
International Journal of Computer Applications (0975 – 8887)

Volume 25– No.5, July 2011

19

An Enhancement of Security on Image Applying
Asymmetric Key Algorithm

Sabyasachi Samanta
Haldia Institute of Technology

Haldia, WB, India

Saurabh Dutta
Dr. B. C. Roy Engineering

College, Durgapur, WB, India

Gautam Sanyal
National Institute of Technology,

Durgapur, WB, India

ABSTRACT
Every characters of textual message are encrypted through the

encryption key of RSA algorithm and then to an array of data

bits. After that the data bits are embedded to some suitable

nonlinear pixel and bit positions about the entire image through

system modulus of RSA algorithm. As a result, we get a

watermarked image. After that we have formed three different

image shares using any two components of R, G and B of entire

watermarked image. At the decryption end, three key shares are

assigned for each and every share. The system modulus and

private key are calculated from the prime factors of key shares.

The embedded data bits are being retrieved from watermarked

image by the system modulus and decrypted to the

corresponding characters by the key, finally to its original

content.

Keywords
Pixel, invisible digital watermarking, RSA Algorithm, nonlinear

function.

1. INTRODUCTION
Digital Watermarking describes the way or technology by which

anybody can hide information, for example a number or text, in

digital media, such as images, video or audio. Public key

cryptography is used to protect digital data going through an

insecure channel from one place to another. RSA algorithm is

extensively used in the popular implementations of public key

infrastructures. In visual cryptographic technique, an image is

broken into n shares, so that someone with k shares could

decrypt the image, while any k-1 shares revealed no information

about the original image. A pixel with 32 bit color depth

consists of α value, R (Red), G (Green) and B (Blue) value. α

value is the value of opacity .First 8 bits of the 32 bits are

reserved for this opacity (transparency of the image) value. If α

is 00000000 the image is fully transparent. Each of three(R, G

& B) 8-bit blocks can range from 00000000 to 11111111(0 to

255) [1] [2] [8] [9].

In this paper, we have proposed a technique to embed a message

about the entire image. The text is taken from the keyboard or

special characters. Then the corresponding ASCII-8 (American

Standard Code for Information Interchange) value of characters

is encrypted through the public key (e) of RSA algorithm and to

its 8-bit binary equivalent. Also the length of the text is

converted into its 8-bit binary equivalent. The data bits from

length and encrypted characters are respectively stored into an

encrypted array (earr[]). Then we have embedded the data bits

from the array to some nonlinear pixel and bit positions using

the system modulus (N) of RSA algorithm and we get a

watermarked image. Then to make three different shares using

any two components of R, G and B of each and every pixel

about the entire image is scanned and stored as integer values to

file. Taking any two and the third as 0, for the entire pixels

formulate three different shares. From the viewpoint of key, we

have formed three key shares by multiplying any two private

key elements (but by not repeating two once more). For each

and every shares of image different key shares are assigned. Out

of those three communicable shares when only minimum two

communicable image and key shares come together then we will

be able to get back the original message. At the time of

decryption the system modulus and private key are calculated

from the prime factors of key shares. Using any two image

shares we may form the original watermarked image and from it

the embedded data bits are being retrieved by the system

modulus. From that data bits we get the length and encoded

values. Using the private key (d) those values are decrypted to

corresponding characters and finally to its original content. In

our work, we have targeted any one bit of last four significant

bit of each R, G and B of any selected nonlinear pixel position

about the entire image using the private key cryptography

technique [3] [5] [7] [8].

Example: A text with 9-characters will form an array with 80

(8+9*8) bits of stream (first 8-bits for length). An image with

560 X 864 dimension has 4,83,840 pixels. In our work, only we

have altered any one bit of last four significant bits. If any bit

generated from text become same to the targeted bit of image,

then there will be no change i.e. it will produce the same to

original image.

Section 2 represents the scheme followed in encryption

technique. Section 3 represents an implementation of the

technique. Section 4 gives you an idea about the experimental

results. Section 5 is an analytical discussion on the technique.

Section 6 draws a conclusion.

2. THE SCHEME
This section represents a description of the actual scheme used

during “An Enhancement of Security on Image Applying

Asymmetric Key Algorithm” technique. Section 2.1 describes

the encryption technique using five algorithms 2.1.1, 2.1.2, 2.1.3

2.1.4 & 2.1.5 while section 2.2 describes the decryption

technique using algorithm 2.2.1 & 2.2.2 [4] [6] [7].

2.1 Encryption of data bits about the image
2.1.1 Formation of key using RSA algorithm
Step I: Select two random prime numbers p and q (a less

significant amount of 256).

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.5, July 2011

20

Step II: Compute their system modulus N=p*q and ø(N)=(p-

1)*(q-1).

Step III: Select the encryption key (e), where 1<e<ø(N) and

gcd(e, ø(N))=1.

Step IV: Find the decryption key (d), where e*d=1 mod ø(N)

where 0≤d≤N.

Step V: Publish the public encryption key: KU= {e, N}.

Step VI: Hush up the private decryption key: KR= {d, p, q}.

Taking any two, out of that three form the key shares {K[1], K[2],

K[3]}.

Step VII: Stop.

2.1.2 Create an array of encrypted data from text
Step I: Take input from keyboard or special characters (which

ASCII value must be less than N). Calculate the string length

(chlen) and to its 8-bit binary equivalent.

Step II: Using the encryption key (e) encrypt (C= Me mod N) the

corresponding ASCII values and into its 8-bit binary equivalent.

Accumulate the data bits to earr[bit] as LSB (Least Significant

Bit) to earr[1] and MSB (Most Significant Bit) to earr[8]

respectively.

Step III: Store the binary values of length and characters to earr

[] as LSB to earr[1+(i*8)] and MSB to earr[8+i*8].

Step IV: Repeat Step III to Step V for i=0 to (N-1).

Step V: Stop.

2.1.3 Select the nonlinear pixel positions using key
Step I: Take the value of bit from array earr[bit] to calculate

total number of pixels(p) is required (as three following data bit

replaced in R, G and B of every pixel)in any image. So, p= (ceil

(bit /3)).

Step II: Take the value of system modulus (N) and calculate the

value of function

F(x, y) = Np [i.e. pow (N, p)].

Step III: Store the exponential long double values into file one

by one.

Step IV: Repeat Step III to Step IV for i= (1 to p) and go to next

step.

Step V: Read the values as character up to “e” of the every line

of the file and store it to another file with out taking the point [.].

Step VI: Modify the value as numeric and store it to an array

arrxyz[p].

Step VII: Take most three significant digit to arrx[p], next three

digits to array arry [p] and last significant digit to arrz[p].

Step VIII: Repeat Step V to Step VII up to end of the file.

Step IX: Stop.

2.1.4 Replacement of array elements with R, G & B

values of pixels
Step I: Calculate the width (w) and height (h) of the image.

Step II: Set x=arrx[p] and y=arry[p].

Step III: To select the pixel position into image, compare the

value of x and y with the value of w and h (where addressable

pixel position is (0, 0) to (w-1, h-1)).

a) If (x >(w-1)) or (y >(h-1)) then

Set P (x, y) = P (0+(x %(w-1)), (0 +(y %(h-1)))

 Otherwise set P (x, y) = (x, y).

Step IV: To select the bit position (b) of selected pixel i.e. with

which bit the array data will be replaced. Set z =arrz[p].

i) If (z%4=0) then b= 1st LSB

ii) If (z%4=1) then b=2nd LSB

iii) If (z%4=2) then b=3rd LSB

Otherwise b=4th LSB of each R, G & B of a pixel.

Step V: Verify the pixel or bit positions which previously have

used or not about the image.

a) If ((P(x, y)= (P(x, y)) || P (x, y)= P (x++, y++)) &&

(b=b++])then

Set P ((x, y), b) =P (0, h) and b as Step IV.

Repeat Step V (a) for j=1 to p;

Repeat Step V (a) for k=j to p.

Go to Step VI.

Step VI: To replace the array elements with the selected bit

position of selected pixel and to reform as a pixel

a) After reading the values of R, G & B convert each to its

equivalent 8-bit binary values.

b) Replace subsequent element of earr[bit] by following Step

III to Step V.

c) Taking values of R, G & B switch it to the pixel value and

place it to its position of the image (taking α value as before).

Step VII: For replacing the array element to pixels using the

above mentioned process starting from the 0th element up to the

end of the array.

 A) If bit%3 = 0

 Go to Step VIII.

 B) If bit%3 = 1

for 0th element to (bit-1)th element of the array repeat Step VII

(A).For (bit)th element to R, value for G and B will be remain

same. And go to Step VIII.

C) If bit%3=2

for 0th element to (bit-2)th element of the array repeat Step VII

(A).For (bit-1)th element to R, (bit)th to G and B will be remain

same. And go to Step VIII.

Step VIII: Repeat Step II to Step VII for i=1 to p.

Step IX: Stop.

2.1.5 Creation of logical region about the image
Step I: Take the width (W) and height (H) of the image.

Step II: Read the R, G and B value of each and every pixel of

entire image. Store the values in a file as an array element.

Step III: Taking any two component of R, G and B from file

create three different image shares as

For ImgSh[1] ={R=0, G= as file and B= as file }.

For ImgSh[2]={ R=as file , G= 0 and B=as file }.

For ImgSh[3] ={ R=as file , G= as file and B=0}.

Step IV: Stop.

2.2 Decryption of the data bits from the

image
2.2.1 Regain of replaced bits from the watermarked

image
Step I: Take input any two key shares out of three and calculate

the prime factors. Taking first the value of p and q, calculate the

system modulus (N) as it was in encryption end.

Step II: Also take any two image shares out of three. Read the R,

G and B component values from any two shares and store it to

file. Taking any one common value of R, G, and B from the files

create the original watermarked image.

Step III: To get the pixel and bit position in R, G & B of selected

pixels go through Step I to Step VIII of both Algorithm 2.1.3

and Algorithm 2.1.4.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.5, July 2011

21

Step IV: Retrieving the encrypted bits from the selected bit

positions of selected pixels store it to decrypted array from

darrlen[1] to darrlen[bit] respectively.

Step V: To get the length repeat Step II to Step IV for i= 1 to 3

times (as every pixel contain three data bits).

Step VI: Taking data bits of darrlen [1] as LSB and darrlen [8]

as MSB calculate the length (chlen) of message.

Step VII: Retrieving the encrypted bits from the selected pixel

and bit positions, store it to decrypted character array from

darr[10] to darr[bit] respectively (where bit is the array length

from characters and length).

Step VIII: Repeat Step VIII for i=4 to chlen.

Step IX: Taking data values from the decrypted array darr[],

LSB as darr[8*i+1] and MSB as darr[8*(i+1))] respectively,

convert to its equivalent decimal number (C). Store the numbers

to an array dmsg[chlen].

Step X: Stop.

2.2.2 Generation of original content using

decryption algorithm of RSA algorithm
Step I: Use private key = {d, p, q}. Then compute message (M)

= Cd Mod N.

Step II: Taking the decimal value of message (M) calculate the

corresponding characters from ASCII-8 table.

Step III: Finally place the characters one by one from the array

msg[len] and assemble the original message.

Step IV: Stop.

3. AN IMPLEMENTATION
Let the message to be encrypt is “NONLINEAR”. So the length

of the message

 =09(Decimal equivalent)

 =00001001(8 Bit Binary equivalent).

In the Table 3.1 characters with their encrypted binary

equivalent is defined.

Table 3.1: characters with binary equivalent

Character
Decimal

Equivalent

Decimal

Equivalent

After

Encryption

8-Bit Binary

Equivalent

N

O

N

L

I

N

E

A

R

078

079

078

076

073

078

069

065

082

056

139

056

032

061

056

086

142

082

00111000

10001011

00111000

00100000

00111101

00111000

01010110

10001110

01011011

First store the bits for length to the array earr[bit] and then store

the bits from text respectively as,

earr[1]=1 earr[9]=0 earr[73]=1

 : :

bits for

: :

bits for

: :

bits for

earr[8]=0

length

 earr[16]=0

character

 earr[80]=0

character

Figure 3.2: Data bits in encrypted array

Let two prime number p=11 and q=17.

So, the system modulus N=p*q=11*17=187.

Ø(n)=(p-1)*(q-1)=16*10=160.

From here we get the public key= {7, 11, 17} and the private

key= {23, 11, 17}.

Using the key elements we get the key shares as

 K[1]={d*p}= 253; K[2]={p*q}=187;

 K[3]={q*d}=391;

The image size= 560 X 864 (w x h).

Number of effected pixel required for character (p) = [ceil

(80/3)] =27.

 In the Table 3.3, the image shares with RGB

components and corresponding assigned key shares are given (as

described in Algorithm 2.1.5).

Table 3.3: positions of array elements about the image

Image

Share1

Share2

Share3

Key

digits

K

K[1]

K[2]

K[3]

Imge

Share Image Component

R,G&B as in image

R=0, G& B as in image

G=0, R& B as in image

B=0, R& G as in image

In the Table-3.4, how the array elements are replaced with R, G

& B values in selected nonlinear pixels and bit position about

the image is described (as described in Algorithm 2.1.3 & 2.1.4).

Table 3.4: replacement of bits about image

187,1 1.870000e+05 1st LSB

nd

Key(K),i Value Value of pixel

P(x,y)

Bit position

b= Z%4

Array data

to replace

P(187,000)
earr[1]

earr[2]

earr[3]

earr[13]

earr[14]

earr[15]

earr[79]

earr[80]

B as same

:::::

: : : ::

2.286669e+11 P(228,666)187,5 2 LSB

187,27 1.787956e+52 P(178,795) 3 LSBrd

In this way, we can create an indistinguishable watermarked

image embedding the entire message. Afterward, we are able to

transmit the encrypted watermarked image through any

communication channel. Applying the decryption technique as

described in Algorithm 2.2 also we will be able to get back the

encrypted message from that watermarked image at the

decryption end.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.5, July 2011

22

4. EXPERIMENTAL RESULT
An example with result is shown in Figure 4.1. Fig. 4.1(a) is the

first original image. It is one of the popular images of

MONALISA. Fig. 4.1(b) is the watermarked image. Fig. 4.1(c)

is the image with entire absent of R component (R, G &B of

each pixel) generated form watermarked image. Fig. 4.1(d) and

4.1(e) are the image with entire absent of G and B component

respectively.

 (a) (b)

 (c) (d)

(e)

Figure 4.1(a) is the first original image, (b) the watermarked

image, (c) (d) and (e) image shares with absent of R, G and B

components respectively.

5. ANALYSIS
Here, initially we have produced a watermarked image and then

the image shares using any two components of three(R, G and

B). We have not used any compression and/or encryption

technique before the creation of array (earr[]). Any body may

employ any compression and/or encryption technique(s) at the

time of watermarking. Then the number of bits to embed into

image will be fewer and the strength of encryption will be

higher than present. In addition the number of affected pixel will

also be fewer than now. Also anybody may employ any other

symmetric or asymmetric key cryptographic technique for this

purpose. Anybody may choose two random large prime

numbers. In that case the value of N will be larger. So forth the

number of targeted pixels will be fewer (as message_lenght ∞ (1

/ number_of_keydigit)). Binary values generated form the textual

information replaced nonlinear pixel positions of image. As bits

are placed any one bit in lower four bits of each R, G and B, the

change of color of the targeted pixels will be less and so forth it

becomes invisible to human eye. The number of targeted pixels

proportionally varies to size of text. If the image size becomes

large and size of text becomes less then it will be quite harder to

differentiate the encrypted image from the original image [4] [6]

[9].

6. CONCLUSION
Here we have used asymmetric key cryptographic technique to

encrypt and implant the data bits (from both text and size of

text) in nonlinear pixel and bit positions about the entire image.

After that we generated image shares from watermarked image

and key shares from the prime elements of private key. And also

by the system modulus the encrypted data is embedded into

entire image. Moreover, it produces the similar image to see in

naked eye at the time of watermarking using this method. At the

time of decryption only a proper combination of image shares

make possible to form the original watermarked image. Only

from the key shares we may produce the system modulus. By

using it we may extract the embedded data bits from

watermarked image and by the private key we may decrypt the

original message from embedded data bits. More over it

produces the almost nearly similar image at the time to produce

the watermarked image using this method. If the key become

unknown to anybody who wants to attack the information, we

think, it will be quite impossible to him or her to find out the

information from the watermarked image.

7. REFERENCES
[1] Sabyasachi Samanta, Saurabh Dutta, “Implementation of

Invisible Digital Watermarking on Image Nonlinearly of

Arithmetically Compressed Data” in ‘IJCSNS International

Journal of Computer Science and Network Security,

Journal ISSN: 1738- 7906 Vol.10 No.4, April 2010 pp.261-

266.

[2] Sabyasachi Samanta, Saurabh Dutta, “Implementation of

Invisible Digital Watermarking on Image Nonlinearly

Encrypted with Galois Field (GF- 256)” in “2010

International Conference on Informatics, Cybernetics, and

Computer Applications (ICICCA2010)” July 19-21, 2010,

pp. 26-30.

[3] Sabyasachi Samanta, Saurabh Dutta, “Implementation of

Invisible Digital Watermarking on Image using

Permutation of Keys and Image Shares” Special issue

of IJCCT, ISSN:0975-7449, Vol. 2, Issue 2, 3, 4; 2010,

“International Conference [ICCT-2010]“, December 3 – 5,

pp. 125-129.

[4] Sabyasachi Samanta, Saurabh Dutta, “Implementation of

Invisible Digital Watermarking on Image using Nonlinear

Function”, “International Conference on Computer

Applications, 2010 (ICCA2010)”, December 24-27, 2010,

pp.189-195

[5] Sabyasachi Samanta, Saurabh Dutta, “Digital Watermarking

through Embedding of Encrypted and Arithmetically

Compressed Data into Image using Variable-Length Key”,

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.5, July 2011

23

“The Second International Conference on Network &

Communications Security “, January 2-4, 2011, pp. 523-

534

[6] Sabyasachi Samanta, Saurabh Dutta, Goutam Sanyal, “An

Enhancement of Security of Image using Permutation of

RGB-Components”, “3rd International Conference on

Conference on Electronics Computer Technology ”, 8-10

April, 2011, pp. v2-404-v2-408

[7] Sabyasachi Samanta, Saurabh Dutta, Goutam Sanyal,

”Digital Watermarking through Embedding of Encrypted

and Arithmetically Compressed Data into Image using

Variable-Length Key”, “International Journal of Network

Security & Its Applications (IJNSA)” Vol. 3, No. 2, 2011,

pp.30-41

[8] J. M. BlackLedge, M. L. Hallot, “Convert Encryption and

Document Authentication using Texture Coding”, “i-

managers Journal of Software Engineering”, Vol. 3, No. 1,

July- September 2008

[9] Atul Kahate, “Cryptography and Network Security”, 2nd

Edition, THM, New Delhi

