a solution of the problem (see Figure 3).

We call a solution plan, a path constituted with basic and

elementary operations. This plan describes a correct solution for

a given problem, as may describe an erroneous solution

pedagogically interesting. The whole of plans (SP) constitutes a

Descriptive Map (DM) of the problem (see Figure 3).

Fig 3: Descriptive Map

This descriptive map allows to locate learner and to recognize its

step (right or erroneous) during solving problem.

Holding BO (organizing in a library) and EO, learner can

express his/her solution freely without any restriction neither

influences.

Teacher, for its part, should define beforehand for every

problem a DM. We know in advance that it will not be complete

(describes all solutions/errors of problems), but he/she must

foresee the most plausible SP (SP having more probability to

appear), leaning on his/her experience and given for each SP an

interpretation. During the definition of a SP, teacher attributes

for each BO/EO a weight expressing its importance in the

solution. The assignment of weight depends on the pedagogical

objectives aimed by the problem.

DMs are scalable. Overtime, they can be enriching by other SP,

i.e. integrating other solutions proposed by learners but not

foresee by teacher. Indeed, every solution not recognized, its

evaluation should be suspended until the intervention of a

human teacher which if he/she judges it interesting

(pedagogically interesting), will add it into the DM.

3.2 Assessment script
The produced assessment is an individual, summative,

diagnostic and formative assessment. To assess a plan proposed

by learner, it must recognize in the DM the nearest SP (called

the referent SP). This one will serve to calculate the mark. The

recognition of referent SP is done by the formula (1) which

calculates the similarity degree of the learner plan with all SP of

DM of the problem. This formula is conceived on the basis of

two parameters, succession of BO/EO (the order) and use of an

inappropriate BO/EO [18] [19] [20].

Nb

INb
P

Nb

SDNb
P

Nb

SNb
SD

'
10.

'
10.

' 1

2

1

1

(1)

 (Nb’S/Nb): Represents the similarity operation by

operation,

 (Nb’SD/Nb): Represents the penalty for BO/EO which

are disordered,

 (Nb’I/Nb): Represents the penalty for BO/EO which

are useless,

Where:

 Nb: number of BO/EO of the DMs’ plan,

 Nb’S: number of BO/EO of the proposed plan, which

are similar to BO/EO of DMs’ SP,

 Nb’SD: number of BO/EO of the proposed plan which

are disordered,

 Nb’I: number of BO/EO of the proposed plan which

are useless.

4. EVOLUTION OF THE APPROACH
The experimentation of this approach through the realized

prototype [20] revealed an important heaviness (compound!!) in

looking for the nearest solution. In fact, two solutions including

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

18

identical and independent operations in a different order

constitute two different solutions. This has as result increasing

exponentially the size of the DM and consequently the basis of

plans.

We redefined then the concept of the plan. And, instead of

considering a plan like a suite of operations (basic and

elementary), it becomes a canonical formalism for the

representation of a task. This redefinition will allow a better

comprehension of learner’s solutions because the explanation of

their objectives and the identification of their structures,

conceptions, and execution behaviors will be well translated.

This is well illustrated with the following section.

5. AN APPROACH OF UNDERSTANDING

PROGRAMS BASED PLAN FOR

AUTOMATIC ASSESSMENT
Program understanding has been frequently defined as a

recognition process of program plans in a fragment of source

code [21] [22] [23] [24] [25].

Research works on program understanding have as goals to

identify conceptual information and to develop concepts and

extraction tools from existent and operational systems. Two

types of extraction concepts have been identified: program plans

and program slice. The first linked to tasks implemented by a

program, the second concerns the execution behavior of a

program.

Our aim is the definitional aspect of a solution and the manner

for solving problem. The comprehension oriented task

constitutes an interesting approach for our problem. This

approach requires knowledge basis containing a set of standard

forms (tasks description). These standards forms are represented

under canonical form using the formalism of plan. A program

plan corresponds to a fragment of code which achieves a

stereotyped action.

In program diagnostic approaches based on the concept of plan,

a program is seen like a set of tasks to make [26]. The set of

implicit tasks in the program constitutes the conception of the

last one. Semantically, a program contains implicitly a high

level of abstract concepts and contains explicitly language

concepts.

Indeed, every task corresponds to an abstract concept. We call a

program plan a description of correspondences between a task

and its sequence of instructions [22]. In other words, a program

plan is a recognition rule of an abstract concept from language

concepts specified in source code.

A plan is defined as following:

Plan c (list of attributs)

Consist of cc1, cc2... ccn

Such that e1, e2... er

Where:

 C: represents the name the plan with a list of

attributes;

 Consist of: regroups components of the plan;

 Such that: constraints representing the different

dependences between the different components of the

plan,

In our case, the plan becomes a description of correspondence

between a task (problem to resolve) and its operation sequence

instead a sequence of instructions, i.e. instead using only

instructions like a component in the plan, it is possible to use

also a high level of operations. Thus, the plan components (cc1,

cc2… ccn) represent either basic operation BO which are high

level concepts, or elementary operations EO, or also other tasks.

The following example illustrates a plan of a counter.

Plan counter (c:?c, test:?test,

body:?body);

/*c, test and body represent attributes of

the plan*/

Consist of

EO: Init-counter: zero (var:?c);

/* initialization of the counter */

EO: Inc-counter: increment (var:?c);

/* to increment the counter */

BO Repeat: loop (test:?test, body: ?body);

/*loop repetition*/

Such that

Init-com: Control-flow (Init-counter,

Repeat);

Flow1-of-counter: Data-dep (Inc-counter,

Init-counter,?c);

Flow2-of-counter: Data-dep (repeat, inc-

counter,?c);

The dependences considered in constructing of the program

plans are data flow and control dependencies connecting

concepts between them to form a high level concepts. These

relations are described as predefined functions can be assessed

true or false.

Our aim is not assessing language concepts (the set of

instructions), but assessing the high level abstract concepts

which are used to resolve a problem, i.e. to externalize the

abstract concepts used (Research, Deleting, etc.) as plan

components and their organizations (operation chaining and

constraints) to assess algorithmic problem solving skills of

learner.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

19

5.1 A new solution basis
These new solutions (using the formalism of plan) constitute

now the solutions basis. It describes tasks which resolve

problems in term of basic and elementary operations or also

using another task (see Figure 4).

Fig 4: Solutions cluster with the canonical representation of the solution in the basis

5.2 Library of basic operations
The basic operations used in the conception of a solution, are

regrouped in a library. A basic operation has parameters which

are used in the unification during the plan recognition in the

assessment phase. The structure of a basic operation is defined

as following:

Name-operation (list of parameters);

5.3 Looking for the referent plan to assess
The figure 5 resumes the assessment script. Firstly, learner

conceives a solution plan using three types of bloc: BO bloc, EO

bloc or control structure bloc. The syntax used to define a bloc is

a pseudo code. After that, this solution is translated to a plan

separating operations from their constraints.

The research of the most similar plan to the learner’s solution in

the solution basis passes by measuring the similarity between the

learner’s plan and the basis’s plans using Jaccard similarity

coefficient [27]. The Jaccard coefficient measures similarity

between sample sets, and is defined as the size of the

intersection divided by the size of the union of the sample sets

(2). Two sets A and B, the coefficient is:

BA

BA
BAJS




),((2)

To compare two plans, we must measure the similarity

coefficient between components and constraints of the first plan

like one set (A), and components and constraints of the second

plan like another set (B). The comparison is done by comparing

the learner’s plan with all plans of the treated problem and

which have higher similarity index is a candidate to be the

referent plan.

The referent plan is selected only if the similarity index is

superior to the threshold fixed by teacher. In this case, the

solution proposed by learner is recognized. And in order to

diagnosis the learner’s solution, we have to measure two

similarity (using Jaccard coefficient). On the one hand, the first

similarity S1 is between the components of learner’s plan and

components of the referent plan, and on the other hand, the

second similarity S2 is between the constraints of each one. This

matching between components and constraints allow us to know

if learner has made the error at the level of choosing the

appropriate operation to resolve the problem or at the level of

control structures to link operations.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

20

Fig 5: Assessment Script

Using this sub-matching after looking for the referent plan helps

to diagnosis gaps of learners and to differentiate between the

skills of solving problem and the knowledge used to resolve a

problem.

6. CONCLUSION AND FUTUR WORK
The proposed approach is an assessment approach of

algorithmic competencies and specially knowledge which

intervenes in solving problems. The provided assessment is

formative (to aid learner to progress) and summative (to quantify

competences and knowledge really owned and to attribute a

mark) assessment.

Each proposed demarche is assessed automatically or by a

human expert (Deferred assessment). In the last case, the

solution proposed by learner may be enrich (if expert judges it

interesting) the solution basis.

Even if it has been conceived for algorithmic competencies

assessment, this approach can easily be adapted in any field

which manipulates procedural knowledge (know how).

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.10, July 2011

21

7. REFERENCES
[1] Müldner T., Shakshuki E. 2003. Teaching Students to

Implement Algorithms. Jodrey School of Computer

Science, Acadia University. TR-2003-03.

[2] Caignaert C. 1988. Etude de l’évolution des méthodes

d’apprentissage et de programmation. Le bulletin de l’EPI

N°50.

[3] Kaasboll J. 2002. Learning Programming. University of

Oslo.

[4] Soloway E., Bonar J., Ehrlich K. 1983. Cognitive strategies

and looping constructs: an empirical study.

Communications of the ACM, Vol. 26, n° 11, p. 853–860.

[5] McCracken M., Almastrum V., Diaz D., Guzdial M.,

Hagan D., Kolikant D., Laver C., Thomas L., Utting I.,

Wilusz T. 2001. "A multi-national, multi-institutional study

of assessment of programming skills of first-year CS

students". ACM Sigcse Bullettin, Vol. 33, n°4, p. 125-140.

[6] Lister R., Adams E., Fitzgerald S., Fone W., Hamer J.,

Lindholm M., et al. 2008. A multinational study of reading

and tracing skills in novice programmers. Working group

reports from ITiCSE’04 on Innovation and technology in

computer science education. ACM Digital Library, p.119–

150.

[7] Deek, F.P., & McHugh, J. 2000. "Problem-solving

methodologies and the development of critical thinking

skills". Journal of Computer Science Education, 14(1-2), 6-

12.

[8] Du Boulay, B. 1986. "Some Difficulties of Learning to

Program". J. of Educational Computing Research, 2(1), 57-

73.

[9] Joni, S.A. & Soloway, E. 1986. "But my program run!

Discourse rules for novice programmers", J. Educational

Computing Research, Vol. 2(1), 95-126.

[10] Robins, A., Rountree, J., & Rountree, N. 2003. "Learning

and teaching programming: a review and discussion".

Computer Science Education, 13(2), 137-172.

[11] Bensalem H., Bensebaa T. 2010. Contribution to the

improvement of learning algorithmic. 10th International

Educational Technology Conference (IETC) 2010, Istanbul,

Turkey, April 26-28, 2010.

[12] Deek F. P., McHugh J. A. 1998. "A survey and critical

analysis of tools for learning programming". Computer

Science Education, Vol.8, n°2, p. 130-178.

[13] Ragonis N., Ben-Ari M. 2005. "A long-term investigation

of the comprehension of OOP concepts by novices".

Computer Science Education, Vol. 15, n°3, p. 203-221.

[14] Lasnier F. 2000. Réussir la formation par compétences.

Montréal, Guérin.

[15] Bull J. 1999. "Computer-Assisted Assessment: Impact on

Higher Education Institutions?" Journal of Educational

Technology and Society, Vol. 3, n°2, p.123-126.

[16] Durand G., Martel C. 2006. Vers une scénarisation de

l'évaluation en EIAH. 1ères Rencontres Jeunes Chercheurs

sur les Environnements Informatiques pour l’Apprentissage

Humain, RJCEIAH.

[17] Lorrie A. Shepard. 2000. The Role of Classroom

Assessment in Teaching and Learning. CSE Technical

Report---517 CRESST/University of Colorado at Boulder.

[18] Bey A., Bensebaa T., Bensalem H. 2010. Assessment of

algorithmic skills in learning environment », The 2nd

International Conference on Education Technology and

Computer, Shanghai, China 22-24 June 2010.

[19] Bey A., Bensebaa T., Bensalem H. 2010. Assessment of

algorithmic competences in Tel environment, 10th

International Educational Technology Conference (IETC),

Istanbul, Turkey, April 26-28, 2010.

[20] Bey A., Bensebaa T. 2011. Algo+, an assessment tool for

algorithmic competencies. IEEE Engineering Education

2011 Learning Environments and Ecosystems in

Engineering Education, EDUCON 2011, 04-05 April,

Amman, Jordan. ISBN: 978-1-61284-641-5, 2011.

[21] Woods S., Yang Q. 1995. Program understanding as

constraint satisfaction. Proceedings of the IEEE Seventh

International Workshop on Computer-Aided Software

Engineering, Toronto, Ontario, Canada, p. 318–327.

[22] Quilici A. 1994. A memory-based approach to recognizing

programming plans. Communications of the ACM, Vol. 37,

p. 84–93.

[23] Kozaczynski W., Ning, J. 1994. Automated program

understanding by concept recognition, Automated Software

Engineering, Vol. 1, p. 61-78.

[24] Wills L. M. 1990. "Automated program recognition: a

feasibility demonstration". Artificial Intelligence, Vol. 45,

p. 113–172.

[25] Johnson W.L. 1986. Intention Based Diagnosis of Novice

Programming Errors. Los Altos, CA: Morgan Kaufman.

[26] Soloway E. 1984. A Cognitively-Based Methodology for

Designing Languages/ Environments/Methodologies.

Sigplan Notices - SIGPLAN, vol. 19, n°

5, p. 193-196.

[27] Jaccard P. 1901. Étude comparative de la distribution

florale dans une portion des Alpes et des Jura, Bulletin de

la Société Vaudoise des Sciences Naturelles 37: 547–579.

