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ABSTRACT
This paper presents fuzzy goal programming approach for bi-
level linear fractional programming problem with a single
decision maker at the upper level and a single decision maker at
the lower level. Here, each level has single objective function,
which are fractional in nature and the system constraints are
linear functions. In the proposed approach, we first construct
fractional membership functions by determining individual best
solution of the objective functions subject to the system
constraints. The fractional membership functions are then
transformed into equivalent linear membership functions by first
order Taylor polynomial series. Since the objectives of both
level decision makers are potentially conflicting in nature, a
possible relaxation of both level decisions is considered for
avoiding decision deadlock. Then, the fuzzy goal programming
approach is used for achieving highest degree of each of the
membership goals to the maximum possible by minimizing the
negative deviational variables. To demonstrate the efficiency of
the proposed approach, an illustrative numerical example is
solved and Euclidean distance function is used to obtain
compromise optimal solution.
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Bi-level programming.
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1. INTRODUCTION
Bi-level programming problem (BLPP) [1-4] consists of two
levels, namely, the upper level and the lower level with single
objective at each level. The execution of decision is sequential
from upper level to lower level and each decision maker (DM)
independently controls a set of decision variables. Here, each
DM independently optimizes his/her own benefits, but is
affected by the action or reaction of the other DM. Candler and
Townsley [3] as well as Fortuny-Amat and McCarl [4] presented
the formal formulation of BLPP. Anandalingam [5] discussed
mathematical programming model based on Stackelberg
solution concept to multi-level programming problem (MLPP)
as well as decentralized bi-level programming problem
(DBLPP). Lai [6] introduced satisfactory solution concept based
on fuzzy programming approach to MLPP by using tolerance
membership function in 1996. Lai’s satisfactory solution
concept was extended by Shih et al. [7] by using non-
compensatory max-min aggregation operator for solving

MLPPs. Shih and Lee [8] further extended Lai’s concept by
introducing the compensatory fuzzy operator for solving
MLPPs. Sakawa et al. [9] have developed interactive fuzzy
programming for MLPPs. Pramanik and Roy [10] discussed
fuzzy goal programming (FGP) approach for solving MLPP.
They [10] extended FGP to DBLPP.

In this article, we have considered bi-level linear fractional
programming problem (BLFPP) with a single DM namely upper
level decision maker (ULDM) at the upper level and a single
DM namely lower level decision maker (LLDM) at the lower
level. The objective functions of the DMs are linear fractional
functions and the system constraints are linear functions.

Thirwani and Arora [11] discussed BLFPP in crisp environment
in 1993. Sakawa and Nishizaki [12, 13] studied interactive fuzzy
programming to BLFPP as well as decentralized BLFPP.
Calvate and Galé [14, 15], Mishra [16] developed different
approaches for solving BLFPP. M. Ahlatcioglu and F. Tirayaki
[17] presented interactive fuzzy programming for solving a
decentralized BLFPP by analytical hierarchy process. Malhotra
and Arora [18] proposed an algorithm for solving BLFPP based
on goal programming approach. I. A. Baky [19] discussed FGP
algorithm for solving decentralized bi-level multi-objective
programming problem by suitable variable transformation
method. Toksarı [20] used Taylor series approach for BLFPP. In
this paper [20], the fractional objective functions are
transformed into equivalent linear objective functions by using
first order Taylor series. Then, the problem is solved by
reducing BLFPP into single objective programming problem by
assigning weights.

In the proposed approach, we first construct fractional
membership functions by determining individual best solution of
the objective functions subject to the system constraints. The
fractional membership functions are then transformed into
equivalent linear membership functions by first order Taylor
polynomial series at the individual best solution point. Since the
objectives are potentially conflicting in nature, decision
deadlock arises frequently in the decision-making context. To
avoid such situation, cooperation between both levels is needed.
Let, the LLDM first provides his/her preference bounds on the
decision variables under his/her control in the decision-making
situation. Here, we consider the preference bounds of LLDM are
fixed. Considering the preference bounds of the LLDM, the
ULDM also provides his/her preference bounds on the decision
variables under his/her control. The ULDM may vary his/her
preference bounds to lead the solution in desired level. Then
fuzzy goal programming approach is used for achieving highest



International Journal of Computer Applications (0975 – 8887)
Volume 25– No.11, July 2011

35

degree of each of the membership goals to the extent possible by
minimizing only the negative deviational variables. Euclidean
distance function is then used to select the compromise optimal
solution for both the DMs in the decision-making situation. A
numerical example is provided in order to show the efficiency of
the proposed approach.

Rest of the paper is organized as follows: section 2 presents the
formulation of BLFPP. Section 3 provides fuzzy programming
formulation of BLFPP. In subsection 3.1, we explain the
linearization of the membership functions by first order Taylor
series approximation. Subsection 3.2 provides characterization
of preference bounds on the decision variables for both level
DMs. In subsection 3.3, FGP model for BLFPP has been
presented. Section 4 discusses the use of Euclidean distance
function for the selection of compromise optimal solution.
Section 5 provides the FGP algorithm for BLFPP. In section 6,
we solve a numerical example to demonstrate the efficiency of
the proposed approach. Section 7 contains the concluding
remarks and future works.

2. FORMULATION OF BLFPP
We consider a BLFPP of maximization-type objective function
at each level. Mathematically, the problem can be formulated as:

[ULDM]: )x(Zmax 1
x1

=
1212111

1212111

dxbxb
cxaxa
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 (1)
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 : decision vector under the control of

ULDM,

T
N222212 }x,...,x,x{x

2
 : decision vector under the control of

LLDM.

Here, 1ia and 1ib (i = 1, 2) are N1-dimensional row vectors;

2ia and 2ib (i = 1, 2) are N2-dimensional row vectors; ci and di

(i = 1, 2) are constants. iA (i = 1, 2) is an iNM constant

matrix and B is an M-dimensional constant column vector. The
symbol ‘T’ denotes transposition. Here, S is assumed non-
empty, convex and compact in .R N We also assume that the
denominators of the objective functions are positive, i.e.

0dxbxb i22i11i  (i = 1, 2).

3. FUZZY PROGRAMMING
FORMULATION OF BLFPP
To formulate the fuzzy programming model of a BLFPP, the
objective functions would be transformed into fuzzy goals by
means of introducing an imprecise aspiration level to each of the
objectives.

The optimal solution of the objective function Zi (i = 1, 2) when
calculated in isolation would be considered as the best solution
and associated objective value can be considered as the
aspiration of the corresponding fuzzy goal.

Let,
B
ix =  B

iN
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1iN
B
iN
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individual best solution of the objective function of i-th level
DM subject to the system constraints.
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It is obvious that objective value which are equal to or larger
than )x(ZB

i (i = 1, 2) should be absolutely satisfactory to each
level DM.

Then the fuzzy goal of the objective function of the DM appears
as follows:

B
i

~
i Z)x(Z  (i = 1, 2).

Here, “
~
 ” indicates the fuzziness of the aspiration level and it

is described as “essentially greater than”.

To build the membership functions, upper tolerance limit and
lower tolerance limit should be determined first. Using the
individual best solutions, we find the values of the objective
functions at each best solution and construct a payoff matrix as:
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The maximum value of each column )x(Zi (i = 1, 2) gives
upper tolerance limit or aspired level of achievement for i-th
objective function i.e.

B
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The minimum value of each column gives lower tolerance limit
or lowest acceptable level of achievement for i-th objective
function i.e.
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Then, membership function µi (i =1, 2) for i-th fuzzy goal can be
formulated as:
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Here, B
iZ and W

iZ (i = 1, 2) are respectively the upper and
lower tolerance limits of the fuzzy goal of i-th objective functon.

3.1 Linearization of fractional membership
functions by Taylor series approximation
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equivalent linear membership function )x(i at
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3.2 Characterization of preference bounds
on the decision variables
Since the individual best solution of the DMs are different,
cooperation between the DMs is necessary to reach a
compromise optimal solution. We consider that the LLDM sets
his/her decision first by providing fixed preference bounds on
the decision variables under his/her control according to his/her
needs and desires in the practical decision-making situation.
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   i2i2x (i = 1, 2, …, N2) be the lower and upper bounds of
decision variables x2i (i = 1, 2, …, N2) provided by the LLDM.
Here,  i2 and  i2 (i = 1, 2, …, N2) are the negative and
positive tolerance variables which are not necessarily same.
Generally, x2i lies between   i2
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2,…, N2). Considering the decision of LLDM, the ULDM
should take necessary steps by providing preference bounds on
the decision variables under his/her control. Let,
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(i = 1, 2, …, N1) provided by the ULDM. Here, the positive and
negative tolerance variables under the control of ULDM should
be defined as above. However, it is to be noted that the ULDM
may vary his/her preference bounds considering overall benefit
of the organization. Therefore, we can write
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3.3 Formulation of FGP model of BLFPP
The BLFPP represented in section 2 reduces to the following
problem
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Since the maximum value of a membership function is unity, so
for the defined membership function in (11), the flexible
membership goals having the aspiration level unity can be
formulated as:
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Here, )0(di  (i = 1, 2) represents the negative deviational

variable and )0(di  (i = 1, 2) represents the positive
deviational variable. It may be noted that any over deviation
from a fuzzy goal indicates the full achievement of the
membership value. Then, according to Pramanik and Roy [10],
(12) can be represented as follows:
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Then the FGP model for solving BLFPP can be explicitly
formulated as:
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4. USE OF DISTANCE FUNCTION FOR
SELECTING COMPROMISE OPTIMAL
SOLUTION
Yu [21] studied the use of distance function for group decision
analysis based on the concept of utopia point (the ideal point)
solution at first in 1973. In the FGP formulation, since the
aspired level of each of the membership goals is unity (one), the
point consists of the highest membership value of each of the
goals would represent the ideal point. The Euclidean distance
function is formulated as:
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Here, )x(t represents the achieved membership value of the t-
th objective goal. The solution for which 2D is minimal would
be the most satisfycing solution.

5. THE FGP ALGORITHM FOR
SOLVING BLFPP
The solution algorithm for solving BLFPP is given in the
following steps

Step 1: Determine the individual best solution
B
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 B
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B
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B
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B
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B
1i x,...,x,x,...,x,x

ii  (i = 1, 2) of each objective
function subject to the system constraints as given by (2).

Step 2: Construct the payoff matrix as given by (3). Then define
upper tolerance limit and lower tolerance limit of each objective
function as given by (5) & (6).

Step 3: Construct the fractional membership function )x(μi (i =

1, 2) of the objective function )x(Zi (i = 1, 2) as given by (7).

Step 4: Find the individual best solution
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i ii  of the fractional

membership function )x(μi (i = 1, 2) subject to the system
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= 1, 2) into an equivalent linear membership function )x(i (i =
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*
i ii  (i = 1, 2) by first

order Taylor series approximation as given by (8).

Step 6: The LLDM first provides preference bounds on the
decision variables under his/her control. Then, considering fixed
preference bounds of LLDM, the ULDM provides preference
bounds on the decision variables under his/her control as given
by (9) & (10).

Step 7: Formulate the FGP model (14) for the BLFPP.

Step 8: Solve the problem (14) FGP model.

Step 9: Euclidean distance function is used to identify the
compromise optimal solution. If the solution is acceptable to
ULDM, then compromise optimal solution is reached.
Otherwise, the ULDM provides another set of preference
bounds on the decision variables under his/her control to reach
compromise optimal solution.

Step 10: End.

6. NUMERICAL EXAMPLE
The following example is considered to demonstrate the
efficiency of the proposed FGP approach:

max )x(Z1 =
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
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Here, B
1Z = 1.75, W

1Z = 1.4; B
2Z = 1.056, W

2Z = 0.375.

The fractional membership functions are as follows:
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The fractional membership functions µ1(x) and µ2(x) are
maximum at the points (1, 2), (15, 9) respectively, subject to the
system constraints.

The fractional membership functions are then transformed into
equivalent linear membership functions )x(i (i = 1, 2) at the
individual best solution point by first order Taylor series
approximation as follows:

ξ1 (x) = µ1 (1, 2) + (x1 - 1)
1

1
x

)2,1(

 + (x2 - 2)

2

1
x
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= 1 + (x1 - 1)  (-0.536) + (x2 - 2)  0.178,

ξ2 (x) = µ2 (15, 9) + (x1 - 15)
1

2
x
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2
x
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
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= 1 + (x1 - 15)  0.038 + (x2 - 9)  (-0.045)

Let, the fixed preference bound provided by LLDM
be 16x2 2  . Considering the preference bound of the LLDM,
the ULDM also provides preference bound for avoiding decision
deadlock.

Then FGP formulation for solving BLFPP can be formulated as

min = 


2

1i
id

subject to

1 + (x1 - 1)  (-0.536) + (x2-2)  0.178 + 
1d ≥ 1,

1 + (x1 - 15)  0.038 + (x2 - 9)  (-0.045) + 
2d ≥ 1,

-x1 + 2x2 ≤ 3,

2x1 -3x2 ≤ 3,

x1 + x2 ≥ 3,

16x2 2  ,

x1 ≥ 0, x2 ≥ 0.


id ≥ 0, (i = 1, 2).

The results, obtained by different preference bounds provided by
ULDM are shown in the Table 1.

Now from the Table 1, we observe that the minimum Euclidean
distance value is 0.766. The optimal compromise solution
corresponding to the preference bound 3 ≤ x1 ≤ 7 of ULDM is
given by Z1 (x) = 1.571, Z2 (x) = 0.667 at x1 = 3, x2 = 3. The
resulting membership values are µ1 (x) = 0.49, µ2 (x) = 0.428.

Note: All solutions of the problem are obtained by using the
software Lingo, version 6.0.
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Table 1 Comparison of optimal solutions based on Euclidean distance function

preference bound   preference bound     x1, x2 Z1, Z2 µ1, µ2 D2

(fixed) of LLDM of ULDM

2 ≤ x2 ≤ 16 1 ≤ x1 ≤ 2.5 1, 2 1.75, 0.375         1, 0 1

1.5 ≤ x1 ≤ 5 1.5, 2.25 1.684, 0.472        0.812, 0.143 0.878

2 ≤ x1 ≤ 5 2, 2.5 1.636, 0.55 0.675, 0.257 0.811

2.5 ≤ x1 ≤ 5 2.5, 2.75 1.6, 0.614 0.571, 0.35 0.778

3 ≤ x1 ≤ 7 3, 3 1.571, 0.667        0.49, 0.428 0.766

4 ≤ x1 ≤ 7.5 4, 3.5 1.529, 0.75          0.37, 0.55 0.774

5 ≤ x1 ≤ 7.5 5, 4 1.5, 0.812 0.286, 0.642 0.799

5.5 ≤ x2 ≤ 9 5.5, 4.25 1.488, 0.838 0.252, 0.68 0.813

6 ≤ x1 ≤ 9 6, 4.5 1.478, 0.861 0.224, 0.714 0.827

6.5 ≤ x1 ≤ 9 6.5, 4.75 1.469, 0.882 0.198, 0.744 0.842

7. CONCLUSION
An alternative FGP approach for solving BLFPP based on first
order Taylor series approximation is presented in this paper. In
the proposed approach, the fractional membership functions
corresponding to the objective functions are transformed into
equivalent linear membership functions by first order Taylor
series approximation. Preference bounds provided by both DMs
are considered for practical decision-making problems. FGP
approach is used to solve the problem by minimizing only
negative deviational variables. Then, the Euclidean distance
function is used to identify the compromise optimal solution.
We can apply the concept to decentralized bi-level multi-
objective and multi-level multi-objective fractional
programming problems based on real-life decision-making
problems.
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