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ABSTRACT 
Parallel space-sharing job scheduling algorithms play an 

indispensible role in efficient allocation of processors of PC-cluster 

to the competing jobs to achieve one of the performance 

objective(s) viz. minimized mean response time (MRT), minimized 

average bounded slowdown or maximized throughput. Traditional 

performance modeling and evaluation studies of parallel space-

sharing job scheduling algorithms are incompetent of predicting 

the combined or interaction effect on the response resulting due to 

simultaneous variation of two process variables. Present work is 

undertaken to predict and quantize the influence of main and 

interaction effects of the input scheduling process variables on the 

output MRT values using statistical approach of design of 

experiments (DOE). DOE based Response surface methodology 

(RSM) oriented experimental design is chosen to evaluate MRT 

values for two scheduling algorithms namely First Come First 

Serve (FCFS) and Fit Processors First Served (FPFS). Two 

empirical interaction models are suggested for both scheduling 

algorithms that predict MRT on the basis of multiple regression 

equations involving main and interaction effect terms of 

scheduling process variables. High value of adjusted coefficient of 

determination R2 and insignificant lack of fit represent the 

goodness of fit of both the models to accurately predict the MRT 

values. Both the empirical interaction models are validated against 

additional experimental results. The comparative performance 

evaluation study on the basis of MRT reveals that the FPFS 

algorithm tends to outweigh the traditional FCFS policy.  

General terms 
PC-cluster, Space-sharing scheduling, Design of experiments, 

Response surface methodology, Mean response time and Empirical 

interaction model 

Keywords  
Statistical Modeling, First Come First Serve, Fit Processors First 

Served, DOE and RSM  

1. INTRODUCTION 

Incredible advances in the speed of microprocessors and 

networking technologies escort the way to the development of 

LAN based cluster of PCs[1] for high performance as well as high 

throughput computing activities. These cluster of PCs can be found 

in most of the educational institutions due to availability of 

requisite hardware (commodity desktop PCs and high speed local 

area network) and commonly available software (Windows Server 

2003 and Windows XP). Cluster of PCs have a tendency to 

outperform large supercomputers in terms of extensibility 

capabilities and price/performance ratio. Job scheduling algorithms 

plays a great role in assigning the resources of PC-based cluster 

computing platform to the competing parallel jobs. These 

algorithms[2, 3] can be broadly classified into two categories; 

time-sharing and space-sharing. Time-sharing based scheduling 

algorithm shares the CPU time of PCs among multiple competing 

jobs. A space-sharing scheduling policy may allocate a distinct 

subset (partition) of processors (based on the job width of the job) 

of cluster’s processor-pool to the selected job (job is selected on 

the basis of scheduling criteria). In this approach, no processor is 

concurrently assigned to more than one job. Parallel space-sharing 

job scheduling algorithm tends to play a double role; selecting a 

job from the set of competing jobs as well as allocating processors 

(out of available processors) to the job. Space-sharing algorithms 

[2, 3] are further categorized into two types; static and dynamic. In 

traditional static space-sharing, cluster is partitioned into equal 

sized partitions of processors and partition size is fixed for the 

whole life-span of the job. Contrarily in case of dynamic space-

sharing, there can be a change in the subset size and the processors 

it contains. In program based machine partitioning technique, the 

partitions of processors are created for individual jobs based on 

their job sizes at the time of their servicing i.e. scheduling time. 

FCFS and FPFS algorithms are mostly used for batch job 

scheduling[4] in space-shared clusters. In traditional FCFS 

algorithm [5, 6] jobs are considered for scheduling in the order of 

their arrival. The only job characteristic known to the scheduler 

when the job arrives, is the number of processors requested by the 

job i.e. job width or size. Rigid [7] class of data-parallel jobs is 

considered for scheduling in this research work. Such kind of 

parallel jobs will be selected for execution by the scheduler only if 

there are enough processors available to execute the job. In case 

the desired numbers of processors are not available, the first job 

and the other subsequent jobs in the job queue must wait for the 

availability of desired number of processors till they got freed from 

termination of some currently running jobs. This situation may 

lead towards an inefficient utilization of computing resources as 

processors sit idle waiting for their accumulation to fit to the job at 

the top of job queue. This also results into increase of mean 

response time of jobs due to increase in the wait times of 

individual jobs as the jobs are kept waiting in the queue for their 

turn to run. This shortcoming of FCFS led to the development of 

FPFS scheduling algorithm. In FPFS[6], if there are not enough 

processors available for the front job in the job queue, then job 

scheduler searches the job queue for the job which fits first to 
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number of processors available and consequently that job is 

dispatched and processors are allocated to the job. This results into 

efficient utilization of processors as well as decrease in the mean 

response time of jobs. Traditional research on performance 

modeling and analysis studies[5, 6, 8] of job scheduling algorithms 

using experimental measurement, analytical/theoretical modeling 

and simulation is capable of showing the main effects 

corresponding to the variation of only one-factor-at-a-time (OFAT) 

on the observed output by keeping all other factors constant. These 

studies are not capable of predicting and quantizing the interaction 

i.e. combined effects on the output response resulting due to 

simultaneous variation of two process variables. An interaction 

between two input process variables occurs when effect of one 

variable on the observed output depends upon the level of another 

variable. The proposed work is helpful in investigating the relative 

importance of main as well as interaction effect of process 

variables with respect to the observed response with the help of 

statistical approach of design of experiments (DOE). This paper 

uses the DOE based approach of response surface methodology for 

performance modeling and analysis of job scheduling algorithms 

for PC-cluster computing environment with an emphasis on static 

space-sharing policy based on program specific partitioning. With 

the help of DOE based statistical techniques, empirical prediction 

models of performance metric MRT for both FCFS and FPFS 

polices are presented in terms of scheduling process variables.  

Design of experiments (DOE) is a set of powerful and systematic 

statistical techniques[9,14] used for planning, designing and 

analyzing the experiments in a way to achieve authentic and 

objective conclusions effectively and proficiently. Response 

surface methodology (RSM) is a meta-modeling approach[10] of 

DOE aimed to be used in modeling, establishing and analyzing the 

relationships existing between process variables and the observed 

response using polynomial mathematical equations. RSM based 

experimental designs tend to minimize the number of experiments 

required for performance modeling and analysis of the observed 

response. 

The rest of the paper is organized as follows: Section 2 deals 

with the development of user friendly GUI based PC-cluster 

computing environment and resource management system (RMS) 

for job scheduling activities. This section also deals with 

discussion on experimental procedure for implementation of FCFS 

and FPFS policies in the PC-cluster. Scheduling process 

experimental design based on the RSM oriented D-optimal 

coordinated exchange and mathematical performance models of 

FCFS and FPFS are also presented in this section. In section 3, 

results of the scheduling experiments are presented and analyzed. 

Finally comparative performance evaluation study of FCFS and 

FPFS is discussed. 

2. MATERIALS AND METHODS 

 PC-cluster[1] is a group of interconnected stand-alone PCs working 

jointly as a single integrated computing resource with the help of 

single system image (SSI) functionality residing at cluster 

middleware abstraction layer. The SSI [11] represents the view of 

cluster’s parallel and distributed system as a single unified 

computing resource to the user. It hides the hardware and software 

complexities of the PC-cluster’s parallel and distributed computing 

environment from the user hence leading towards a convenient 

single unified environment to work with. The SSI of the cluster is 

realized with the help of a cluster distributed RMS. RMS[1, 11] is 

developed with an aim to manage cluster functionalities related to 

job scheduling such as job submission, job scheduling, processor 

allocation, job execution and other resource management activities. 

The generic architecture of the cluster distributed RMS system is 

shown in figure1. 

2.1   Experimental set-up and procedure  

PC-cluster is constituted by connecting 25 networked computers 

available in the three departmental computer laboratories with the 

help of layer 3 Virtual Local Area Network (VLAN) based switch 

(make Cisco 3750 series). PCs are connected within a computer lab 

with the help of layer 2 edge switch (make Cisco 2650 series). One 

of the nodes in the VLAN is designated as master node (Pentium 

Core 2 duo with 1 GB RAM, running on Windows Server 2003 

Enterprises Edition) and others 24 PCs are accredited as slave or 

compute nodes (configured with Windows XP based Pentium IV, 

3.0 GHz and 512 MB RAM). Number of rigid non-interactive 

Fig. 1: Distributed Resource Management System and scheduling procedure 
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Table 1. Independent process variables and their range 

Process variables(Factors) Symbols Category Type Levels Levels (actual values) 

ScheduleSize SS Quantitative Discrete 4 66,100,132,168 

ClusterSize CS Quantitative Continuous 9 16 -24 

 

Table 2. RSM based experimental design for FCFS and FPFS with experimental and model predictive response 

Process variables for FCFS and FPFS 

 
Actual values (coded values) 

 

Response for FCFS 

 
Mean Response Time(sec.) 

 

Response for FPFS 

 
Mean Response Time(sec.) 

 
 

Exp. 

No. 

SS  ScheduleSize CS  ClusterSize  Exp. 

values 

Model 

predicted 

Exp. 

values 

Model 

predicted 

1. 100  (-0.333) 16  (-1.000) 27.39 28.53 15.63 15.41 

2. 100  (-0.333) 20  (0.000) 24.56 24.69 13.75 13.29 

3. 168  (1.000) 16  (-1.000) 42.86 42.49 23.43 23.30 

4. 168  (1.000) 16  (-1.000) 42.24 42.49 23.82 23.30 

5. 132  (0.294) 17  (-0.650) 33.83 33.32 17.95 18.21 

6. 66  (-1.000) 18  (-0.460) 20.23 20.18 10.66 10.61 

7. 66  (-1.000) 18  (-0.460) 20.85 20.18 10.72 10.61 

8. 168  (1.000) 19  (-0.220) 37.59 37.45 20.27 20.81 

9. 132  (0.294) 20  (0.100) 29.46 29.51 15.28 16.24 

10. 66  (-1.000) 21  (0.280) 18.85 18.31 9.04 9.44 

11. 100  (-0.333) 22  (0.540) 22.34 22.61 11.91 12.15 

12. 132  (0.294) 24  (0.900) 24.31 25.45 13.39 14.14 

13. 66  (-1.000) 24  (1.000) 16.87 16.49 8.59 8.31 

14. 66  (-1.000) 24  (1.000) 16.12 16.49 8.67 8.31 

15. 168  (1.000) 24  (1.000) 30.05 29.55 17.02 16.92 

16. 168  (1.000) 24  (1.000) 29.75 29.55 17.85 16.92 

data-parallel jobs viz. matrix-matrix multiplication, matrix-vector 

multiplication, calculation of pi value, run-length image 

compression and finding prime numbers in a list with varying input 

sizes has been developed in accordance with power-of-two 

workload model(more details shown in Appendix A). The set of 

jobs and their job size will be acting as a workload to be submitted 

to the job scheduler for scheduling. In power-of-two workload 

model, the entire job sizes are of the type 2n where n is a user 

specific integer within the range of [1, 4] and size of cluster falls 

in integer continuous range of [16, 24]. Based on the job size 

characteristics, rigid parallel jobs are classified as small (number of 

processors required by job varies from 1-4) and large (number of 

processors required varies from 5-16). Workload submitted by the 

user to the job queue at time zero for scheduling consists of 

roughly 50% small and 50% large jobs. Master node with the 

support of cluster RMS system helps the user to submit, schedule 

and execute jobs. These scheduling and other resource 

management activities are performed with the help of key 

components of RMS; user interface & queue manager, job 

scheduler and resource manager. Slave nodes are only responsible 

for execution of the partitioned tasks of jobs dispatched by the job 

manger of the master node as well as communicating the task 

execution results back to the master node.  

The overall procedure for three major job scheduling activities 

viz. job submission, job scheduling and job execution is shown in  

 

figure 1 using labeled numbers from step 1 to 10. At step 1, user 

submits the jobs along with their job sizes to job queue manager 

with the help of user interface to the RMS at the master node. 

Based on the triplicate information obtained from step 2(i) (job 

size details), node availability information obtained from job & 

node status monitoring tool of the resource manager in step 2(j) 

and scheduling policy at step 2(k), a scheduling decision to select a 

job is taken by the scheduler and set of slave nodes are selected for 

allocation to job. The selected job is dispatched by the job manager 

in step 3. In step 4, job manager partitions the job into parallel 

tasks based on the number of slave nodes allotted to the whole job 

and dispatches these partitioned parallel tasks to the allocated slave 

nodes for execution. Task execution results are sent back to the job 

manger module after the tasks are executed by the slave nodes in 

step 5. Job manager is also responsible for merging of the partial 

results collected from various slaves to form the final result. Final 

result and various real-time parameters related to job submission 

times, job completion times and job waiting times are stored in the 

text based log files. Job and node status is updated at step 5 and 

step 6 with the help of resource manager. This scheduling 

procedure from step 1 to 6 continues till the job queue is empty. In 

step 7 users can access the log files at master node console with the 

help of cluster user interface. Results in terms of performance 

metric (MRT) also known as average turnaround time can be 
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Table 3. ANNOVA table and model diagnostics for FCFS & FPFS 

*significant at p≤0.05   ## not significant at p≤0.05   m main effect   i interaction effect

 

obtained by doing standalone post-processing exercise on the data 

collected from log files as per (1) at step 8. Job and node status 

can be collected from resource manager module by the user as 

well as the administrator of the cluster at step 9 and 10 

respectively. Mean response time (MRT) is chosen as 

performance metric to analyze the performance of scheduling 

algorithms viz. FCFS and FPFS. MRT is calculated using (1).  

 

MRT =     (1) 

 

where N is the number of jobs with known job width 

characteristics, Job_SubmitTime(i) indicates the time when ith job 

is submitted to the job queuing system and Job_EndTime(i) 

denotes the time when ith job gets terminated. MRT being user 

specific metric, indicates an average completion time of the 

submitted job using a certain scheduling algorithm.  

 

2.2 Experimental design and scheduling 

performance modeling 
The workload to the scheduling system consists of information 

about number of space-sharing rigid data-parallel jobs to be 

scheduled along with their job size characteristics. The input 

parameter for the scheduling system is the sum of job sizes of the 

total number of jobs in the workload and is known as schedule 

size (denoted as ScheduleSize(SS)). Another input variable 

chosen is the number of processors in the cluster known as cluster 

size (denoted as ClusterSize(CS)). The chosen independent 

process variables or parameters and observed output (known as 

factors and response respectively in terms of DOE terminology) 

along with their levels (variations) for modeling of observed 

response MRT values are shown in table 1. Based on RSM D-

optimal coordinate exchange design, 16 experimental runs (table 

2) in random order were conducted with various combinations of 

SS and CS for FCFS policy. Experiments for FPFS (table 2) were 

also carried out with the same design and combinations of SS and 

CS as is done in the case of FCFS. This RSM based experimental 

design for both scheduling algorithms helps to minimize the 

number of experiments required to model their performance. 

Number of experiments required for modeling purpose using 

RSM design are 32(16 for each scheduling policy) as compared to 

72(4x9=36 for each scheduling policy) in case of OFAT 

approach[12].   

Some of the experiments in both FCFS and FPFS were the 

replicated to check the variation in the computer based physical 

experimentation process due to uncontrolled experimental factors 

like variation in network load on the interconnection switches. 

This variation became the source for calculating the term mean 

square pure error. Experimental data of MRT values (table 2) of 

both the scheduling policies were fitted against the two 

independent interaction models (one for FCFS and the other for 

FPFS) with the presupposition that during the process of 

scheduling, interaction between any two process variables might 

occur.  

2.1.1 ANNOVA analysis  
ANNOVA results of the interaction models of MRT (for FCFS 

and FPFS) are helpful in determining the significance of models 

as well as their model terms. Insignificant terms in the models 

with p-value greater than 0.05 can be omitted to improve the 

models. Interaction model fitting, ANNOVA statistical analyses, 

coefficient estimation and visual result analyses using model 

diagnostic and other plots were carried out with the help of 

Design-Expert 8.0 software (StatEase Inc. USA)[13].  

Goodness of fit of the each interaction model was observed 

[9,13] using high values of coefficient of determination R2, 

adjusted R2, predictive R2 and low value of coefficient of 

variation(CV%) and insignificant lack of fit. Lack of fit compares 

the residual error with the pure error obtained from replicated 

model points and it is not desirable. Significant lack of fit[13] 

implies that the variation of the replicates about their mean values 

is less than the variation of the design points about their predicted 

values. Signal to noise ratio was observed from adequate precision 

value with ratio > 4 desirable for the model to navigate the design 

space.  

2.1.2 Model adequacy checking  
In each of the interaction model, model adequacy checking of the 

residuals was performed using various diagnostic plots [9,13]. 

Normal probability plot of studentized residuals was checked to 

see the normality of residuals. Plot of studentized residuals versus 

 

 

 
 

Mean Response Time(seconds) 

 
Interaction model for FCFS 

 

 
Mean Response Time(seconds) 

 
Interaction model for FPFS 

 

Source 

FCFS model 

Sum of  

squares 
df  Mean  

 square 
 F-value  p-value*  

(Prob. > F) 

Source 

FPFS model 

Sum of  

squares 
 df  Mean 

 square 
  F-value p-value*  

(Prob. > F) 

 
Model terms 1065.41 3  355.14  952.42  < 0.0001 Model terms  361.58  3  120.53  389.78 < 0.0001 

ScheduleSize m 731.64 1  731.64  1962.15  < 0.0001 ScheduleSize m  264.72  1  264.72  856.10 < 0.0001 

ClusterSize m 170.16 1  170.16  456.36  < 0.0001 ClusterSize m  47.77  1  47.77  154.50 < 0.0001 
ScheduleSize x ClusterSize i 24.33 1  24.33  65.24  < 0.0001 ScheduleSize x ClusterSize i  4.10  1  4.10  13.25    0.0034 

Residual  4.47 12  0.37   Residual   3.71 12  0.31   

Lack of fit 3.76 8  0.47  2.65   0.1813## Lack of fit  3.29  8  0.41  3.86    0.1039## 

Pure error 0.71 4  0.18   Pure error  0.43  4  0.11   

Corr. Total 1069.88 15    Corr. Total  365.29 15    

Model statistics for FCFS:                                                                                        Model statistics for FPFS: 
S.D: 0.611                       C.V. %: 2.234                  R2: 0.996                                   S.D: 0.556                          C.V. %: 3.739                R2: 0.990                                                         

Adjusted R2: 0.995             Predicted R2: 0.992
                                                                Adjusted R2 :0.987                  Predicted R2: 0.982  
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predicted values were studied to check the constant error. Plot of 

externally studentized residuals was checked to see the presence 

of outliers i.e. influential values. Box-Cox plot was investigated to 

look for power transformations suggestions to improve the model. 

Power transformations were required in those cases when the max 

to min ratio of response is greater than 10 and/or presence of non-

normality in the residual data. 

2.1.3 Model fitting 
Response MRT can be related to independent scheduling process 

variables using mathematical interaction model equation. 

Empirical interaction models of MRT for both scheduling policies 

were described both in terms of coded factors and the actual 

factors with the help of least squares multiple regression equation 

given in (2).   

y = β0 + i xi + ij xi xj + ε               (2) 

where y is the predicted response, xi and xj are independent 

variables or factors, k is the number of independent factors. βo, βi 

and βij are the regression coefficients of intercept, first-order and 

interaction term respectively and ε is statistical random error.  

The coded equation [13] is useful for understanding the 

relationship between independent input variables and the output 

response. It also helps in identifying the relative significance of 

the model factors in terms of their absolute effect on the model 

response by comparing the factor coefficients. This coefficient 

comparison cannot be made with the actual equation because the 

coefficients are scaled to accommodate the units of each factor. In 

coded equation, every factor is uniformly scaled between -1 and 

+1; hence it provides the unitless regression coefficients to 

estimate the relative importance of the model factors. Finally 

predicted values of both the interaction models (for FCFS and 

FPFS) are validated against the additional actual experimentation 

results.  

3. RESULTS AND DISCUSSION 

Actual MRT values of obtained from the experimentation process 

for both FCFS and FPFS are shown in table 2. Interaction models 

to predict the main effects and interactions between two 

independent factors were fitted against the individual 

experimental data of FCFS and FPFS algorithms respectively. 

Statistical ANNOVA analysis (table 3) of the interaction models 

for MRT in both FCFS and FPFS showed that the model and all 

the model terms (main effect and interaction) are significant at 

p≤0.05. Respective MRT model F-value of 952.42 and 389.78 

indicates that interaction models are significant for both FCFS and 

FPFS policies and there is only 0.01% chance that such a high 

model F-value crop up due to the noise. Goodness of the fit of the 

interaction model for FCFS was determined by model statistics 

like high values of coefficient of determination R2=0.996, 

adjusted R2 =0.995, predicted R2 =0.992 and low values of 

SD=0.611 and CV%=2.234(exceptionally good below 5).  

Similar model statistics of coefficient of determination R2=0.976, 

adjusted R2 =0.970, predicted R2 =0.955 and low values of 

SD=0.556 and CV %=3.739 conclude the goodness of fit for the 

interaction model of FPFS. Predicted R2 and adjusted R2 in both 

scheduling policies are in reasonable agreement (within 0.2) with 

each other. Adjusted R2 values of 0.995 and 0.970 in case of FCFS 

and FPFS represent that respective models are true to explain 

99.5% and 97% variation in the model process variables. Low F-

value 2.65 and p-value 0.1813 entail that lack of fit is not 

significant relative to pure error. Similarly for FPFS policy, low 

F-value 3.86 and p-value 0.1039 conclude that lack of fit of the 

model is not significant. Adequate precision values 85.156 and 

53.931 of both interaction models for FCFS and FPFS indicate an 

adequate signal to noise ratio to navigate the design space by the 

interaction model. Model diagnostics plots for both the models 

reveal that all the residuals of MRT are normally distributed as 

they fall on the linear line on the normal probability plot paper 

shown in figure 2(a) and 2(b). Predicted vs. actual fitted values 

are represented by a linear line passing from origin indicating the 

closeness of predicted and actual MRT values shown in figure 

3(a) and 3(b). Box-Cox transformations were not required on the 

data in both the scheduling models due to the fact that max to min 

ratio of MRT is less than 10 and presence of normality of data in 

both cases as shown in figure 2(a) and 2(b). Predicted vs. actual 

fitted values are represented by a linear line passing from origin 

indicating the closeness of predicted and actual MRT values 

shown in figure 3(a) and 3(b). Box-Cox transformations were not 

required on the data in both the scheduling models due to the fact 

that max to min ratio of MRT is less than 10 and presence of 

normality of data in both cases as shown in figure 2(a) and 2(b).  

Fig. 2(a) and 2(b): Normal probability plot of MRT for FCFS (left) and FPFS (right) 
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Fig. 3(a) and 3(b): Predicted vs. Actual MRT plot for FCFS (left) and FPFS (right)  

 

Box-Cox transformations were not required on the data in both the 

scheduling models due to the fact that max to min ratio of MRT is 

less than 10 and presence of normality of data in both cases as 

shown in figure 2(a) and 2(b).  

Empirical interaction model equations of the MRT (in terms of 

coded values of process variables) for FCFS and FPFS policy are 

derived with the help of method of least squares based multiple 

regression models and are given in (3) and (4) respectively.  

 

MRT for FCFS = 27.52 + 8.50 ScheduleSize – 4.50 ClusterSize – 

1.97 ScheduleSize x ClusterSize           (3) 

 

MRT for FPFS = 15.00 + 5.11 ScheduleSize – 2.38 ClusterSize – 

0.81 ScheduleSize x ClusterSize            (4) 

 

where ScheduleSize and ClusterSize represent the coded values of 

input variables schedule size and cluster size respectively. 

Equations (3) and (4) have terms ScheduleSize and ClusterSize 

that indicates the main effect of these process variables on the 

response MRT. Term ScheduleSize x ClusterSize indicates an 

interaction effect between schedule size and the cluster size. 

Positive and relatively higher regression coefficients(8.50 and 

5.11) of term ScheduleSize in (3) and (4) respectively for FCFS 

and FPFS indicates that the process variable schedule size have 

higher relative impact on MRT values as compared to any other 

term in the equations. As the job sizes of the jobs contained in the 

workload increases, the MRT values are bound to increase in both 

policies though higher in case of FCFS as shown in main effect 

plot of ScheduleSize on the observed response MRT at the fixed 

levels of ClusterSize (16, 20 and 24) in figure 4(a). Regression 

coefficients of term ClusterSize with negative values of 4.50 and 

2.38 indicates this variable have antagonistic effect on the MRT 

value and result into decrease in MRT value with the increase of 

processors in the cluster. Figure 4(b) of main effect of CS on the 

MRT values at fixed values of SS (66,100,132 and 168) witnesses 

that as the CS increases there is a sharp decrease in the MRT 

Fig. 4(a) and 4(b): Main effect (one variable) plots of SS vs. MRT and CS vs. MRT for FCFS and FPFS policy respectively  
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values in case of FCFS policy as compared to FPFS due to higher 

negative coefficient estimate of 4.50 of CS term in the equation of 

FCFS MRT model. 

 Plots for interaction effects between ScheduleSize and 

ClusterSize on the response MRT for both policies are shown in 

figure 5(a) and 5(b) respectively. The interaction plots in both 

policies show that effect of ScheduleSize on response MRT is 

different for different levels of ClusterSize. Non-parallel lines of 

variable ClusterSize at different levels of ScheduleSize in both the 

interaction plots also validate the presence of interaction effect of 

ScheduleSize and ClusterSize on the response.  
 

Table 4. Validation experiments for FCFS and FPFS 

Exp.  

No. SS CS 

FCFS FPFS 

Predicted  

MRT 

Exp.  

MRT 

Predicted  

MRT 

Exp.  

MRT 

1. 66 16 22.02 21.96 11.46 10.95 

2. 100 24 22.11 22.33 11.18 10.88 

3. 168 20 37.99 36.87 20.11 19.81 

 

Approximative mathematical interaction model equations of the 

MRT (in terms of actual factors) for FCFS and FPFS using 

multiple regression models are given in (5) and (6). 

MRT for FCFS = 7.86721 + 0.36018 SS – 0.00737 CS – 0.0090 SS 

x CS               (5) 

 

MRT for FPFS = 5.89207 + 0.17967 SS – 0.13135 CS – 0.00397 

SS x CS              (6) 

 

where SS and CS represent the actual values of the input variables 

schedule size and cluster size. Actual MRT values for FCFS and 

FPFS can be obtained from (5) and (6) respectively by fitting the 

actual values at all the levels of SS and CS. Individual interaction 

MRT model for both FCFS and FPFS is validated against the 

additional actual experimentation results shown in table 4.  

4. CONCLUSIONS 

Response surface methodology approach of DOE has been used for 

statistical performance modeling and analysis of program-based 

static space-sharing scheduling algorithms in PC-cluster computing 

environment. The mathematical interaction models for both FCFS 

and FPFS policies, expressed in terms of main and interaction 

effect terms of scheduling process variables viz. ScheduleSize and 

ClusterSize  have been found to be remarkably statistically fit for 

predicting the process response MRT. Model term ScheduleSize 

have higher relative impact on the MRT values than any other term 

in both of the models. Goodness of the fit of the both interaction 

models was observed with the help of high values of adjusted R2 

and insignificant lack of fit. Respective empirical models of MRT 

for FCFS and FPFS are validated against additional actual 

experimental results. Performance analysis study showed that 

FCFS produced higher values of MRT at all the levels of SS and 

CS as compared to FPFS.  

 

 

 
Fig. 5(a) and 5(b): Interaction effect plots of SS x CS for FCFS (left) and FPFS (right) 

 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 25– No.11, July 2011 

24 

APPENDIX A:   WORKLOAD INFORMATION 
 

Workload Workload description: with job arrival order  

Workload format (Job no - Job name - job width - problem size) 

Input 

parameter 
ScheduleSize= 

Size(i) 

Workload 1 

No. of jobs =10 
 

J1-Runlength Image Compression-2-303x239, J2-Matrix Vector Product.-8-3000x1, J3-Matrix 

Multiplication-4-256x256,J4-Matrix Multiplication-16-800x800,J5-Calculation of PI-2-
100000,J6-Finding Total Prime No-4-10000,J7-Matrix Multiplication-16-800x800,J8-Matrix 

Multiplication-2-128x128, J9-Matrix Vector Product-8-2400x1,J10-Runlength Image 

Compression-4-303x239 

66 

Workload 2 

No. of jobs =15 

 

J1-Runlength Image Compression-2-303x239, J2-Matrix Vector Product-8-3000x1, J3-Matrix 

Multiplication-4-256x256,J4-Matrix Multiplication-16-800x800,J5-Calculation of PI-2-

100000,J6-Finding Total Prime No-4-10000,J7-Matrix Multiplication-16-800x800,J8-Matrix 
Multiplication-2-128x128, J9-Matrix Vector Product-8-2400x1,J10-Runlength Image 

Compression-4-303x239,J11-Matrix Multiplication-4-256x256,J12-Matrix Vector Product-8-

2000x1,J13-Finding Total Prime No-2-10000,J14-Matrix Multiplication-16-512x512,J15-
Runlength Image Compression-4-303x239 

100 

Workload 3 

No. of jobs =20 

 

J1-Runlength Image Compression-2-303x239, J2-Matrix Vector Product-8-3000x1, J3-Matrix 

Multiplication-4-256x256,J4-Matrix Multiplication-16-800x800,J5-Calculation of PI-2-

100000,J6-Finding Total Prime No-4-10000,J7-Matrix Multiplication-16-800x800,J8-Matrix 
Multiplication-2-128x128, J9-Matrix Vector Product-8-2400x1,J10-Runlength Image 

Compression-4-303x239, J11-Matrix Multiplication-4-256x256,J12-Matrix Vector Product-8-

2000x1,J13-Finding Total Prime No-2-10000,J14-Matrix Multiplication-16-512x512,J15-
Runlength Image Compression-4-303x239,J16-Calculation of PI-2-100000,J17-Matrix 

Multiplication-16-800,J18-Matrix Multiplication-4-256x256,J19-Matrix Vector Product-8-

3000x1,J20-Runlength Image Compression-2-303x239 

132 

Workload 4 

No. of jobs =25 

 

J1-Runlength Image Compression-2-303x239, J2-Matrix Vector Product-8-3000x1, J3-Matrix 

Multiplication-4-256x256,J4-Matrix Multiplication-16-800x800,J5-Calculation of PI-2-

100000,J6-Finding Total Prime No-4-10000,J7-Matrix Multiplication-16-800x800,J8-Matrix 
Multiplication-2-128x128, J9-Matrix Vector Product-8-2400x1,J10-Runlength Image 

Compression-4-303x239,J11-Matrix Multiplication-4-256x256,J12-Matrix Vector Product-8-

2000x1,J13-Finding Total Prime No-2-10000,J14-Matrix Multiplication-16-512x512, J15-
Runlength Image Compression-4-303x 239,J16-Calculation of PI-2-100000,J17-Matrix 

Multiplication-16-800x800,J18-Matrix Multiplication-4-256x256,J19-Matrix Vector Product-8-

3000x1,J20-Runlength Image Compression-2-303x239,J21-Calculation of PI-4-1000000,J22-
Matrix Multiplication-6-512x512,J23-Matrix Multiplication-8-512x512,J24-Matrix 

Multiplication-16-1000x1000,J25-Matrix Vector Product-2-1000x1 

168 
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