Colourings in Bipartite Graphs

Y.B.Venkatakrishnan School of Humanities and Sciences SASTRA University Thanjavur 613 401. India

ABSTRACT

The concept of X-chromatic partition and hyper independent chromatic partition of bipartite graphs were introduced by Stephen Hedetniemi and Renu Laskar. We find the bounds for X-chromatic number and hyper independent chromatic number of a bipartite graph. The existence of bipartite graph with $\chi_h(G)=a$ and $\gamma_Y(G)=b-1$, $\chi_h(G)=a$ and $\chi_X(G)=b$ where $a \leq b$ are proved. We also prove the existence of bipartite graphs for any three positive integers a, b, c such that $c \geq 2(b-a)+1$, there exists a graph G such that $\chi_X(G)=a$, $\chi_Xd(G)=b$ and |Y|=c. The bipartite theory of Dominator colouring is introduced.

Keywords

X.Chromatic number, hyper independent chromatic number, X-dominator X-colouring of a graph.

1. INTRODUCTION

Bipartite theory of graph introduced by Hedetniemi [4,5] and Renu Laskar states that given any graph problem, say P, there is corresponding problem, say Q, on bipartite graph whose solution gives a solution for the problem P. The concept of X-chromatic and hyper independent chromatic partition introduced in [4,5] are studied. Varities of domination is discussed in the two books of T.W.Haynes[2,3]. The concept of X-dominator X-colouring which is bipartite version of dominator colouring [1] is introduced. Unless otherwise stated, by a graph we mean bipartite graph G=(X, Y, E) with |X|=p without isolates.

2. X-COLOURING IN GRAPHS

In this section, we give the definition of X-colouring of a bipartite graph G as given in [4] and find its bounds.

Definition 2.1: [4] Let G be a graph. Two vertices $u, v \in X$ are X-adjacent if they are adjacent to a common vertex in Y. Let $d_Y(x)$ denote the number of vertices X-adjacent to x.

Definition 2.2: [4] Two vertices $u, v \in X$ are X-independent if there does not exist a vertex $y \in Y$ adjacent to both u and v. A subset S of X is X-independent if every pair of vertices u and v in S of X is X-independent. The maximum cardinality of a X-independent set is called X-independence number of G and is denoted by $\beta_X(G)$.

V.Swaminathan Co-ordinator(Retd) Ramunajan Research Center S.N.College Madurai. India

Definition 2.3: [4] A X-colouring of a bipartite graph G is a partition $\{X_1, X_2, ..., X_k\}$ of X into X-independent sets. The X-chromatic number $\chi_X(G)$ of a bipartite graph is the smallest order of an X-colouring of G.

Theorem 2.4: Given positive integers k and p, $2 \le k \le p$, there exists a graph with $\chi_X(G) = k$, |X|=p and |Y| = q ($q \ge p$).

Proof: Let G be a bipartite graph with bipartition X and Y. The bipartite graph G is defined as follows: $X = \{u_1, u_2, \ldots, u_p\}$, $Y = \{y_1, y_2, \ldots, y_q\}$, k vertices u_1, u_2, \ldots, u_k are X-adjacent to each other through same $y_1 \in Y$. Let u_{k+1} be X-adjacent to each other through different $y \in Y$ - $\{y_1\}$ say y_2 . u_{k+2} is X-adjacent to u_2 through y_3 where $y_3 \in Y$ - $\{y_1, y_2\}$ and so on. If p-k is greater than k then u_{2k+1} is made X-adjacent to u_1 and so on.

Since k vertices in X are X-adjacent, $\chi_X(G) \ge k$. Let X_i be the set with elements u_i and X-neighbours of u_{i+1} $1 \le i \le k-1$. Let X_k be the set with vertices u_k and X-neighbours of u_1 . Then, $\{X_1, X_2, \dots, X_k\}$ forms a X-chromatic partition. Hence, $\chi_X(G) \le k$. Therefore, $\chi_X(G) = k$ with |X| = p.

Theorem 2.5: In a bipartite graph G, $\chi_X(G) = p$ if and only if G is a graph with every vertex in X is (p-1) X-regular.

Proof: If every vertex in X is (p-1) X-regular then $\{\{x_1\}, \{x_2\}, ..., \{x_p\}\}$ is a partition of X into X-independent sets. Therefore, $\chi_X(G) = p$.

Conversely, $\chi_X(G) = p$ then $\{\{x_1\}, \{x_2\}, ..., \{x_p\}\}\$ is a partition of X into X-independent sets. If there exists a vertex x_i with $d_Y(x_i) < p-1$. Let x_k be the vertex not X-adjacent with x_i . Then, $\{\{x_1\}, \{x_2\}, ..., \{x_{i-1}\}, \{x_i, x_k\}, ..., \{x_{k-1}\}, \{x_k\}, ..., \{x_p\}\}\$ is a partition of X into X-independent sets and $\chi_X(G) < p$, a contradiction. Therefore, every vertex is of X-degree (p-1). Hence, every vertex in X is (p-1) X-regular.

Theorem 2.6: Let G be a bipartite graph on |X|=p vertices.

Then
$$\frac{p}{\beta_X} \leq \chi_X(G) \leq p - \beta_X + 1.$$

Proof: Let $\{X_1, X_2, ..., X_{\chi X}\}$ be a X-chromatic partition of X(G). Then, $|X_i| \leq \beta_X(G)$. Therefore,

$$p = \sum_{i=1}^{\chi_X} |X_i| \le \chi_X(G)\beta_X(G).$$
 Hence,

 $\frac{p}{\beta_X} \leq \chi_X(G)$. Let D be a β_X -set of G. Let

 $\begin{aligned} & \mathsf{D}=\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\beta \mathsf{X}}\}. \quad \text{Then, } \Pi = \{D, \{\mathbf{x}_{\beta \mathsf{X}+1}\}, \dots, \{\mathbf{x}_p\}\} \text{ is a} \\ & \text{X-chromatic partition of G. Therefore,} \\ & \boldsymbol{\chi}_X(G) \leq p - \boldsymbol{\beta}_X + 1. \end{aligned}$

Hence,
$$\frac{p}{\beta_X} \leq \chi_X(G) \leq p - \beta_X + 1.$$

Theorem 2.7: Let G be a connected bipartite graph, $\chi(G) = \chi_X(G)$ if and only if G is G₁, P_n, C_{2n}, n≠3, where G₁ is the graph G₁=(X₁ \cup X₂, Y, E), vertices in X_i i=1,2 are not X-adjacent. At least one vertex in X₁ is X-adjacent to vertices of X₂ through different y in Y.

Proof: If G is G₁, P_n, C_{2n}, n≠3, then $\chi(G) = \chi_{\chi}(G)$

Let $\chi(G) = \chi_X(G)$. Let X₁, X₂ be partition of X into Xindependent sets. The X-neighbours of X₁ are in X₂ and vice versa. Since, G is connected, there is a vertex in one partition X-adjacent to all the vertices in other partition, we get G₁ or two vertices in X₁ has same X-neighbour in X₂ which gives P_n, C_{2n}, n \neq 3.

3. HYPER COLOURING IN GRAPHS

In this section, we define hyper independent colouring in graphs as given in [2] and find its bounds.

Definition 3.1: [4]A subset S of X is hyper independent set if there does not exist a vertex y in Y such that N(y) is contained in S.

Definition 3.2: [4]A hyper colouring of a graph is a partition of X into hyper independent sets, the hyper independent chromatic number $\chi_h(G)$, is the smallest order of a hyper independent colouring of G.

Theorem 3.3: Given two positive integers, k and p such that $2 \le k \le p$, then there exists a graph G with $\chi_h(G) = k; |Y| = k - 2$ and |X| = p.

Proof: Let $X = \{x_1, x_2, \dots, x_p\}$ be vertices of X. Let the vertices $x_1, x_2, \dots, x_{p-k+2}$ be adjacent to y_1 in Y. Let x_i be X-

adjacent to all other vertices of X through different y in Y (i= p-k+3 to p). Then (k-2) vertices in X is of X-degree (p-1) and (p-k+2) are X-adjacent through same y in Y. Since each of the (k-2) vertices with X-degree (p-1) are X-adjacent through different vertices of Y, no two of them can be in a hyper independent set. Also $x_1, x_2, ..., x_{p-k+2}$ cannot be all in the same hyper independent set. Therefore, there are at least two hyper independent set from $x_1, x_2, ..., x_{p-k+2}$ and (k-2) hyper independent sets from $x_{p-k+3}, x_{p-k+4}, ..., x_{p}$. Therefore, $\chi_h(G) \ge k$.

Consider

 $\Pi = \{\{x_1, x_2, \dots, x_{p-k+1}\}, \{x_{p-k+2}\}, \dots, \{x_p\}\}\}.$ Then $\Pi \text{ is a partition of X into k hyper independent sets. Therefore,}$ $\chi_h(G) \le k.$ Hence, $\chi_h(G) = k.$

Definition 3.4: [4] A subset D of X is a Y-dominating set if every y in Y is adjacent to at least one vertex in D. The minimum cardinalilty of a Y-dominating set is called Ydomination number and is denoted by $\gamma_Y(G)$.

Theorem 3.5: [6] Let G be a bipartite graph. A subset D of X is Y-dominating set if and only if X-D is hyper independent set.

Theorem 3.6: Let G be a bipartite graph on |X|=p vertices.

Then,
$$\frac{p}{p-\gamma_Y} \leq \chi_h \leq \gamma_Y + 1.$$

Proof: Let S be a minimum Y-dominating set of G. Then, (X-S) is a hyper independent set. Therefore, $\{X-S, \{x_1\}, \{x_2\}, \dots, \{x_{|S|}\}\}$ is a partition of X into hyper independent sets. Hence, $\chi_h \leq \gamma_Y + 1$.

Let $\Pi = \{X_1, X_2, ..., X_{\chi h}\}$ be a minimum hyper independent partition of X(G). Since, $\gamma_Y(G) + \beta_h(G) = p$, $|X_i| \le \beta_h(G) = p - \gamma_Y(G)$. Therefore, $|X_i| = \sum_{i=1}^{\chi_h} X_i$. That is, $p \le \chi_h(G)(p - \gamma_Y(G))$. Therefore, $\frac{p}{p - \gamma_Y} \le \chi_h$.

Theorem 3.7: Given two positive integers a and b with $2 \le a \le b$, there exists a graph G with $\chi_h(G) = a$,

$$|Y| = (b-a)a + \frac{(a-3)(a-2)}{2} + 1$$
 and
 $\gamma_Y(G) = b - 1.$

Proof: Let $X = \{x_1, x_2, \dots, x_{b-a}, u_1, u_2, \dots, u_{a-2}, w_{11}, w_{12}, w_{21}, w_{22}, \dots, w_{(b-a)1}, w_{(b-a)2}\}$. Let x_1, x_2, \dots, x_{b-a} , be X-adjacent through same y in Y. Let u_i be X-adjacent to $x_2, \dots, x_{b-a}, u_1, u_2, \dots, u_{i-1}$ through different y in Y (i=2 to a-2). Attach P₄ to every vertex x_i (i=1 to b-a) and let the vertices of this P₄ X-adjacent to x_i be w_{i1}, w_{i2} . Let G be the resulting graph. Clearly, $\chi_h(G) \ge a$.

 $\Pi = \{\{x_1, x_2, \dots, x_{b-a-1}, w_{12}, w_{22}, \dots, w_{(b-a-1)2}, w_{(b-2)1}\},\$

 $\begin{aligned} &\{\mathbf{x}_{b\text{-a}}, \mathbf{w}_{(b\text{-a})2}, \mathbf{w}_{11}, \mathbf{w}_{21}, \dots, \mathbf{w}_{(b\text{-a}-1)1}\}, \{\mathbf{u}_1\}, \{\mathbf{u}_2\}, \dots, \{\mathbf{u}_{a\cdot 2}\}\} & \text{is a} \\ &\text{partition of X into hyper independent sets.} & \text{Therefore,} \\ &\boldsymbol{\chi}_h(G) \leq a \text{ . Therefore,} & \boldsymbol{\chi}_h(G) = a \text{ .} \end{aligned}$

Clearly S={ $w_{11}, w_{21}, ..., w_{(b-a)1}, x_1, u_1, u_2, ..., u_{a-2}$ } is a Y-dominating set with $\gamma_V(G) = b - a + 1 + a - 2 = b - 1$.

Example 3.8: Construction of graph with $\chi_h(G) = 3$ and $\gamma_Y(G) = 4$.

The partition $\prod = \{\{x_1, w_{12}, w_{22}\}, \{x_2, w_{11}, w_{12}\}, \{u_1\}\}$ is a hyper independent set of G and S= $\{w_{11}, w_{12}, x_1, u_1\}$ is a Y-dominating set of G.

Observation 3.9: Every X-independent set is a hyper independent set. Therefore, every X-chromatic partition is a hyper independent chromatic partition of G. Therefore, $\chi_h(G) \leq \chi_X(G)$.

Theorem 3.10: Given positive integers a>1 and $b \ge a$, there exists a graph G with $\chi_h(G) = a$ and $\chi_X(G) = b$.

 $_{a+2},...,\{x_b\}\}$. Then, Π is a partition of X into hyper independent set of G. Therefore, $\chi_h(G) \le a$.

Let a=b. Let X={x₁,x₂,...,x_b}. Make every vertex in X, (b-1) Xregular through different y in Y. Therefore, $\chi_h(G) = a$ and $\chi_{\chi}(G) = b$.

4. X-DOMINATOR COLOURING OF A BIPARTITE GRAPH

Domination and colouring have nice interactions in graphs. Partitioning the vertex set of a graph into subsets with desired property is an interesting problem. Colouring problem is also a partition problem. We initiate the study of X-dominator Xcolouring of graphs.

Definition 4.1: [1] A dominator colouring of G is defined to be a proper colouring in which every vertex dominates a colour class. The dominator chromatic number, $\chi_d(G)$ is the minimum number of colours that allows a dominator colouring of G.

Definition 4.2: [4] A subset S of X is an X-dominating set if every vertex in X-D is X-adjacent to at least one vertex in D. A X-dominating set S is a minimal X-dominating set if no proper subset of S is X-dominating set. The minimum cardinality of a minimal X-dominating set is called the X-domination number of G and is denoted by $\gamma_X(G)$.

Definition 4.3: Let G=(X,Y,E) be a graph. A X-independent partition of X, $\Pi = (X_1, X_2, ..., X_{\chi})$ is called X-dominator X-colouring of G if every vertex x in X, X-dominates some colour class in Π . We assume x in X X-dominates {x}. The smallest cardinality of X-dominator X-colouring of G is called X-dominator, X-colouring number of G and is denoted by $\chi_X d(G)$.

Example 4.4: For any bipartite graph G=(X,Y,E) with vertex $X=\{x_1,x_2,x_3,...,x_p\}$ then $\Pi=\{\{x_1\},\{x_2\},...,\{x_p\}\}$ is clearly a X-dominator,X-colouring of G. Therefore, X-dominator X-colouring of every graph exists.

Remark 4.5: $1 \le \chi_X d(G) \le p$.

Remark 4.6: Since any X-dominator, X-colouring of G is a Xcolouring of G, we have $\chi_X(G) \leq \chi_X d(G)$. **Theorem 4.7:** Let G=(X,Y,E) be a bipartite graph with |X|=p, |Y|=q. Then, $\chi_X d(G) = p$ if and only if there exists a vertex in Y of degree p or $q \ge p-1$.

Proof: If there exists a vertex in Y of degree p then $\chi_X d(G) = p$. If $q \ge p-1$ then $\sum_{y \in Y} d(y) \ge p(p-1)$. Every vertex in X is X-adjacent to

other vertices in X. Therefore, $\chi_X d(G) = p$.

Conversely, suppose $\chi_X d(G) = p$. Let every point y in Y be such that d(y) < p and q < p-1. Let x_1, x_2, \dots, x_r be the vertices in X which are adjacent to y where r = d(y) < p. There exists x_{r+1} which is not X-adjacent to any x_i $1 \le i \le r$ say x_r . Then $\{\{x_1, x_2, \dots, x_{r-1}\}, \{x_r, x_{r+1}\}, \dots, \{x_p\}\}$ is a X-dominator, X-colouring of G. A contradiction to $\chi_X d(G) = p$ Therefore, there exists a vertex in Y of degree p or $q \ge p-1$.

Theorem 4.8: Let G=(X,Y,E) be a bipartite graph with |X|=p, |Y|=q. Then $\chi_X d(G) = 1$ if and only if $G \cong pK_{1,q}$.

Proof: If $G \cong pK_{1,a}$ then $\chi_X d(G) = 1$.

Conversely, if $\chi_X d(G) = 1$ then every vertex in X are Xindependent. Therefore, $G \cong pK_{1,a}$.

Theorem 4.9: Let G be a connected bipartite graph. Then $\max \{ \chi_X(G), \gamma_X(G) \} \le \chi_X d(G) \le$ $\chi_X(G) + \gamma_X(G).$

Proof: A X-dominatorX-colouring must be a proper Xcolouring, whe have $\chi_X(G) \leq \chi_X d(G)$. Also, let C be a minimum X-dominator, X-colouring of G. For each colour class of X, let x_i be a vertex in the class I, with $1 \le i \le \chi_X d(G)$. Let $S = \{x_i : 1 \le i \le \chi_X d(G)\}$. Let v belong to X(G). Then v X-dominates a colour class i, for some i $(1 \le i \le \chi_X d(G))$. Then v is X-dominated by the colour class i, in particular Therefore. X_i. $\gamma_{\chi}(G) \leq |S| = \chi_{\chi} d(G).$ Hence, $\max\{\chi_X(G), \gamma_X(G)\} \le \chi_X d(G).$

Let C be a proper X-colouring of X with $\chi_X(G)$ colours. Assign colours $\chi_X(G)$ +1, $\chi_X(G)$ +2,..., $\chi_X(G)$ + $\gamma_X(G)$ to the vertices of a minimum X-dominating set of G leaving the rest of the vertices coloured as before. This is a X-dominator, X-colouring of G, since it is still a proper X-colouring and the X-dominating set provides the colour class that every vertex X-dominates.

Theorem 4.10: Given positive integers a, b, c such that $c \ge 2(b-a)+1$, there exists a graph G such that $\chi_X(G) = a; \chi_X d(G) = b$ and |Y| = c.

The partition $\{\{x_{11}, x_{21}, ..., x_{(b-a+1)}\}, ..., \{x_{i1}\}, \{x_{i2}\}, ..., \{x_{ia}\}, ..., \{x_{1a}, ..., x_{(b-a+1)a}\}\}$ is a minimum X-dominator, Xcolouring of G. $\chi_X d(G) = a - 1 + b - a + 1 = b$ and |Y| = b - a + 1 + b - a = 2(b - a) + 1. Therefore, $c \ge 2(b - a) + 1$.

Theorem 4.11: Given a positive integer k, there exists a graph with $\chi_{\chi} d(G) - \chi_{h}(G) = k$.

Proof: Let the vertices of X be $\{x_{11}, x_{12}, x_{13}, ..., x_{(k-1)1}, x_{(k-1)2}, x_{(k-1)3}, x_{(k-1)4}\}$. $x_{i1}, x_{i2}, x_{i3}, x_{i4}$ are adjacent to y_i i=1 to k-1. x_{i4} and $x_{(i+1)1}$ are adjacent to $y_{i(i+1)}$ i = 1 to k-2.

 $\Pi = \{\{x_{11}, x_{12}, \dots, x_{(k-1)3}\}, \{x_{14}, x_{24}, \dots, x_{(k-1)4}\}\} \text{ is a partition of } X \text{ into hyper independent sets. Therefore, } \chi_h(G) = 2.$

 $\Pi = \{\{ x_{11}, x_{21}, \dots, x_{(k-1)1}\}, \{x_{12}, x_{22}, \dots, x_{(k-1)2}, x_{13}, x_{23}, \dots, x_{(k-1)3}\}, \{x_{14}\}, \dots, \{x_{(k-1)4}\}\} \text{ is a partition of X into X-dominator X-colouring of G. Therefore, } \chi_X d(G) = k + 2. \text{ Hence, } \chi_X d(G) - \chi_h(G) = k.$

5. BIPARTITE THEORY OF DOMINATOR COLOURING

The Bipartite graph VE(G) constructed from an arbitrary graph G=(V,E) is defined as in [2]. VE(G) = (V,E,F) is defined by the edges $F=\{(u,e): e=(u,v) \text{ in } E\}$. VE(G) \cong S(G), where S(G) denotes the subdivision graph of G.

Theorem 5.1: For any graph G, $\chi_X d(VE(G)) = \chi_d(G)$.

Proof: Let $\chi_X d(VE(G)) = k$. There exists a partition of X, $\Pi = \{X_1, X_2, ..., X_k\}$ of X-independent sets such that every vertex x in X X-dominates some colour class in Π . In G, $\Pi^1 = \{X_1, X_2, ..., X_k\}$ is a partition of V into independent sets such that every v in V dominates some colour class in Π^1 . Therefore, Π^1 is a dominator colouring of G. Hence, $\chi_d(G) \le k = \chi_X d(VE(G))$.

Conversely, let $\chi_d(G) = r$. Let $\Pi = \{V_1, V_2, \dots, V_k\}$ is a partition of V into independent sets such that every vertex v in V dominates some colour class in Π . In VE(G), $\Pi^1 = \{V_1, V_2, \dots, V_k\}$ is a partition of X in to X-independent sets and every x in X X-dominates some colour class in Π^1 . Therefore, Π^1 is a X-dominator, X-colouring of VE(G). Hence, $\chi_X d(VE(G)) \leq r = \chi_d(G)$. Therefore, $\chi_X d(VE(G)) = \chi_d(G)$.

The graph EV(G)=(E,V,K) is defined by edges $K=\{(e,u) : e=uv \text{ in } E\}$.

Theorem 5.2: For any graph G, $\chi_X d(EV(G)) = \chi_d^1(G)$.

Proof: Let $\chi_X d(EV(G)) = k$. There exists a partition of X, $\Pi = \{X_1, X_2, ..., X_k\}$ of X-independent sets such that every vertex x in X, X-dominates some colour class in Π . In G, $\Pi^1 = \{X_1, X_2, ..., X_k\}$ is a partition of E into independent sets such that every e in E dominates some colour class in Π^1 . Therefore, Π^1 is an edge dominator colouring of G. Hence, $\chi_d(G) \le k = \chi_X d(EV(G))$.

Conversely, let $\chi_d^{-1}(G) = r$. Let $\Pi = \{E_1, E_2, \dots, E_k\}$ is a partition of E into independent sets such that every edge e in E dominates some colour class in Π . In EV(G), $\Pi^1 = \{E_1, E_2, \dots, E_k\}$ is a partition of X in to X-independent sets

and every x in X X-dominates some colour class in Π^1 . Therefore, Π^1 is a X-dominator, X-colouring of EV(G). Hence, $\chi_X d(EV(G)) \le r = \chi^1_d(G)$. Therefore, $\chi_X d(EV(G)) = \chi^1_d(G)$.

Let V^1 be a copy of the vertices V of G. (a) The graph $VV(G)=(V,V^1,E^1)$ is defined by the edges $E^1=\{(u,v^1):(u,v) \text{ in } E\}$.

From a graph G=(V,E) the graph G2 and G² can be constructed as follows: G2 and G² have the same vertex set as G, with two vertices u and v adjacent to G2 if and only if they have a common neighbor in G, and adjacent in G² if and only if $d(u,v) \le 2$ in G.

Theorem 5.3: For any graph G,
$$\chi_{\chi} d(VV(G)) = \chi_d(G2)$$
.

Proof: Let $\chi_X d(VV(G)) = k$. There exists a partition of X, $\Pi = \{X_1, X_2, ..., X_k\}$ of X-independent sets such that every vertex x in X X-dominates some colour class in Π . Any two vertices in the same partition are not X-adjacent. In G2, any two vertices in X_i are not adjacent. $\Pi^1 = \{X_1, X_2, ..., X_k\}$ is a partition of V(G2) into independent sets such that every v in V(G2) dominates some colour class in Π^1 . Therefore, Π^1 is a dominator colouring of G2. Hence, $\chi_d(G2) \le k = \chi_X d(VV(G))$.

Conversely, let $\chi_d(G2) = r$. Let $\Pi = \{V_1, V_2, ..., V_k\}$ is a partition of V(G2) into independent sets such that every vertex v in V(G2) dominates some colour class in Π . In G, any two vertices in the same partition do not have a common neighbor. In VV(G), any two vertices in V_i , i=1 to k are not X-adjacent. Hence, in VV(G), $\Pi^1 = \{V_1, V_2, ..., V_k\}$ is a partition of X in to X-independent sets and every x in X X-dominates some colour class in Π^1 . Therefore, Π^1 is a X-dominator, X-colouring of VV(G). Hence, $\chi_X d(VV(G)) \leq r = \chi_d(G2)$. Therefore, $\chi_X d(VV(G)) = \chi_d(G2)$.

The graph $VV^+(G)=(V,V^1,E^+)$ contains the edges E^1 of the graph VV together with the edges $\{(u,u^1):u \text{ in } V\}$.

Theorem 5.4: For any graph G,
$$\chi_X d(VV^+(G)) = \chi_d(G^2)$$
.

Proof: Let $\chi_X d(VV^+(G)) = k$. There exists a partition of X, $\Pi = \{X_1, X_2, ..., X_k\}$ of X-independent sets such that

every vertex x in X, X-dominates some colour class in Π . In G^2 , $\Pi^1 = \{X_1, X_2, ..., X_k\}$ is a partition of $V(G^2)$ into independent sets such that every v in $V(G^2)$ dominates some colour class in Π^1 . Therefore, Π^1 is a dominator colouring of G^2 . Hence, $\chi_d(G^2) \leq k = \chi_X d(VV^+(G))$.

Conversely, let $\chi_d(G^2) = r$. Let $\Pi = \{V_1, V_2, ..., V_r\}$ is a partition of $V(G^2)$ into independent sets such that every vertex v in $V(G^2)$ dominates some colour class in Π . In $VV^+(G)$, $\Pi^1 = \{V_1, V_2, ..., V_r\}$ is a partition of X in to X-independent sets and every x in X X-dominates some colour class in Π^1 . Therefore, Π^1 is a X-dominator, X-colouring of $VV^+(G)$. Hence, $\chi_X d(VV^+(G)) \leq r = \chi_d(G^2)$. Therefore, $\chi_X d(VV^+(G)) = \chi_d(G^2)$.

Corollary 5.5: For any graph G,

- (i) $Max\{\gamma(G),\chi(G)\}\leq\chi_d(G)\leq\chi(G)+\gamma(G)$
- (ii) $\operatorname{Max}\{\gamma^{1}(G),\chi^{1}(G)\} \leq \chi^{1}_{d}(G) \leq \gamma^{1}(G) + \chi^{1}(G).$

6. CONCLUSION

The bounds of X-chromatic number and hyper independent number are given. We introduce the bipartite theory of dominator colouring of a graph G. Given any three positive integers a, b, c such that $c \ge 2(b-a)+1$, we have proved the existence of a bipartite graph G such that $\chi_X(G)=a$, $\chi_X d(G)=b$ and |Y|=c.

7. REFERENCES

- Gera.R, Horton.S and Ramussen.C, Dominator coloring and safe clique partition, Congressus Numerantium, Volume 181 (2006), 19-32.
- [2] Haynes T.W, Hedetneimi S.T, Slater P.J, Fundamentals of domination in graphs, Marcel Dekker., Inc., 1988.
- [3] Haynes T.W, Hedetneimi S.T, Slater P.J, Domination in graphs Advanced topics, Marcel Dekker., Inc., 1988.
- [4] Stephen Hedetneimi, Renu Laskar, A Bipartite theory of graphs I, Congressus Numerantium, Volume 55, December 1986, 5-14.
- [5] Stephen Hedetneimi, Renu Laskar, A Bipartite theory of graphs II, Congressus Numerantium, Volume 64, November 1988, 137-146.
- [6] Swaminathan.V, Venkatakrishnan Y.B, Some Characterization theorems, Mathematical and computational Models, edited by R.Nadarajan et al., Narosa Publishing House, India (2008) 201-206.