
International Journal of Computer Applications (0975 – 8887)

Volume 25– No.6, July 2011

38

A Quality Computation Model for Software Architecture

Gurbinder Singh Brar

Department of Information Technology,
 Adesh Institute of Engineering and Technology,

Faridkot

Rupinder Pal Singh
Department of Information Technology,

 Adesh Institute of Engineering and Technology,
Faridkot

ABSTRACT

Although general quality models are available, it is possible to

construct a custom quality model. The set of metrics obtained

from such quality model can then be used to evaluate

candidates, whether designs, architectures or systems using a

quality computation model. This paper adapts a quality

computation model for this purpose, and discusses an example

to demonstrate the same.

Keywords

Quality models, quality characteristics, quality computation

models.

1. INTRODUCTION
ISO/IEC 9126-1: 2001 quality model defines “quality” as “a set

of features and characteristics of a product or service that bear

on its ability to satisfy stated or implied needs” [1]. A quality

attribute is a property of a system by which some stakeholders

will judge its quality. Quality attribute requirements, such as

those for performance, security, modifiability, reliability, and

usability, have a significant influence on the software

architecture of a system. A system’s functional requirements

play an important role in the definition of the initial architecture.

On the other hand, the quality requirements have to be

“balanced” during the subsequent design process. Quality

characteristics of software architecture need to be measured so

that software designers are able to evaluate candidate

architectures, and evaluate an existing or legacy architecture for

upgrade to achieve some performance goal. More specifically,

a) Evaluate the candidate architecture in a stand-alone fashion to

check if it meets the functional and non-functional requirements

expected of it;

 b) Evaluate the candidate in comparison to the software

architecture of an existing, i.e. already deployed, systems;

c) Evaluate an architecture style in comparison to other

competing, candidate architectures for the system under

development;

d) Evaluate various possible designs for a system based on a

selected style e.g. SOA.

Quality Characteristic Sub-characteristics

 Functionality

 Suitability Accuracy Interoperability Security

 Reliability

 Maturity Fault tolerance Recoverability

 Usability

 Understandability Learnability Operability

 Efficiency

 Time behavior Resource behavior

 Maintainability

 Analyzability Changeability Stability Testability

 Portability

 Adaptability Installability Co-existence Replaceability

Figure 1. ISO 9126-1 quality model

The (1) decomposition of quality into characteristics, and the (2)

definition of metrics for characteristics can be considered as the

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.6, June 2011

39

two basic elements of any quality model. These two steps are

sufficient if the model is used for characterizing quality [3].

Although general quality models, e.g. ISO 9126-1 (see Figure

1), are available, it is possible to construct a custom quality

model. For example, [2] describe how ISO/ IEC quality model

can be customized to specific software domain using a six-step

methodology. Fig. 2 illustrates their six-step methodology. The

set of metrics so obtained can then be used to evaluate candidate

designs using a quality computation model. We present below

such quality computation model, with a restriction that all

metrics employed should have numeric values.

Step ISO/IEC Quality Model Characteristics

 Sub characteristics

 ISO Modified

1

 Added Deleted

2 Hierarchy of

 Sub characteristics

3 Attributes

 Basic Derived

4 Decomposition of

 Derived Attributes

5 (+) (+) (-) Relationship among

 Quality Entities

6 Metrics

Fig. 2. The Six-step methodology to create a custom quality model

2. LNL QUALITY COMPUTATION

 MODEL
Y. Liu, A.H.H. Ngu and L.Zeng have proposed in [4] a QoS

computation model for dynamic web service selection.

Specifically, they argue that QoS is a broad concept that can

encompass a number of context-dependent, domain-specific

non-functional properties. Therefore, they argue that a quality

computation model should be extensible, that is, it should

include both generic and context-dependent, domain-specific

criteria. That is, any new domain-specific criteria can be added

and used to evaluate the QoS of competing designs. Further,

they argue, and as expectedly, that different stakeholders may

have different preferences or requirements on QoS. A QoS

model should provide means for users to accurately express their

preferences without complex coding of user profiles.

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.6, June 2011

40

2.1 The Extensible Quality Computation

Model
Assuming there is a set of n candidate software designs, A1, A2,

A3…… And suppose we select m quality characteristics to

evaluate these designs, we can obtain the following matrix.

Q=

In order to rank the n designs, the matrix Q needs to be

normalized. The purposes of normalization are: 1) to allow for a

uniform measurement of design qualities independent of units.2)

to provide a uniform index to represent design qualities.3) to

allow setting a threshold regarding the qualities.

The number of normalizations performed depends on how the

quality criteria are grouped. The second normalization is used to

provide uniform representation of a group of quality criteria

(e.g. group maintainability can be of three criteria, complexity,

cohesion and coupling.) and set threshold to a group of quality

criteria.

2.2 First Normalization
Before normalizing matrix Q, we need to define two arrays. The

first array is N = {n1, n2,.. nj nm} with 1≤ j≤ m. The value of nj

can be 0 or 1. nj=1 is for the case where the increase of qi, j

benefits the stakeholders while nj=0 is for the case where the

decrease of qi, j benefits the stakeholders. The second array is

C= {c1, c2,...cj….cm }. Here cj is a constant which sets the

maximum normalized value. Each element in matrix Q will be

normalized using the following equation. Here (1/n) ∑ qi, j is the

average value of an attribute qj over n designs. The summation ∑

is over i = 1 to n.

 (1 n)

 < =1

 =1 ≥

=

 < =0

 =0 =0

 ≥

Applying this equation to Q, we get matrix Q’ as follows:

Q’=

2.3 Second Normalization
In this quality model, quality attributes can also be represented

as a group and manipulated as group. Each group can contain

multiple criteria. Matrix D is used to define the relationship

between quality criteria and quality groups. Columns represent l

quality groups. Rows represent total of m quality criteria. If a

quality criteria i is present in jth quality group, di, j =1 else it is

set to 0.

D=

Applying D to Q’, we have:

G = Q’ * D =

Now, to normalize matrix G, two arrays are needed. In the first

array F= {f1, f2,..fn}, fj is a weight for group. This is used to

express user’s preferences over jth group. In the second array

T= {t1, t2,..tn}, tj is a constant which sets the maximum

normalized value for the group j. Each element in G will be

normalized using the following equation. Here (1/n) ∑gi,j is the

average value of group gj over n designs. The summation ∑ is

over i=1 to n.

 <

 ≥

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.6, June 2011

41

Applying the above equation to G, we get G’ as follows:

G’=

Finally, we compute quality for all designs A1, A2…..as

2.4 An Example
Narasimhan, Parthasarathy and Das demonstrate in [5] the

evaluation of candidate component-based softwares by

comparing values for a set of metrics. Their comparison is

reproduced in Fig. 3. Using one-to-one comparison, they argue

that the softwares jGrasp and Junit need to be redesigned. We

illustrate below that a similar conclusion is reached using the

quality computation model discussed in the Section 2.3.

Table 1. Metric values for candidate component-based softwares.

 Software

Metrics

Junit Element Mouse

Gestures

Idap JCIFS jGrasp

CPD 13.375 19 4.5 6.25 0.5 70.7

CID 61 6 11 114 70 204

CIID(Ce) 315 6 10 89 51 159

COID(Ca) 91 1 1 25 19 45

CAID(CID/8) 7.625 6 5.5 7.125 8.75 11.34

CRIT Inheritance 93 19 8 91 4 1142

CRIT size 0 0 0 0 0 1

AC(=CID) 61 6 11 114 70 204

NOC 16 4 0 22 18 1

LCOM 0.91 0.855 0.778 0.627 0.753 0

DIT 6 4 6 8 7 1

WMC 822 407 46 763 539 37

 70.7 204 159 45 11.34 1142 1 201 1 0 1 37

0.5 70 51 19 8.75 4 0 70 18 0.753 7 539

 Q = 6.25 114 89 25 7.125 91 0 114 22 0.627 8 763

 4.5 11 10 1 5.5 8 0 11 0 0.778 6 46

 19 6 6 1 6 19 0 6 4 0.855 4 407

13.375 61 315 91 7.625 93 0 61 16 0.91 6 822

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.6, June 2011

42

 0.269 0.38 0.66 0.674 0.681 5.05 0.17 0.38 0.09 0 0.19 11.77 20.323

 38.1 1.11 2.06 1.6 0.882 0.02 1 1.11 1.77 1.16 1.3 0.80 50.925

 V= 3.05 0.68 1.18 1.21 1.083 0.4 1 0.68 2.16 0.96 1.5 0.57 = 14.484

 4.23 7.06 10.5 30.33 1.404 0.03 1 7.06 0 1.19 1.12 9.47 73.414

 1 12.94 17.5 30.33 1.287 0.08 1 12.94 2.54 1.31 0.75 1.07 80.617

 1.42 1.27 0.33 0.33 1.012 0.41 1 1.27 1.57 1.4 1.12 0.53 11.68

The normalized overall scores for jGrasp, JCIFS, Idap, Mouse

Gestures, Element and Junit softwares are 20.232, 50.925,

14.484, 73.414, 80.617 and 11.68 respectively. The scores of

jGrasp and Junit are significantly lower than those of all other

software except in the case of Junit whose score is little higher

than that of ldap. The inference is that jGrasp and Junit need

quality improvements. This inference almost coincides with the

one drawn by Narasimhan, Parthasarathy and Das in their paper

[5].

3. CONCLUSION
A set of guidelines to develop a custom quality model for a

specific domain has been discussed. The metrics obtained as

end-result of applying such a quality model to competing

candidates, whether designs, architectures or systems can then

be converted to scores for every candidate using a quality

computation model. A quality computation model has been

adapted. The same has been applied to a previously published

case study, and the results obtained thereof are encouraging.

4. REFERENCES
[1] Chastek, G., and Ferguson, R., “Toward Measures for

Software Architecture,” March 2006, Technical Note

CMU/SEI-2006-TN-013,

http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tn

013.pdf.

[2] Franch, X., and Carvalo., J.P., “Using Quality Models in

Software Package Selection,”

www.cs.helsinki.fi/u/przybils/causes/cbd06/papers/011590

27.pdf

[3] Klas, M., and Munch , J., “Balancing Upfront Definition

and Customization of Quality Models,”

www4.informatik.tu-

muenchen.de/~Wagnerst/sqml/08/.../6-Klaesm.pdf

[4] Liu, Y., Ngu A.H.H. and Zeng, L. “QoS Computation and

Policing in Dynamic Web Service Selection,” WWW 2004,

may 17-22, New York, USA. ACM 1-58113-912-

8/04/0005 http://citeseer.ist.psu.edu/711840.html

[5] Narasimhan, V.L., Parthasarathy, P.T. and Das, M.,

”Evaluation of a Suite of Metrics for Component Based

Software Engineering (CBSE)” iisit.org/Vol6/IISITv6p731-

740Narasimhan652.pdf

