
International Journal of Computer Applications (0975 – 8887)

Volume 25– No.3, July 2011

13

An Experimental Study on Reliability Estimation of

GNU Compiler Components – A Review

R.Chinnaiyan

Associate Professor
Department of CA

AVC College of Engineering.

 Dr.S.Somasundaram
Associate Professor
Department of Maths
CIT –Coimbatore.

ABSTRACT

In today’s software arena most of the software’s are developed

using the component based software development methodology.

Hence it is necessary to ensure that the developed software

possess high reliability as perceived by the consumer before the

software release. Many researchers have proposed various

analytical models for assessing the reliability of component

based software systems, where the black-box testing procedure

is used for reliability assessment for evaluating the software

components where internal workings of the software

components are not evaluated. So it is necessary for the software

developers to use white box testing technique for ensuring high

reliability of the software components which yields reliable

software system. This paper proposes a renewed reliability

engineering approach and it is elucidated with the real software

system case study with GNU compiler.

Keywords: Software Components, Component Based

Software Reliability, GNU Compiler

1. INTRODUCTION
IEEE 610.12-1990 defines reliability as “The ability of a

software system or component to perform its required functions

under stated conditions for a specified period of time.” IEEE

982.1-1988 defines Software Reliability Management as “The

process of optimizing the reliability of software through a

program that emphasizes software error prevention, fault

detection and removal, and the use of measurements to

maximize reliability in light of project constraints such as

resources, schedule and performance.” Evaluating the reliability

of Component Based Software Systems is useful in quantifying

the quality of the software systems. However, these quality

measurements are now being implemented during development

process leave too little to be done to improve the quality of the

component based software system in an economic way. In the

software design perspective, various methods for modeling

software systems and specifying their functionality have been

developed. These methods enable extensive analysis of the

specification, but typically lack quantification. Additionally,

their relation to dependability attributes of the modeled software

system is unknown.

1.1 Background
 P K Suri et al. [11] made an attempt to compute the reliability

of the system as a function of reliabilities of its components.

Components along a path, called Course-of-execution, are

executed during each simulation run. Starting from any

component during any Course-of-execution, control is

transferred to any other component as per the Markov process.

Tirthankar Gayen et al.[17] presented a unique methodology

based on the execution scenario analysis of the COTS

component based software application to regain some control

over their COTS component based software application systems

by predicting the upper and lower bound on the reliability of

their application systems. Haiyang Hu [13] presented a new

approach to evaluate the reliability of the component based

software systems in the open distributed system environment by

analyzing the reliabilities of the components of different

application domains, the reliabilities of the connections to these

components and the architecture style of their composition.

Jung-Hua Loet al. [8] proposed a new approach to analyzing the

reliability of the system, based on the reliabilities of the

individual components and the architecture of the system for

assessing the reliability of component based software system.

Sherif M.Yacoub et al. [16] presented a methodology for

reliability risk assessment at the early stages of the development

lifecycle, namely the architecture level. They described a

heuristic risk assessment methodology that is based on dynamic

metrics. The methodology uses dynamic complexity and

dynamic coupling metrics to define complexity factors for the

architecture elements. Severity analysis is performed using

failure mode and effect analysis (FMEA) as applied to

architecture models. William W.Everett [18] described an

approach for analyzing the reliability of software systems using

component analysis. It uses the Extended Executing Time (EET)

reliability growth model at the software component level.

Jeffrey M. Voas [7] introduced a methodology for determining

the quality of off-the –shelf (OTS) components using a set of

black-box analysis . This methodology provides the useful

information for software developers for choosing components

and for defending themselves legally against someone else’s

imperfect OTS components Denise M.Woit et al. [3] presented a

set of component design and interaction rules which, if followed

in software development, can produce systems with the highly

independent components necessary in order to legitimately

calculate system reliability from component reliability.

Independence is a fundamental requirement of calculating

system reliability from component reliabilities. Denise M.Voit et

al. [2] showed how to use the CPS transformation to covert

conventional functions / procedures into fragments that can be

used in building markov models. Saileshwar Krishnamurthy et

al.[15] reported an experiment to evaluate a method, known as

Component Based Reliability Estimation (CBRE), for the

estimation of reliability of a software system using reliabilities

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.3, July 2011

14

of its components. CBRE involves computing path reliability

estimates based on the sequence of components executed for

each test input. Path reliability estimates are averaged over all

test runs to obtain an estimate of the system reliability. With the

clarity of above works this paper proposes a renewed reliability

engineering approach for estimating the reliability of component

based software system and it is elucidated with the real time

case study with GNU compiler.

2. DESCRIPTION

2.1 GNU Compiler
GCC is the acronym for GNU Compiler Collection. GCC is an

integrated distribution of compilers for several high levels

programming languages such us C, C++, Objective-C, Java,

FORTRAN, and Ada. Front-End is also a compiler which is

specific to a particular language. GCC supports front-ends like

Pascal, Mercury and COBOL in addition the above mentioned

languages. Initially it was referred to as GNU C compiler when

it was used only to compile C programs. The majority of the

compiler optimizers are included in the language independent

component of GCC. It also includes all the ‘back-ends’, which

are used to generate machine code for various processors. GCC

is Free Open Source Software. Software Components are the

part of GCC compiler that is devoted to a specific functionality.

GCC compiler has a number of software components. For

elucidating the proposed approach only 12 software components

of the GCC compiler are taken. The 108 files of the compiler are

mapped into 12 software components to build the design of

GCC.

2.2 Size of GNU Compiler
GNU Compiler is the leading case study ever used for

experimental software reliability estimation. C proper part was

used in the proposed experimental approach of GNU Compiler.

The C proper part itself has 300 source files written in 12

different languages and has approximately 800,000 lines of

ANSI C code. These files include both the programming and

scripting languages. Table 1 contains the list of languages and

lines of code written in each of those languages for the version

GCC-2.96-20000731. This table shows how large the case study

actually is.

Table 1: List of Languages with Lines of Code of GCC

Compiler

Language LOC

ANSI C 789,901

CPP 126,738

YACC 19,272

SH 17,993

ASM 14,559

LISP 7,161

FORTRAN 3,814

EXPECT 3,705

SED 310

PERL 144

OBJC 479

Total 984,076

3. RELIABILITY OF SOFTWARE

COMPONENTS
“The reliability of Software Component i is the probability Ri

that the Software component performs its function correctly”. If

the number of failures of each software component is very small

when compared to the number of executions of each software

component, then the reliabilities of software components must

be very high. There are many methods to calculate the

reliabilities of software components. The historical data and the

requirement documents are used during the early stages of

development. Software Reliability growth models for each

software component are used [18]. However, the software

component failure data available is not sufficient to apply these

models. The information about the succeeded and failed

executions during the testing are used to find the reliabilities of

software components [1], [4], [6], [10].

These methods depend heavily on the type and nature of the test

cases used to find the software faults. Irrespective of the method

used to find out the reliabilities of software components, the

values may be erroneous. The mean value of reliability for each

software component is then estimated. The reliability of a

software component is assessed using the Equation (2)

Qi = Lim (fi / ni) (1)

 ni ∞

 Ri = 1- Qi (2)

Where fi is the number of failures and ni is the number of

executions of software component i in N randomly generated

test cases. Ni is total number of times the software component is

executed in 2126 test cases. Qi is the unreliability of the

Software Component and Ri is the reliability of the software

component i. The reliabilities of software components are

extremely high and almost equal to one. This is because only

few failures are compared to the number of executions of each

software component.

4. NUMERICAL ILLUSTRATIONS
The information available in the documentation of GNU

Complier is not sufficient for dividing the entire software system

into constituent software components. More than 50 files out of

108 files are missing from the documentation. The source codes

are examined for understanding what each file does and assign

that file to the appropriate software component. Based on unique

functionalities the GNU Compiler is divided into 12 software

components. Files are assigned to each software component on

the basis of their functionality. The software components and the

number of files in each software component are shown in

Table.2

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.3, July 2011

15

Table 2. Software Components and Number of Files

in each Software Component of GNU Compiler

Reliability of Software Components

in GCC Compiler

0.9999000

0.9999200

0.9999400

0.9999600

0.9999800

1.0000000

1.0000200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Software Component ID

R
e
li
a
b
il
it
y
 o
f
S
o
ft
w
a
re

C
o
m
p
o
n
e
n
t

Figure 1. Reliability of Software Components in GNU

Compiler

Table 3. Reliability of Software Components of GNU

Compiler

5. RELIABILITY OF COMPONENT

BASED SOFTWARE
The state-based composite method is proposed by R.C. Cheung

in [12] to combine the software architecture with the failure

behavior of the component based software systems. The model

assumes a single entry node and single exit node for the

software system. In this proposed approach two absorbing states

C and F are added to the Discrete Time Markov chain (DTMC).

These states represent the successful completion and failure of

the software system respectively. Two dummy states BEGIN

and END were already added in the operational profile which

represents the beginning and ending of the software execution.

The transition probability P is converted to P1. The transition

probability Pij in the original matrix is then converted to RiPij to

generate the values in P1. Ri is the reliability of the software

component i. RiPij is the probability that the software component

i produces the correct result and the control is transferred to

software component j [14]. An arc is made between the failure

state and the software component i with a transition probability

of (1 - Ri), to consider the failure of software component i. The

software components C and F are not considered when

calculating the entire software system reliability. The reliability

of the component based software system is the probability that

the control reaches state C from BEGIN state. The matrix P1 is

converted into Q by deleting the rows corresponding to C and F.

The element Qk (1, n) represents the probability of reaching

state n from BEGIN state with k transitions [14]. The number of

transitions ranges from 0 to infinity. So the reliability of

component based software system is R = S (1, n) Rn. MATLAB

is used to implement the equation to find the reliability of the

software system.

Software Component

Name

Component

ID

No. of Files in each

Software Component

Parsing 1 32

Tree Optimization 2 11

RTL Generation 3 26

Jump Optimization 4 4

CSE 5 4

GCSE 6 2

Loop Optimization 7 10

Register Allocation 8 11

Branch Processing 9 4

Final Pass 10 9

Library Files 11 21

Top Level Control 12 1

Software

Component

ID

Number

of

Failures

(Fi)

Number

Of

Executions

(Ni)

Reliability

of

Software

Component

(Ri)

1 30 1656221 0.9999819

2 1 135180 0.9999926

3 7 1688076 0.9999959

4 0 162338 1.0000000

5 1 11326 0.9999117

6 1 57377 0.9999826

7 0 72680 1.0000000

8 0 372486 1.0000000

9 0 16087 1.0000000

10 4 381046 0.9999895

11 10 919668 0.9999891

12 1 302504 0.9999967

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.3, July 2011

16

The value for the reliability calculated using this method is

0.9201. The reliability of the software system is also calculated

using the black box testing and the two values were compared.

The error in the reliability estimate is given by the following

equation | (Rmodel – Ractual) / Ractual | x 100 . | (0.9201 – 0.9741) /

0.9741 | x 100 = 5.5 %

The error in estimation is a mere 5.5%.

6. CONCLUSION
This proposed approach presented an experimental approach for

analyzing the reliability component based software. The GNU

compiler and its component failures dataset is used for

experimentation. This is one of the leading case studies ever

used for reliability analysis of component based software

systems. The most important thing that distinguishes the

proposed work from most of the related works is the size of the

case study that is used. The problems associated with the

experiments on the studies are explained. Most of the potentially

difficult problems associated with large-scale software

applications are addressed. All previous studies on experimental

studies mentioned in the related work, contributed to a small set

of these problems. The reliability for each software component

is calculated with the failures of software components during

execution. The reliability of component based software system

is thus calculated using both black-box method and the white-

box method. Accurate value for the reliability is arrived, with

only 5% of difference between the values found using the two

methods.

7. REFERENCES
[1] B.Littlewood and D.Wright, “Some Conservative Stopping

Rules for Operational Testing of Safety – Critical

Software” IEEE Trans. Software Engineering, 1993;

23;11:673-683.

[2] Denise M. Woit, David V. Mason. Software Component

Independence. HASE'1998:74-81.\

[3] Dick Hamlet,Denise M.Woit and David V.Mason,”Theory

of software reliability based on components”, ICSE '01

Proceedings of the 23rd International Conference on

Software Engineering,2001:361 – 370.

[4] E. Nelson, “A Statistical Bases for Software Reliability”,

TRW-SS-73- 02, TRW Software series,1973.

[5] Bugzilla available at: http://www.bugzilla.org.

[6] J.H.Poore, H.D.Mills and D.Mutchler, “Planning and

Certifying Software System Reliability”, IEEE Software,

1993:88- 99.

[7] Jeffrey M. Voas, "Certifying Off-the-Shelf Software

Components," Computer, 1998;31;6: 53-59.

[8] Jung-Hua Lo, Chin-Yu Huang, Sy-Yen Kuo, Michael R.

Lyu , “Sensitivity Analysis of Software Reliability for

Component-Based Software Applications, 27th Annual

International Computer Software and Applications,2003.

[9] K. Goseva Popstojanova and Sunil. K. Kamavaram,

“Assessing Uncertainty in Reliability of Component-Based

Software System", Proc. 14th IEEE International

Symposium on Software Reliability (ISSRE 2003), Denver,

CO, 2003.

[10] K.W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M.

Nikol, B.W. Murrill, and J. M. Voas, “Estimating the

Probability of Failure when Testing Reveals no Failures”,

IEEE Trans. Software Engineering, 1992;18;1: 33- 43.

[11] P K Suri and Sandeep Kumar, Design of Simulator for

Reliability Estimation of Component Based Software

System IJCSNS International Journal of Computer Science

and Network Security, 2009;9;9:161-167.

[12] R. C. Cheung, “A User-Oriented Software Reliability

Model”, IEEE Trans. Software Engineering, 1980; 6;

2:118-125.

[13] Haiyang Hu ,Reliability Analysis for Component-based

Software System in Open Distributed Environments,

IJCSNS International Journal of Computer Science and

Network Security, 2007;7;5:193-202.

[14] S. K. Kamavaram and K. Goseva Popstojanova, “Entropy

as a Measure of Uncertainty in Software Reliability", Proc.

13th International Symposium Software Reliability

Engineering, Supplementary proceedings ,2002: 209-210.

[15] Saileshwar Krishnamurthy Aditya P. Mathur, On

theEstimation of Reliability of a Software System Using

Reliabilities of its Components- IEEE 1997: 146-155.

[16] Sherif M.Yacoub and Hany H.Ammar “A Methodology for

Architecture-Level Reliability Risk Analysis”, IEEE

Transactions on Software Engineering, 2002;28;6:529-547.

[17] Tirthankar Gayen and R. B. Misra, Reliability Bounds

Prediction of COTS Component Based Software

Application, International Journal of Computer Science and

Network Security,2008; 8;12 :219-228.

[18] W. Everett, “Software Component Reliability Analysis”,

Proc. Symp. Application– Specific Systems and Software

Engineering Technology, 1999:204-211.

8. AUTHOR’S BIOGRAPHY
1. R.Chinnaiyan is working as Associate Professor in the

Department of Computer Applications, A.V.C College of

Engineering, Mannampandal, Mayiladuthurai , Tamil Nadu ,

INDIA. He is having 10 years of teaching experience. He is a

life member of ISTE and CSI of INDIA. He is now doing his

research in Anna University- Chennai at Coimbatore Institute of

Technology, Coimbatore. His research interest includes

Reliability of Component Based Software, Object Oriented

Analysis and Design, Qos and System Reliability.

2. Dr. S.Somasundaram is working as Associate Professor in

the Department of Mathematics, Coimbatore Institute of

Technology, Coimbatore - 641 014, Tamil Nadu, INDIA. He is

having 28 years of teaching experience. He is a life member of

ISTE, RMS and IMS of INDIA . He had guided over 5 M.Phil

Candidates in Bharathiyar and Annamalai Universities. Now he

is guiding 5 Ph.D Scholars under Anna University Chennai and

Coimbatore His research interest includes Risk Analysis, Qos ,

Optimization , Networking and Software Reliability

