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ABSTRACT 

The concept of X-chromatic partition and hyper independent 

chromatic partition of bipartite graphs were introduced by 

Stephen Hedetniemi and Renu Laskar.  We find the bounds for 

X-chromatic number and hyper independent chromatic number 

of a bipartite graph.  The existence of bipartite graph with 

χh(G)=a and  γY(G)=b-1, χh(G)=a and χX(G)=b where a ≤b are 

proved.  We also prove the existence of bipartite graphs for any 

three positive integers a, b, c such that c ≥ 2(b-a)+1, there exists 

a graph G such that χX(G)=a, χXd(G)=b and |Y|=c.  The bipartite 

theory of Dominator colouring is introduced. 

Keywords 

X.Chromatic number, hyper independent chromatic number, X-

dominator X-colouring of a graph. 

 

1. INTRODUCTION 
Bipartite theory of graph introduced by Hedetniemi [4,5] and 

Renu Laskar states that given any graph problem, say P, there is 

corresponding problem, say Q, on bipartite graph whose solution 

gives a solution for the problem P.  The concept of X-chromatic 

and hyper independent chromatic partition introduced in [4,5] 

are studied. Varities of domination is discussed in the two books 

of T.W.Haynes[2,3]. The concept of X-dominator X-colouring 

which is bipartite version of dominator colouring [1] is 

introduced.  Unless otherwise stated, by a graph we mean 

bipartite graph G=(X, Y, E) with |X|=p without isolates. 

 

2. X-COLOURING IN GRAPHS 
In this section, we give the definition of X-colouring of a 

bipartite graph G as given in [4] and find its bounds. 

Definition 2.1: [4] Let G be a graph.  Two vertices  u, v ∈  X 

are X-adjacent if they are adjacent to a common vertex in Y.  

Let dY(x) denote the number of vertices X-adjacent to x. 

Definition 2.2: [4]  Two vertices u, v ∈  X are X-independent if 

there does not exist a vertex y ∈  Y adjacent to both u and v.  A 

subset S of X is X-independent if every pair of vertices u and v 

in S of X is X-independent.  The maximum cardinality of a X-

independent set is called X-independence number of G and is 

denoted by βX(G). 

Definition 2.3: [4] A X-colouring of a bipartite graph G is a 

partition {X1, X2, …,Xk} of X into X-independent sets.  The X-

chromatic number χX(G) of a bipartite graph is the smallest 

order of an X-colouring of G. 

Theorem 2.4: Given positive integers k and p, 2 ≤ k ≤ p, there 

exists a graph with χX(G) = k, |X|=p  and |Y| = q (q ≥p). 

Proof:  Let G be a bipartite graph with bipartition X and Y.  The 

bipartite graph G is defined as follows: X = {u1, u2, … ,up}, Y= 

{y1, y2,…,yq}, k vertices u1,u2,…,uk are X-adjacent to each other 

through same y1 ∈Y.  Let u k+1 be X-adjacent to each other 

through different y ∈  Y- {y1} say y2.  uk+2  is X-adjacent to u2 

through y3 where y3∈Y-{y1, y2} and so on.  If p-k is greater 

than k then u2k+1 is made X-adjacent to u1 and so on. 

Since k vertices in X are X-adjacent, χX(G)≥ k.  Let Xi be the set 

with elements ui and X-neighbours of ui+1 1 ≤ i ≤  k-1.  Let Xk be 

the set with vertices uk and X-neighbours of u1.  Then, {X1, X2, 

…,Xk} forms a X-chromatic partition.  Hence,   χX(G)≤ k.  

Therefore, χX(G) = k with  |X|=p. 

Theorem 2.5:  In a bipartite graph G, χX(G) = p if and only if G 

is a graph with every vertex in X is   (p-1) X-regular. 

Proof: If every vertex in X is (p-1) X-regular then   {{x1}, 

{x2},…,{xp}} is a partition of X into X-independent sets.  

Therefore, χX(G) = p. 

Conversely, χX(G) = p then {{x1}, {x2},…,{xp}} is a partition of 

X into X-independent sets.  If there exists a vertex xi with dY(xi) 

< p-1.  Let xk be the vertex not X-adjacent with xi.  Then, {{x1}, 

{x2},…,{xi-1},{xi,xk},…,{xk-1},{xk},…,{xp}} is a partition of X 

into X-independent sets and χX(G) < p, a contradiction.  

Therefore, every vertex is of X-degree (p-1).  Hence, every 

vertex in X is (p-1) X-regular. 

Theorem 2.6: Let G be a bipartite graph on |X|=p vertices.  

Then .1)( +−≤≤ XX

X

pG
p

βχ
β
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Proof: Let {X1,X2,…,XχX} be a X-chromatic partition of X(G).  

Then, ).(GX Xi β≤ Therefore, 

).()(
1

GGXp XX

i

i

X

βχ
χ

≤=∑
=

 Hence, 

).(G
p

X

X

χ
β

≤   Let D be a Xβ -set of G.  Let 

D={x1,x2,…,xβX}.  Then, }}{},...,{,{ 1 pX xxD +=Π β is a 

X-chromatic partition of G.  Therefore,  

.1)( +−≤ XX pG βχ  

Hence, .1)( +−≤≤ XX

X

pG
p

βχ
β

 

Theorem 2.7: Let G be a connected bipartite graph, 

)()( GG Xχχ =  if and only if G is G1, Pn, C2n, n≠3, where 

G1 is the graph G1=(X1 ∪ X2, Y, E), vertices in Xi i=1,2 are not 

X-adjacent.  At least one vertex in X1 is X-adjacent to vertices 

of X2 through different y in Y. 

Proof: If G is G1, Pn, C2n, n≠3, then )()( GG Xχχ =  

Let )()( GG Xχχ = .  Let X1, X2 be partition of X into X-

independent sets.  The X-neighbours of X1 are in X2 and vice 

versa.  Since, G is connected, there is a vertex in one partition 

X-adjacent to all the vertices in other partition, we get G1 or two 

vertices in X1 has same X-neighbour in X2 which gives Pn, C2n, 

n≠3. 

3. HYPER COLOURING IN GRAPHS 
In this section, we define  hyper independent colouring in graphs 

as given in [2] and find its bounds. 

Definition 3.1:  [4]A subset S of X is hyper independent set if 

there does not exist a vertex y in Y such that N(y) is contained in 

S. 

 Definition 3.2:  [4]A hyper colouring of a graph is a partition of 

X into hyper independent sets, the hyper independent chromatic 

number χh(G), is the smallest order of a hyper independent 

colouring of G. 

Theorem 3.3: Given two positive integers, k and p such that 

pk ≤≤2 , then there exists a graph G with 

2;)( −== kYkGhχ  and .pX =  

Proof:  Let  X = {x1, x2, … ,xp} be vertices of X.  Let the 

vertices x1,x2,…,xp-k+2 be adjacent to y1 in Y.  Let xi be X-

adjacent to all other vertices of X through different y in Y (i= p-

k+3 to p).  Then (k-2) vertices in X is of X-degree (p-1) and (p-

k+2) are X-adjacent through same y in Y.  Since each  of the (k-

2) vertices with X-degree (p-1) are X-adjacent through different 

vertices of Y, no two of them can be in a hyper independent set.  

Also x1,x2,…,xp-k+2  cannot be all in the same hyper independent 

set.  Therefore, there are at least two hyper independent set from 

x1,x2,…,xp-k+2  and (k-2) hyper independent sets from xp-k+3,xp-

k+4,…,xp.  Therefore, kGh ≥)(χ . 

Consider 

}}{},...,{},,...,,{{ 2121 pkpkp xxxxx +−+−=Π .  Then 

Π  is a partition of X into k hyper independent sets.  Therefore,  

kGh ≤)(χ .  Hence,  .)( kGh =χ  

Definition 3.4: [4] A subset D of X is a Y-dominating set if 

every y in Y is adjacent to at least one vertex in D.  The 

minimum cardinalilty of a Y-dominating set is called Y-

domination number and is denoted by γY(G). 

Theorem 3.5: [6] Let G be a bipartite graph.  A subset D of X is 

Y-dominating set if and only if X-D is hyper independent set. 

Theorem 3.6:  Let G be a bipartite graph on |X|=p vertices.  

Then, .1+≤≤
−

Yh

Yp

p
γχ

γ
 

Proof: Let S be a minimum Y-dominating set of G.  Then, (X-S) 

is a hyper independent set.  Therefore, {X-S,{x1},{x2},…,{x|S|}} 

is a partition of X into hyper independent sets.  Hence, 

.1+≤ Yh γχ  

Let  =Π {X1,X2,…,Xχh} be a minimum hyper independent 

partition of X(G).  Since, pGG hY =+ )()( βγ , 

).()( GpGX Yhi γβ −=≤  Therefore, 

∑
=

=
h

i

ii XX
χ

1

.  That is, ))()(( GpGp Yh γχ −≤ .  

Therefore, .h
Yp

p
χ

γ
≤

−
 

Theorem 3.7: Given two positive integers a and b with 

,2 ba ≤≤  there exists a graph G with ,)( aGh =χ  

1
2

)2)(3(
)( +

−−
+−=

aa
aabY  and 

1)( −= bGYγ . 
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Proof: Let X={x1,x2,…,xb-a,u1,u2,…,ua-2,w11,w12,w21,w22,,…,w(b-

a)1,w(b-a)2}.  Let x1, x2,…,xb-a, be X-adjacent through same y in 

Y.  Let  ui be X-adjacent to x2,…,xb-a,u1,u2,…,ui-1 through 

different y in Y (i=2 to a-2).  Attach P4 to every vertex xi (i=1 to 

b-a) and let the vertices of this P4 X-adjacent to xi be wi1, wi2.  

Let G be the resulting graph.  Clearly, aGh ≥)(χ . 

Π ={{ x1,x2,…,xb-a-1,w12,w22,…,w(b-a-1)2,w(b-2)1},  

{xb-a,w(b-a)2,w11,w21,…,w(b-a-1)1},{u1},{u2},…,{ua-2}} is a 

partition of X into hyper independent sets.  Therefore,  

aGh ≤)(χ .  Therefore , aGh =)(χ . 

Clearly S={w11,w21,…,w(b-a)1,x1,u1,u2,…,ua-2} is a Y-dominating 

set with 121)( −=−++−= baabGYγ . 

Example 3.8: Construction of graph with 3)( =Ghχ  and 

.4)( =GYγ  

The partition Π ={{x1,w12,w22},{x2,w11,w12},{u1}} is a hyper 

independent set of G and S={w11,w12,x1,u1} is a Y-dominating 

set of G. 

 

Observation 3.9: Every X-independent set is a hyper 

independent set.  Therefore, every X-chromatic partition is a 

hyper independent chromatic partition of G.  Therefore, 

).()( GG Xh χχ ≤  

Theorem 3.10:  Given positive integers a>1 and b≥ a, there 

exists a graph G with aGh =)(χ and bGX =)(χ . 

Proof:  Let us assume a<b.  Let G be a graph with bipartition X 

and Y.  Let X={x1,x2,…,xb} and Y ={y1,y2,…,yq}.  Let the 

vertices  x1,x2,…,xb   be X-adjacent through same y in Y.  

Therefore,  ,)( bGX =χ   Let xi be X-adjacent to all xj, b-a+2 

≤ i ≤b; i≠j; 1≤j≤b through different y in Y.  Clearly, 

aGh ≥)(χ .  Let =Π {{ x1,x2,…,xb-a+1},              {xb-

a+2},…,{xb}}.  Then, Π  is a partition of X into hyper 

independent set of G. Therefore, aGh ≤)(χ . 

Let a=b.  Let X={x1,x2,…,xb}.  Make every vertex in X, (b-1) X-

regular through different y in Y.  Therefore, aGh =)(χ  and  

bGX =)(χ .  

4. X-DOMINATOR COLOURING OF A 

BIPARTITE GRAPH 
Domination and colouring have nice interactions in graphs.  

Partitioning the vertex set of a graph into subsets with desired 

property is an interesting problem.  Colouring problem is also a 

partition problem.   We initiate the study of X-dominator X-

colouring of graphs. 

Definition 4.1: [1] A dominator colouring of G is defined to be 

a proper colouring in which every vertex dominates a colour 

class.  The dominator chromatic number, )(Gdχ is the 

minimum number of colours that allows a dominator colouring 

of G. 

Definition 4.2: [4] A subset S of X is an X-dominating set if 

every vertex in X-D is X-adjacent to at least one vertex in D.  A 

X-dominating set S is a minimal X-dominating set if no proper 

subset of S is X-dominating set.  The minimum cardinality of a 

minimal X-dominating set is called the X-domination number of 

G and is denoted by ).(GXγ  

Definition 4.3:  Let G=(X,Y,E) be a graph.  A X-independent 

partition of X, ),...,,( 21 χXXX=Π  is called X-

dominator X-colouring of G if every vertex x in X, X-dominates 

some colour class in Π .  We assume x in X X-dominates {x}.  

The smallest cardinality of X-dominator X-colouring of G is 

called X-dominator, X-colouring number of G and is denoted by 

).(GdXχ  

Example 4.4: For any bipartite graph G=(X,Y,E) with vertex 

X={x1,x2,x3,…,xp} then Π ={{x1},{x2}, …, {xp}} is clearly a 

X-dominator,X-colouring of G.  Therefore, X-dominator X-

colouring of every graph exists. 

Remark 4.5: 1 ≤≤ )(GdXχ p. 

Remark 4.6: Since any X-dominator, X-colouring of G is a X-

colouring of G, we have )()( GdG XX χχ ≤ . 
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Theorem 4.7: Let G=(X,Y,E) be a bipartite graph with |X|=p, 

|Y|=q. Then,  pGdX =)(χ  if and only if there exists a 

vertex in Y of degree p  or .1−≥ pq  

Proof: If there exists a vertex in Y of degree p then 

pGdX =)(χ .  If  1−≥ pq  then 

)1()( −≥∑
∈

ppyd
Yy

.  Every vertex in X is X-adjacent to 

other vertices in X.  Therefore, pGdX =)(χ . 

Conversely, suppose pGdX =)(χ .  Let every point y in Y 

be such that d(y) < p and q < p-1.  Let x1,x2,…,xr be the vertices 

in X which are adjacent to y where r = d(y) < p.  There exists 

xr+1 which is not X-adjacent to any xi 1≤i≤r say rx .  Then 

{{x1,x2,…,xr-1},{xr,xr+1},…,{xp}} is a X-dominator, X-colouring 

of G.  A contradiction to pGdX =)(χ  Therefore, there 

exists a vertex in Y of degree p or .1−≥ pq  

Theorem 4.8: Let G=(X,Y,E) be a bipartite graph with |X|=p, 

|Y|=q.  Then 1)( =GdXχ  if and only if apKG ,1≅ . 

Proof: If apKG ,1≅  then  1)( =GdXχ . 

Conversely, if 1)( =GdXχ  then every vertex in X are X-

independent.  Therefore, apKG ,1≅ . 

Theorem 4.9: Let G be a connected bipartite graph.  Then 

)()}(),(max{ GdGG XXX χγχ ≤ ≤  

)()( GG XX γχ + . 

Proof:  A X-dominatorX-colouring must be a proper X-

colouring, whe have )()( GdG XX χχ ≤ . Also, let C be a 

minimum X-dominator, X-colouring of G.  For each colour class 

of X, let xi be a vertex in the class I, with ).(1 Gdi Xχ≤≤   

Let )}(1:{ GdixS Xi χ≤≤= .  Let v belong to X(G).  

Then v X-dominates a colour class i, for some i 

( ).(1 Gdi Xχ≤≤ )  Then v is X-dominated by the colour 

class i, in particular xi.  Therefore, 

).()( GdSG XX χγ =≤   Hence, 

)()}(),(max{ GdGG XXX χγχ ≤ . 

Let C be a proper X-colouring of X with )(GXχ  colours.  

Assign colours )(GXχ +1, )(GXχ +2,…, 

)(GXχ + )(GXγ  to the vertices of a minimum X-

dominating set of G leaving the rest of the vertices coloured as 

before.  This is a X-dominator, X-colouring of G, since it is still 

a proper X-colouring and the X-dominating set provides the 

colour class that every vertex X-dominates. 

Theorem 4.10: Given positive integers a, b, c such that 

1)(2 +−≥ abc , there exists a graph G such that 

bGdaG XX == )(;)( χχ and cY = . 

Proof: Let G=(X,Y,E) be the graph.  Let X= {x11,x12, 

…,x1a,x21,x22,…,x2a,…,x(b-a+1)1,…,x(b-a+1)a}. Let 

Y={y1,y12,y2,…,y(b-a)(b-a+1),yb-a+1}. The edges 

E(G)={x11y1,x12y1,…,x1ay1,x1ay12,…,x(b-a+1)ayb-a+1}. Then, 

{{x11,x21,…,x(b-a+1)},{x12,x22,…,x(b-a+1)2, …, {x1a,,…,x(b-a+1)a}} is 

a minimum partition of X into X-independent sets.  Therefore, 

.)( aGX =χ  

The partition {{x11,x21,…,x(b-a+1)}, …, {xi1},{xi2}, …, 

{xia},…,{x1a,…,x(b-a+1)a} } is a minimum X-dominator, X-

colouring of G.  babaGdX =+−+−= 11)(χ  and 

.1)(21 +−=−++−= abababY  Therefore,  

1)(2 +−≥ abc . 

Theorem 4.11: Given a positive integer k, there exists a graph 

with kGGd hX =− )()( χχ . 

Proof: Let  the vertices of X be 

},,,,...,,,{ 4)1(3)1(2)1(1)1(131211 −−−− kkkk xxxxxxx .  xi1, 

xi2, xi3,xi4 are adjacent to yi i=1 to k-1.  xi4  and x(i+1)1 are 

adjacent to yi(i+1) i = 1 to k-2. 

=Π {{ x11,x12,…,x(k-1)3}, {x14,x24,…,x(k-1)4}} is a partition of X 

into hyper independent sets.  Therefore, 2)( =Ghχ . 

=Π {{ x11,x21,…,x(k-1)1}, {x12,x22,…,x(k-1)2,x13,x23,…, x(k-

1)3},{x14},…,{x(k-1)4}} is a partition of X into X-dominator X-

colouring of G.  Therefore, 2)( += kGdXχ .  Hence, 

kGGd hX =− )()( χχ . 
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5. BIPARTITE THEORY OF 

DOMINATOR COLOURING 
The Bipartite graph VE(G) constructed from an arbitrary graph 

G=(V,E) is defined as in [2].  VE(G) = (V,E,F) is defined by the 

edges F={(u,e): e=(u,v) in E}.  VE(G) ≅ S(G), where S(G) 

denotes the subdivision graph of G. 

Theorem 5.1:  For any graph G, )())(( GGVEd dX χχ = . 

Proof: Let  kGVEdX =))((χ .  There exists a partition of 

X, =Π {X1,X2,…,Xk} of X-independent sets such that every 

vertex x in X X-dominates some colour class in Π .  In G, 

=Π1
{X1,X2,…,Xk} is a partition of V into independent sets 

such that every v in V dominates some colour class in 
1Π .  

Therefore, 
1Π  is a dominator colouring of G.  Hence, 

)).(()( GVEdkG Xd χχ =≤  

Conversely, let rGd =)(χ .  Let =Π {V1,V2,…,Vk} is a 

partition of V into independent sets such that every vertex v in V 

dominates some colour class in Π .  In VE(G), 

=Π1
{V1,V2,…,Vk} is a partition of X in to X-independent 

sets and every x in X X-dominates some colour class in 
1Π .  

Therefore, 
1Π  is a X-dominator, X-colouring of VE(G).  

Hence, ).())(( GrGVEd dX χχ =≤  Therefore, 

)())(( GGVEd dX χχ = . 

The graph EV(G)=(E,V,K) is defined by edges K={(e,u) : e=uv 

in E}. 

Theorem 5.2:  For any graph G, 

)())(( 1 GGEVd
dX χχ = . 

Proof: Let  kGEVdX =))((χ .  There exists a partition of 

X, =Π {X1,X2,…,Xk} of X-independent sets such that every 

vertex x in X,  X-dominates some colour class in Π .  In G, 

=Π1
{X1,X2,…,Xk} is a partition of E  into independent sets 

such that every e in E dominates some colour class in 
1Π .  

Therefore, 
1Π  is an edge dominator colouring of G.  Hence, 

)).(()( GEVdkG Xd χχ =≤  

Conversely, let rGd =)(
1

χ .  Let =Π {E1,E2,…,Ek} is a 

partition of E into independent sets such that every edge e in E 

dominates some colour class in Π .  In EV(G), 

=Π1
{E1,E2,…,Ek} is a partition of X in to X-independent sets 

and every x in X X-dominates some colour class in 
1Π .  

Therefore, 
1Π  is a X-dominator, X-colouring of EV(G).  

Hence, ).())(( 1 GrGEVd dX χχ =≤  Therefore, 

)())(( 1 GGEVd dX χχ = . 

Let V1 be a copy of the vertices V of G. (a) The graph 

VV(G)=(V,V1,E1) is defined by the edges E1={(u,v1):(u,v) in E}. 

From a graph G=(V,E) the graph G2 and G2 can be constructed 

as follows: G2 and G2 have the same vertex set as G, with two 

vertices u and v adjacent to G2 if and only if they have a 

common neighbor in G, and adjacent in G2 if and only if 

d(u,v)≤2 in G. 

Theorem 5.3:  For any graph G, 

)2())(( GGVVd dX χχ = . 

Proof: Let  kGVVdX =))((χ .  There exists a partition of 

X, =Π {X1,X2,…,Xk} of X-independent sets such that every 

vertex x in X X-dominates some colour class in Π .  Any two 

vertices in the same partition are not X-adjacent.  In G2, any two 

vertices in Xi are not adjacent. =Π1
{X1,X2,…,Xk} is a 

partition of V(G2)  into independent sets such that every v in 

V(G2) dominates some colour class in 
1Π .  Therefore, 

1Π  is 

a dominator colouring of G2.  Hence, 

)).(()2( GVVdkG Xd χχ =≤  

Conversely, let rGd =)2(χ .  Let =Π {V1,V2,…,Vk} is a 

partition of V(G2)  into independent sets such that every vertex 

v in V(G2) dominates some colour class in Π .  In G, any two 

vertices in the same partition do not have a common neighbor.  

In VV(G), any two vertices in Vi, i=1 to k are not X-adjacent.  

Hence, in VV(G), =Π1
{V1,V2,…,Vk} is a partition of X in to 

X-independent sets and every x in X X-dominates some colour 

class in 
1Π .  Therefore, 

1Π  is a X-dominator, X-colouring of 

VV(G).  Hence, ).2())(( GrGVVd dX χχ =≤  

Therefore, )2())(( GGVVd dX χχ = . 

The graph VV+(G)=(V,V1,E+) contains the edges E1 of the graph 

VV together with the edges {(u,u1):u in V}. 

Theorem 5.4:  For any graph G, 

)())(( 2GGVVd dX χχ =+
. 

Proof: Let  kGVVdX =+ ))((χ .  There exists a partition 

of X, =Π {X1,X2,…,Xk} of X-independent sets such that 
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every vertex x in X, X-dominates some colour class in Π .    In 

G2, =Π1
{X1,X2,…,Xk} is a partition of V(G2)  into 

independent sets such that every v in V(G2) dominates some 

colour class in 
1Π .  Therefore, 

1Π  is a dominator colouring 

of G2.  Hence, )).(()( 2 GVVdkG Xd

+=≤ χχ  

Conversely, let rGd =)( 2χ .  Let =Π {V1,V2,…,Vr} is a 

partition of V(G2)  into independent sets such that every vertex v 

in V(G2) dominates some colour class in Π .  In VV+(G), 

=Π1
{V1,V2,…,Vr} is a partition of X in to X-independent 

sets and every x in X X-dominates some colour class in 
1Π .  

Therefore, 
1Π  is a X-dominator, X-colouring of VV+(G).  

Hence, ).())(( 2GrGVVd dX χχ =≤+
 Therefore, 

)())(( 2GGVVd dX χχ =+
. 

Corollary 5.5: For any graph G, 

(i) Max{γ(G),χ(G)}≤χd(G)≤χ(G)+γ(G) 

(ii) Max{γ1(G),χ1(G)}≤χ1
d(G)≤ γ1(G)+χ1(G). 

 

6. CONCLUSION 
The bounds of X-chromatic number and hyper independent 

number are given.  We introduce the bipartite theory of 

dominator colouring of a graph G. Given any three positive 

integers a, b, c such that c ≥ 2(b-a)+1, we have proved the 

existence of a bipartite graph G such that χX(G)=a, χXd(G)=b 

and |Y|=c.   
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