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ABSTRACT

The concept of X-chromatic partition and hyper independent
chromatic partition of bipartite graphs were introduced by
Stephen Hedetniemi and Renu Laskar. We find the bounds for
X-chromatic number and hyper independent chromatic number
of a bipartite graph. The existence of bipartite graph with
wm(G)=a and yy(G)=b-1, y,(G)=a and yx(G)=b where a <b are
proved. We also prove the existence of bipartite graphs for any
three positive integers a, b, ¢ such that ¢ > 2(b-a)+1, there exists
a graph G such that yx(G)=a, yxd(G)=b and [Y|=c. The bipartite
theory of Dominator colouring is introduced.
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1. INTRODUCTION

Bipartite theory of graph introduced by Hedetniemi [4,5] and
Renu Laskar states that given any graph problem, say P, there is
corresponding problem, say Q, on bipartite graph whose solution
gives a solution for the problem P. The concept of X-chromatic
and hyper independent chromatic partition introduced in [4,5]
are studied. Varities of domination is discussed in the two books
of T.W.Haynes[2,3]. The concept of X-dominator X-colouring
which is bipartite version of dominator colouring [1] is
introduced. Unless otherwise stated, by a graph we mean
bipartite graph G=(X, Y, E) with |X|=p without isolates.

2. X-COLOURING IN GRAPHS
In this section, we give the definition of X-colouring of a
bipartite graph G as given in [4] and find its bounds.

Definition 2.1: [4] Let G be a graph. Two vertices u, v € X
are X-adjacent if they are adjacent to a common vertex in Y.
Let dy(x) denote the number of vertices X-adjacent to x.

Definition 2.2: [4] Two vertices u, v € X are X-independent if
there does not exist a vertex y € Y adjacent to both uand v. A
subset S of X is X-independent if every pair of vertices u and v
in S of X is X-independent. The maximum cardinality of a X-
independent set is called X-independence number of G and is
denoted by Bx(G).
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Definition 2.3: [4] A X-colouring of a bipartite graph G is a
partition {X;, X,, ...,Xy} of X into X-independent sets. The X-
chromatic number yx(G) of a bipartite graph is the smallest
order of an X-colouring of G.

Theorem 2.4: Given positive integers k and p, 2 < k < p, there
exists a graph with yx(G) =k, [X|=p and |Y|=q (q >p).

Proof: Let G be a bipartite graph with bipartition X and Y. The
bipartite graph G is defined as follows: X = {u, uy, ... ,u,}, Y=
{Y1> ¥2,---,¥q}» K vertices uy,u,,...,uy are X-adjacent to each other
through same y; €Y. Let u 4 be X-adjacent to each other
through different y € Y- {y;} say y». u is X-adjacent to u,
through y; where y3; € Y-{y|, y»} and so on. If p-k is greater
than k then u,,, is made X-adjacent to u; and so on.

Since k vertices in X are X-adjacent, yx(G)> k. Let X be the set
with elements u; and X-neighbours of up; 1 <i< k-1. Let X, be
the set with vertices u, and X-neighbours of u;. Then, {X;, X,,
...,Xy} forms a X-chromatic partition. Hence, xx(G)< k.
Therefore, yx(G) =k with [X|=p.

Theorem 2.5: In a bipartite graph G, yx(G) = p if and only if G
is a graph with every vertex in X is (p-1) X-regular.

Proof: If every vertex in X is (p-1) X-regular then  {{xi},
{X2},...,{Xpy} 1s a partition of X into X-independent sets.
Therefore, yx(G) = p.

Conversely, xx(G) = p then {{x;}, {X2},...,{Xp}} is a partition of
X into X-independent sets. If there exists a vertex x; with dy(x;)
<p-1. Let x, be the vertex not X-adjacent with x;. Then, {{x;},
(X} 5o AXict o A XisXich e > {Xic1 15 {Xk} 50, 1Xp) 18 @ partition of X
into X-independent sets and yx(G) < p, a contradiction.
Therefore, every vertex is of X-degree (p-1). Hence, every
vertex in X is (p-1) X-regular.

Theorem 2.6: Let G be a bipartite graph on [X|=p vertices.

ThenﬁisZX(G)Sp—ﬂX +1,

X



Proof: Let {X;,X,,....X,x} be a X-chromatic partition of X(G).
Then, |X i| < B (G). Therefore,

Xx
P=2|X|< 2, (6B, (G). Hence,
i=1

LS}(X(G). Let D be a [, -set of G. Let

By
D={x,X,,...,Xpx}. Then, II = {D, {xﬁx+1},...,{xp}} is a

X-chromatic partition of G. Therefore,

ZX(G)Sp_ﬁX +1.

<xx(G)<p-py+1.

Hence,
X

Theorem 2.7: Let G be a connected bipartite graph,
)((G) =Xy (G) if and only if G is Gy, P,, Cy,, n#3, where
G is the graph G|=(X; U X,, Y, E), vertices in X; i=1,2 are not
X-adjacent. At least one vertex in X, is X-adjacent to vertices
of X, through different y in Y.

Proof: If G is G, P, Cap, n#3, then ¥ (G) = 7, (G)

Let ){(G) =Xy (G) Let X, X, be partition of X into X-

independent sets. The X-neighbours of X; are in X, and vice
versa. Since, G is connected, there is a vertex in one partition
X-adjacent to all the vertices in other partition, we get G; or two
vertices in X; has same X-neighbour in X, which gives P, C,,,
n#3.

3. HYPER COLOURING IN GRAPHS
In this section, we define hyper independent colouring in graphs
as given in [2] and find its bounds.

Definition 3.1: [4]A subset S of X is hyper independent set if
there does not exist a vertex y in Y such that N(y) is contained in
S.

Definition 3.2: [4]A hyper colouring of a graph is a partition of

X into hyper independent sets, the hyper independent chromatic
number x,(G), is the smallest order of a hyper independent
colouring of G.

Theorem 3.3: Given two positive integers, k and p such that
2<k<p, then there exists a graph G with

2,(G) =k:|Y| =k =2 and | X]| = p.

Proof: Let X = {x;, X5, ... ,X,} be vertices of X. Let the
vertices Xj,Xp,...,Xp4+2 D€ adjacent to y; in Y. Let x; be X-
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adjacent to all other vertices of X through different y in Y (i= p-
k+3 to p). Then (k-2) vertices in X is of X-degree (p-1) and (p-
k+2) are X-adjacent through same y in Y. Since each of the (k-
2) vertices with X-degree (p-1) are X-adjacent through different
vertices of Y, no two of them can be in a hyper independent set.
AlSO X,X5,...,Xp.k+2 cannot be all in the same hyper independent
set. Therefore, there are at least two hyper independent set from
X[,X2,...,Xpk+2 and (k-2) hyper independent sets from Xp.i3,Xp.

kas- -, Xp. Therefore, ¥, (G)=>k.

Consider
IT = {{x}, X 5es X, j1 }5 41X, 4infsees 1%, 1} Then

IT is a partition of X into k hyper independent sets. Therefore,
2,(G)< k. Hence, y,(G)=k.

Definition 3.4: [4] A subset D of X is a Y-dominating set if
every y in Y is adjacent to at least one vertex in D. The
minimum cardinalilty of a Y-dominating set is called Y-
domination number and is denoted by yy(G).

Theorem 3.5: [6] Let G be a bipartite graph. A subset D of X is
Y-dominating set if and only if X-D is hyper independent set.

Theorem 3.6: Let G be a bipartite graph on |[X|=p vertices.

Then, LS X < Yy +1.
P—7y
Proof: Let S be a minimum Y-dominating set of G. Then, (X-S)

is a hyper independent set. Therefore, {X-S,{X;},{X2},....,{Xs} }
is a partition of X into hyper independent sets. Hence,

X <yy+L

Let II= {X1,X5,...,X,n} be a minimum hyper independent
partition of X(G). Since, }y (G) + ﬂh (G) =p,

1X,|< B,(G)=p-7,(G).

Therefore,
Xh

X |=> X, That is, p<g,(G)Np-r,(G)).
i=1

Therefore, P <X
P~7y

Theorem 3.7: Given two positive integers a and b with

2<a<b, there exists a graph G with ¥,(G)=a,
|Y|=(b—a)a+&2(a_2)+l and

7, (G)=b-1.



Proof: Let X={X|,Xs,...,Xp-2,U1,U2,. - -,Ug2, W1 1,W12,W21,W22 .. ., W(b-
alWp-ap). Let Xi, Xa,...,Xp.a, be X-adjacent through same y in
Y. Let u; be X-adjacent to X,,...,XpaU1,Us,...,0;; through
different y in Y (i=2 to a-2). Attach P, to every vertex x; (i=1 to
b-a) and let the vertices of this P4 X-adjacent to x; be w;;, wi.

Let G be the resulting graph. Clearly, ¥, (G) Za.
IT ={{ X1,X2, .. -, Xp-a-1,W12,W22,- -A,W(b-a-l)z,w(b-Z)l}a

{Xb-asW(b-a)2>W1 W21+ - s Wib-a- 1)1 55 101> (U2} s {Uan ) } is a
partition of X into hyper independent sets.  Therefore,

2,(G) < a. Therefore, y,(G)=a.

Clearly S:{Wll,WZI,...,W(b_a)l,Xl,U.l,U.z,...,Ua_z} is a Y—dominating

setwith 7, (G)=b—-a+1+a-2=>b-1.

Example 3.8: Construction of graph with ¥, (G) =3 and
Yy (G)=4.

The partition TT={{x;,wi5,wx},{x0,w;;,wi2},{u;}} is a hyper
independent set of G and S={w;;,w,,X;,u;} is a Y-dominating
set of G.

g Woo wan

B4 g U o oy W Ue

Observation 3.9: Every X-independent set is a hyper
independent set. Therefore, every X-chromatic partition is a
hyper independent chromatic partition of G.  Therefore,

2:(G) < x4 (G).

Theorem 3.10: Given positive integers a>1 and b2 a, there

exists a graph G with ¥, (G)=aand Xx (G)=b.

Proof: Let us assume a<b. Let G be a graph with bipartition X
and Y. Let X={X|,Xp,....xp} and Y ={y;,y2,...,yq}. Let the
vertices  X;,Xp,...,X, be X-adjacent through same y in Y.

Therefore, Yy (G) = b, Let x; be X-adjacent to all x;, b-a+2
< i <b; i#; 155<b through different y in Y. Clearly,
Zh (G) >a. Let H = {{ X19X2a-'-axb-a+l}, {Xb-
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a2bren{Xp}y.  Then, IT is a partition of X into hyper
independent set of G. Therefore, ¥, (G)<La.

Let a=b. Let X={x;,X,,...,Xp}. Make every vertex in X, (b-1) X-
regular through different y in Y. Therefore, ¥, (G)=a and

Zx(G)=b.

4. X-DOMINATOR COLOURING OF A
BIPARTITE GRAPH

Domination and colouring have nice interactions in graphs.
Partitioning the vertex set of a graph into subsets with desired
property is an interesting problem. Colouring problem is also a
partition problem. We initiate the study of X-dominator X-
colouring of graphs.

Definition 4.1: [1] A dominator colouring of G is defined to be
a proper colouring in which every vertex dominates a colour

class.  The dominator chromatic number, J, (G)is the

minimum number of colours that allows a dominator colouring
of G.

Definition 4.2: [4] A subset S of X is an X-dominating set if
every vertex in X-D is X-adjacent to at least one vertex in D. A
X-dominating set S is a minimal X-dominating set if no proper
subset of S is X-dominating set. The minimum cardinality of a
minimal X-dominating set is called the X-domination number of

G and is denoted by } (G)

Definition 4.3: Let G=(X,Y,E) be a graph. A X-independent
partition of X, II= (X] ,Xz,...,XZ) is called X-

dominator X-colouring of G if every vertex x in X, X-dominates

some colour class in I1. We assume x in X X-dominates {x}.
The smallest cardinality of X-dominator X-colouring of G is
called X-dominator, X-colouring number of G and is denoted by

Zxd(G).

Example 4.4: For any bipartite graph G=(X,Y,E) with vertex
X={X1,X2,X3,...,Xp} then IT={{x},{x}, ..., {Xp}} is clearly a
X-dominator,X-colouring of G. Therefore, X-dominator X-
colouring of every graph exists.

Remark 4.5: 1 < }(Xd(G) <p.

Remark 4.6: Since any X-dominator, X-colouring of G is a X-

colouring of G, we have ¥, (G) < y,d(G).



Theorem 4.7: Let G=(X,Y.E) be a bipartite graph with [X|=p,
[Y|=q. Then, )(Xd(G) = p if and only if there exists a
vertex in Y of degree p or ¢ = p —1.

Proof: If there exists a vertex in Y of degree p then
2:d(G)=p. I
Zd(y) > p(p—1). Every vertex in X is X-adjacent to

yeY

g=p-1 then

other vertices in X. Therefore, ¥ Xd (G) = p.

Conversely, suppose Y Xd (G) = p. Letevery pointyinY

be such that d(y) <p and q <p-1. Let X;,X,...,X, be the vertices
in X which are adjacent to y where r = d(y) < p. There exists

X;+1 Which is not X-adjacent to any x; 1<i<r say X,. Then
{{X1,X2, o Xe1 o {XeXpt1 }5 05 1Xp) | 15 @ X-dominator, X-colouring

of G. A contradiction to ¥ Xd (G) = p Therefore, there

exists a vertex in Y of degreepor ¢ 2 p — 1.

Theorem 4.8: Let G=(X,Y,E) be a bipartite graph with |XJ=p,
[Y|=q. Then ¥ ,d(G) =1 ifandonlyif G = pK, .

Proof: If G = pKl’a then )(Xd(G) =1.

Conversely, if ¥ Xd (G) =1 then every vertex in X are X-

independent. Therefore, G= pKL a-

Theorem 4.9: Let G be a connected bipartite graph. Then
max{y(G),7x(G)} < xxd(G) <

2x(G)+74(G).

Proof: A X-dominatorX-colouring must be a proper X-
colouring, whe have ¥, (G) < y,d(G). Also, let C be a
minimum X-dominator, X-colouring of G. For each colour class
of X, let x; be a vertex in the class I, with 1 <i <y d(G).
Let S={x,:1<i< y,d(G)}. Letv belong to X(G).
Then v X-dominates a colour class 1, for some i
(1<i< y,d(G).) Then v is X-dominated by the colour

class 1, in particular X;. Therefore,

Vx (G) < |S| = ZXd(G)- Hence,
max{z, (G),7(G)} < 7,d(G).
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Let C be a proper X-colouring of X with ¥ (G) colours.

ZX (G) +1, ZX (G) +2,...,
Zx(G)+7/X(G) to the vertices of a minimum X-

Assign colours

dominating set of G leaving the rest of the vertices coloured as
before. This is a X-dominator, X-colouring of G, since it is still
a proper X-colouring and the X-dominating set provides the
colour class that every vertex X-dominates.

Theorem 4.10: Given positive integers a, b, c¢ such that
cz= 2(b—a)+1, there exists a graph G such that

Xy (G)=a; 1, d(G)=band |Y|=c.

Proof: Let G=(X,Y,E) be the graph. Let X= {x,X2,

e X10X21,X22, - 05X+ o X(beat 1) 15+ s X(beart 1)a ) - Let
Y={Y1,¥12: Y25+ s Y(b-a)(b-at1)s Ybeat1 ) - The edges
E(G)={x11y1,X12Y1>- - -»X1aY 1:X1aY 125 - - - »X(b-a+1)aYb-a+1 ). Then,
HX1X205 X prat 1) 5 1X12:X02 0+ o X(beat )25 -5 AXTape > X(beat1)a) | 1S

a minimum partition of X into X-independent sets. Therefore,

Zx(G)=a

The partition  {{X;1,X21,-... X(p-at1)}>  --»  Kil}s{Xi2}s  +eos
{Xia}>- s 1X1a>-- s X(bat1)a) § 18 @ minimum X-dominator, X-

colouring of G. ;(Xd(G):a—1+b—a+1:b and
Y|=b-a+l+b—a=2(b-a)+l.
c22(b-a)+1.

Therefore,

Theorem 4.11: Given a positive integer k, there exists a graph

with ¥, d(G)— z,(G) =k .

Proof: Let the vertices of X be

X010 X125 X300 Xyt X eony2 s Xz Xeonya b+ Xin
Xp, Xi3.Xi4 are adjacent to y; i=1 to k-1. Xy and Xg .y are
adjacent to i) 1= 1 to k-2.

IT = {{ xi1. X120 X3}y {X14X04,.. X4} } s @ partition of X

into hyper independent sets. Therefore, ¥, (G)=2.

IT= {H X11,X21,-~-»X<k-1)1}» {Xlz,Xzz,---,X(k-l)z,X13,Xz3,--~, X(k-
1)3},{)(14},...,{X(k_1)4}} is a partition of X into X-dominator X-

colouring of G. Therefore, )(Xd(G) =k+2. Hence,
Xxd(G) = 7,(G) =k,



5. BIPARTITE THEORY OF

DOMINATOR COLOURING
The Bipartite graph VE(G) constructed from an arbitrary graph

G=(V,E) is defined as in [2]. VE(G) = (V.E,F) is defined by the
edges F={(u,e): e=(u,v) in E}. VE(G) = S(G), where S(G)
denotes the subdivision graph of G.

Theorem 5.1: For any graph G, )(Xd(VE(G)) =Xa (G).

Proof: Let Y Xd (VE(G)) =k . There exists a partition of

X, [I= {X1,Xs,...,Xi} of X-independent sets such that every
vertex x in X X-dominates some colour class in I1. In G,

1 . . L

IT" = {X,,X,,...,X\} is a partition of V into independent sets
. . . 1

such that every v in V dominates some colour class in I1" .

1. . .
Therefore, I1" is a dominator colouring of G. Hence,

24(G) <k =y, d(VE(G)).

Conversely, let Yy, (G) =r. Let II = {V,Vo,...,V} is a

partition of V into independent sets such that every vertex vin V

dominates some colour class in IT. In  VE(G),
Hl = {V,V,,...,Vi} is a partition of X in to X-independent
sets and every x in X X-dominates some colour class in .
Therefore, T is a X-dominator, X-colouring of VE(G).
Hence, 2vdVE(G)) <r=y,(G).

2xd(VE(G)) = 2,(G).

The graph EV(G)=(E,V,K) is defined by edges K={(e,u) : e=uv
in E}.

Therefore,

Theorem 5.2: For any graph G,
2y d(EV(G) = 1, (G).

Proof: Let d(EV(Q)) =k . There exists a partition of
Xx p

x, [1= {X1,Xs,...,X} of X-independent sets such that every
vertex x in X, X-dominates some colour class in I1. In G,

1 . . L

II = {X1,X2,...,X} 1s a partition of E into independent sets
. . . 1

such that every e in E dominates some colour class in IT .

Therefore, IT' is an edge dominator colouring of G. Hence,

24(G) <k = 1, d(EV(G)).

1
Conversely, let Y, (G) =7. Let Il = {ELE,,...,E} is a
partition of E into independent sets such that every edge e in E

dominates some colour class in IT. In EV(G),

' = {EL,E,,...,Ey} is a partition of X in to X-independent sets
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and every x in X X-dominates some colour class in Hl.
Therefore, Hl is a X-dominator, X-colouring of EV(G).
Hence, y, d(EV(G))<r= }(ld(G).

2xd(EV(G) = 1'a(G).

Let V' be a copy of the vertices V of G. (a) The graph
VV(G)=(V,V'E") is defined by the edges E'={(u,v"):(u,v) in E}.

Therefore,

From a graph G=(V,E) the graph G2 and G* can be constructed
as follows: G2 and G* have the same vertex set as G, with two
vertices u and v adjacent to G2 if and only if they have a
common neighbor in G, and adjacent in G” if and only if
d(u,v)<2 in G.

Theorem 5.3: For any graph G,
ZxdVV(G)) = x,(G2).

Proof: Let }(Xd(VV(G)) =k . There exists a partition of
X, [1= {X1,Xs,...,X} of X-independent sets such that every

vertex x in X X-dominates some colour class in I1. Any two
vertices in the same partition are not X-adjacent. In G2, any two

. . . 1 .
vertices in X; are not adjacent. II' = {X,X,,....X\} is a
partition of V(G2) into independent sets such that every v in

V(G2) dominates some colour class in . Therefore, I is
a dominator colouring of QG2. Hence,

24(G2) <k =y, d(VV(G)).

Conversely, let ¥, (G2) =7. Let [II={V,,V,,...Vi} is a

partition of V(G2) into independent sets such that every vertex

v in V(G2) dominates some colour class in I1. In G, any two
vertices in the same partition do not have a common neighbor.
In VV(G), any two vertices in V;, i=1 to k are not X-adjacent.

Hence, in VV(G), ' = {V1,V,,...,V\} is a partition of X in to
X-independent sets and every x in X X-dominates some colour

class in Hl . Therefore, Hl is a X-dominator, X-colouring of

VV(G). Hence, y,d(VV(G))<r=y,(G2).
Therefore, ZXd(VV(G)) =X (G2).

The graph VV*(G)=(V,V',E") contains the edges E' of the graph
VV together with the edges {(u,u'):uin V}.

Theorem 5.4: For any graph G,

2 AV (G) = 7,(G).

Proof: Let Y Xd (VV+ (G)) =k . There exists a partition
of X, IT ={X,X,,....Xi} of X-independent sets such that



every vertex x in X, X-dominates some colour class in I1. In

G, Hl = {X},Xy,...,. Xy} is a partition of V(G» into
independent sets such that every v in V(G?) dominates some

. 1 1. . .
colour class in I1". Therefore, II" is a dominator colouring

of G>. Hence, Xa (Gz) <k= }(Xd(VV+(G))

Conversely, let ¥, (Gz) =7r. Let II={V,,v,,...V,} is a

partition of V(G?) into independent sets such that every vertex v
in V(G® dominates some colour class in II. In VV*(G),

Hl ={V,V,,...,V,} is a partition of X in to X-independent
sets and every x in X X-dominates some colour class in .
Therefore, I s a X-dominator, X-colouring of VV'(G).
Hence, /{Xd(VV+ (G)<r= Xa (G2 ). Therefore,

2 AWV (G) = 7,(G).
Corollary 5.5: For any graph G,
(1) Max{y(G):x(G)}=x(G)=x(G)+¥(G)

(i) Max{y'(G).x'(G)}=( «(G)=v(G)+'(G).
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6. CONCLUSION

The bounds of X-chromatic number and hyper independent
number are given. We introduce the bipartite theory of
dominator colouring of a graph G. Given any three positive
integers a, b, ¢ such that ¢ > 2(b-a)+1, we have proved the
existence of a bipartite graph G such that yx(G)=a, yxd(G)=b
and |Y|=c.
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