
International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

18

A Digital Compression Scheme using Delta and
Differential Methods

Sushil Kumar
Department of Information

Technology,
Technocrats Institute of

Technology, Anand Nagar,
Bhopal (M.P.),

India

Dr. Sarita S. Bhadauria
Department of Electronics &
Communication Engg. MITS,

Gwalior (M.P.),
India

Dr. Roopam Gupta
Department of Information

Technology,
UIT, RGPV, Bhopal (M.P.),

India

ABSTRACT
The advancement of information technology has affected all
walks of our life. And when we talk the use of information
technology in a business environment, we cannot ignore the
presence of a huge number of data base systems as its core. Data
base technology has also grown from a simple file system to data
navigation system, and over a last two to three decades a majority
of business institutions, organizations, industries etc. have adopted
the computerization process, and as a result have been flooded
with data. Temporal database (a database that require some aspect
of time when organizing their information) often increases with
the time like information from reservation counters (flight,
railways, buses, hotels), Bank ATMs, shares price from stock
market, insurance policies. So with the limited resources how to
manage and store these data, the only possible solution one can
have is to just compress and store it with in the available
resources. The traditional approach of compression make use of
entropy encoding (compress without any regard to its content),
whereas we can take advantage of Differential and Delta coding
compression as we do in text compression. Now days many
papers using loosy compression or lossless compressions which
comes under both source encoding and entropy encoding. This
paper presents an attempt to apply this category of compression
method for a database file with some new approaches [9].
Approaches may be different but final goal is how to compress a
data to some efficient manner. The percentage of compression
level will become very high with these given approaches; it may
go as high as 60% to 70% of compression [18]. The approaches
are so simple that can be implemented in even C or C++ also. So
that programmer and user can understand so simple way. It does
not require special type of software. The attempt is so simple and
may be used as a new development of compression for database.

General Terms
Compression, Compression Ratio, Lossy Compression, Non lossy
Compression, Data Types.

Keywords
Differential Method, Temporal Database, Delta code,

1. INTRODUCTION
Data compression is the process of converting an input data
stream i.e. the source stream or the original raw data into another
data stream i.e. output, or the compressed scheme that has a
smaller size. A stream is either a file or a buffer space in the
memory. Data compression is popular for two reasons.

1) People like to accumulate data and hate to throw anything
away. No matter how big a storage device one has, some
of later it is going to overflow. Data compression seems
useful because it delays this inevitability.

2) People hate to wait a long time for data transfers. When
sitting at a computer, waiting for a web page to come in or
for a file to download, we naturally feel that anything
longer than a few seconds is a long time to wait. The field
of data compression is often called “Source Coding”.
Assign short codes to common events i.e. symbols or
phrases.
There are many compression methods some suitable for
text and other for graphical data (still image or movies).
There are some Basic Techniques of compressions:

1.1 Intutive Compression
This method was used even before invention of computer today
these methods are mostly of historical interest.

1.1.1 Braille
It is also a part of compression in which enable the blind to read,
was developed by Louis Braille in the 1980’s still is common use
today.

1.1.2 Irreversible Text Compression
Sometimes it is acceptable to compares text by simply throwing
away some information. This is called irreversible text
compression or compaction. The decompressed text may not be
identical to the original, so this may be used for some special
purpose. A run of consecutive blank spaces may be replaced by a
single space. This may be acceptable for literary text or programs.
But not for tabular for in extreme cases all text characters except
letters and spaces may be thrown away and the letters may be case
flattered i.e. converted to all lower or all upper case. This will
remain just 27 symbols, so a symbol can be encoded in 5 instead
of the usual 8 bits.

The compression ratio= 5/8=0.625
Not bad, but loss may be great.

1.1.3 Ad Hoc Text Compression
In this method some intutive ideas, where the compression must
be reversible i.e. lossless.

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

19

In this case the text may be removed and their position
indicated by a bit string that contains a 0 (Zero) for
each text, and 1 (one) for each space.

 In this one of those rare cases where the compression
factor is constant and is known in advance.

 Another old code worth mentioning is the Baudot
code. This was 5-bit code per character but encodes
more than 32 characters, each 5-bit code can be code
of two characters, a letter and a figure. The “letter
shift” and “figure shift” are used to shift between
letters and figures.

 If the data include just integers, each decimal digit may
be represented in 4 bits, with 2 digits packed in a byte.
With dates it may be represented as the number of days
since January 1, 1900 or some other convenient start
date. Each date may be stored as a 16 or 24- bit
number (2 or 3 bytes). If the data consists of date/time
pairs, a possible compressed representation is the
number of Second since a convenient start date. If
stored as a 32 – bit number (4 bytes) it can be
sufficient for about 136 years.

 Dictionary data are stored lexicographically can be
compressed using the concept of front compression.
This is based on observation that adjacent words in
such a list tend to share some of their initial characters.

 The 9/19/89 syndrome: How can a date, such as
11/12/71, be represented inside a computer? One way
to do this is to store the number of days since January
1, 1900 in an integer variable. If the variable is 16-bit
long, including 15 magnitude bits and one sign bit, it
will over flow after 215 = 32k=32,768 days which is
September 19, 1989. Notice that doubling the size of
such variable to 32 bits would delayed the problem
until after 231=2 giga days have passed, which would
occur sometime in the fall of year 5,885,416 [9].

1.2 Run Length Encoding (RLE)
In this method the idea is if a data item ‘d’ occurs n consecutive
times in the input stream, replace the n occurrences with single
pair ‘nd’.

To get an idea of the compression ratio produced
by RLE, among a string of N characters that needs to be
compressed. Also assume that the string contains M repetitions of
average length L each. Each of M repetitions is replaced by 3
characters (i.e. escape, count, data) so the size of the compressed
string is:

N – M*L + M*3 = N – M (L – 3)
And the compression factor is:

)3(LMN
N

Data Compression can be viewed as a means for efficient
representation of a digital source of data such as text, image,
sound or any combination of all these types such as video.

Pictorially a compression scheme can be as shown below in
Fig. (1)

Fig. (1): Compression and decompression

At the time of transmissions the data will be transmitted
through many mediums. There is possibility of going
through many channels. It may be graphically understood as
given in Fig. (2) below.

Coded Message

Destination
(Decoded Message)

Fig. (2): Coder and decoder

All compression algorithms require two algorithms, as represented
in Fig. (1), one for compressing the data at the source and another
for decompressing it at the destination. These algorithms are
referred to as the encoding and decoding algorithm respectively,
as shown in Fig. (3). If the input and output are identical, the
compression system is called lossless and when the decoded
output is not identical to the original input the system is said to be
lossy [16] [18]. Lossy systems are important because accepting a
small amount of information loss can give a huge payoff in terms
of the compression ratio possible. Compression scheme can be
divided into two general categories [1]. Entropy encoding and
Source encoding, Entropy encoding just manipulates bit stream
without regard to what does the bit means, it is in general lossless
fully reversible technique applicable to all data [19]. It includes
run-length encoding, statically encoding (short code is used to
represent the common symbol and long one to represent the
infrequent one like Morse code, Huffman code or Color lookup
table (CLUT) [4].

Compression
Algorithm

Decompression
Algorithm

I/P
Source File

I/P
Compressed File

O/P
Compressed

File

O/P
Decompressed File

CoderSource
(Original Message)

T
r
a
n
s
m
i
s
s
i
o
n
C
h
a
n
n
e
l

Coder

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

20

Fig. (3): Transformation Cycle of Text

Source encoding takes advantage of properties of the data under
consideration to produce more compression, it includes
Differential encoding, Transformation encoding, and Vector quan-
tization.

In this paper Delta method has been used mainly in which the
difference between two consecutive numbers value only are to be
stored and hence the memory space occupied will be very less.
And that is why this method is very easy and very much efficient
and simple to implement.

Temporal databases encompass all database application that
requires some aspect of time when organizing their information
[6].There are many examples of applications of where some
aspect of time is needed to maintain the information in a database.
These include health care, where patient histories need to be
maintained, insurance, where claims and accident histories are
required as well as information on the times when insurance
polices are in effect, reservation systems in general, where
information on the date and time when reservation are in effect are
required, bank data, and so on.

Together with temporal database this scheme could be used with
the time series data as well, the time series data are used often in
financial, sales and economics application. They involve data
values that are recorded according to a specific sequence of time
point. They are hence a special type of valid event data, where the
event time points are predetermined according to a fixed calendar.
For example the closing stock prices of a particular company on
BSE [11] [12].

DATA compression is an encoding technique with which data size
can be reduced according to some predefined rules pictorially
shown in Fig. (3). There are two basic classes of data compression
used in different areas. [1], [3], [5]. These are lossy data
compression and lossless data compression. The lossy data
compression finds its widespread use in the fields, such as image
data or audio data that can accommodate the loss of some less
important information within the data. On the contrary, the
lossless data compression is used in the cases, such as data
transmission and data storage that all information of the data
needs to be kept intact, namely, the data must be able to recover
completely thereafter. Some famous lossless data compression
algorithms proposed is the past include Huffman codes [10],
Shannon-Fanon code [2], Arithmetic coding [13], and Lempel and
Zip [LZ] codes [14], [15]. Block diagrams presented in Fig. (1) &
(3), (4) shows various predictors that can be used for lossless data
compression.

I/P

Fig. (4)

As we have seen that there is a scope of some improvement in
ASCII code, the proposed solutions for compressing in better way
is as given below. This method will give a very good performance
of compression. Frequently used compression in computers is:
Zip, gzip, winzip.

Examples of Application areas for compressions are
 Personal communication systems such as facsimile,

voice mail and telephony.
 Computer Systems such as memory structures, disks

and tapes.
 Mobile computing.
 Distributed computer systems.
 Computer Network especially the Internet.
 Multimedia evolution, imaging, signal Processing.
 Image archival and videoconferencing.
 Digital and satellite T.V.

2. PROPOSED METHODS
Following types of attribute value or data types are available, that
can be used in a typical database management to represent the real
world information.

1. Character (Printable and Non-printable)
2. Number (Integer and Float)
3. Date and time

Traditionally, these data type are represented in such a way, to
make their processing in easier and efficient manner, without
looking for how much space they takes. One exploits the fact that,
a particular attribute has a limited domain and type when it is seen
in the context of the database. In this it defines its own code that
can handle all the domain values that are expected to be within an
attribute.

A commercial database often supports following attribute
types.
1. Character
2. Memo (alphanumeric)
3. Date
4. Numeric
5. Time

In proposed design following types of code and methods that are
best suited for these attribute types are defined. This design
mechanism can be applied either on a new file at the design time
before storing anything in it, or can be applied on a file that have
some data on it.

2.1 Character
In general 8-bit ASCII code have been used for representing

character, but when one declare any attribute to be of character
type they often interested only in alphabet character from A-Z or
a-z. The front end of an application either data mining or database

Original
text

Transform
encoding

Transformed
text

Data
Compression

Compressed
text

(binary code)

Data
Decompression

Original
text

Transform
encoding

Transformed
text

Lossless Prediction Encoder
Compressed

O/P

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

21

0
100
200
300
400
500
600
700
800
900

ASCII Compre-

bit s ssed bit s

90,Neerja Nagar, J.K.
Road, Bhopal, Pin code
46202, Email:
dixit_shrikrishna@yahoo.co
m, Mob:9713238730

0
50

100
150
200
250
300
350
400
450

Su
shi

l

Mani
sh

Av
ina

sh

Ra
tne

sh
Su

mit
Vin

ay
Ra

jee
v

To
tal

no.
 of

bits

ASCII bits
Compressed bits
Department
ASCII bits
Compressed bits

often equipped with the reporting capability, so without bothering
about upper case or lower case letter one can choose any one of
them for our system and store the data according to it. Now for 26
character it requires only 5-bits[9] to represent any one of them
and the remaining 6 combination of bits could be used to support
the character that are required to manage the string or character
database like end of line, space, full stop etc.

So it has redefined the coding in the following way.
00000-a, 00001-b
00010-c, 00011-d

00100-e and so on up to 11001-z. and the remaining 6 could
be used for the following purpose.
11010-space
11011-end of line
11100-comma
11101-full stop
11110-“ “
11111-‘ ‘

So in this way a compact and complete representation of
information is possible. Below Table 1 will give the exact figure
of compression, using ASCII and our above method. Comparative
graph between ASCII and above method of compression is as
shown in Fig. (5).

Table 1. Comparison between ASCII and Our method

Name ASCII
Bits

Comp-
ressed
Bits

Depart-
ment

ASCII
Bits

Comp-
ressed

bits
Sushil 48 30 Marketing 72 45

Manish 48 30 Finance 56 35

Avinash 56 35 Account 56 35

Ratnesh 56 35 HR 16 10

Sumit 40 25 Marketing 72 45

Vinay 40 25 Finance 56 35

Rajeev 48 30 Account 56 35
Total
No.
of bits

336 210 384 240

2.2 Memo
The memo field often includes character other than alphabets like
number underscore plus minus etc. and it is found that at most 61
symbols are used in general so in this situation 6 bits are sufficient
to represent them. Out of these 32 are the same as that in the
previous case and remaining one are used for numbers and special
character like %, $, #,_.

These are assigned as follows.
000000-a 000001-b
000010-c, 000011-d
000100-e and so on up to 011001 for z.
And the remaining 38 could be used for the following
purpose.
011010-space, 011011-end of line
011100-comma, 011101-full stop
011110-“ “ 011111-‘ ‘

100000-0, 100001-1,100010-2,100011-3 and so on up to
101001 - 9 to represent numeral. The remaining
combinations are used to define the following symbols:
101010-! 101011-@ 101100- # 101101- $
101110- ^ 101111-& 110000- * 110001-(
110010-) 110011- - 110100- _ 110101- =
110110 - + 110111-< 111000-> 111001-?
111010-/ 111011- : 111100-; 111101-|
111110-\ 111111- Unused.

Memo field is often used to store information about address,
telephone number etc. So if one wants to represent
sushilkumar24@yahoo.com. It will take about 23 bytes but with
this method it will just required 18 bytes all together. So with this
coding mechanism slight space saving could be achieved [2].

Comparison between existing ASCII and above methods is as
given below in tabular and graphical form Table 2 and Fig. (6).

Table 2. Comparison between ASCII and Memo

Address ASCII
bits

Compre-
ssed bits

90,Neerja Nagar, J.K. Road,
Bhopal, Pin code 46202, Email:
dixit_shrikrishna@yahoo.com,
Mob:9713238730

816 612

Fig. (6): Comparison between ASCII and Memo
2.3 Date
Date field is often associated with temporal database, and most
often used inside the data ware house, that contain historical
information about any aspect of life. Most database store the date
as 8-byte entry (2 for day, 2 for month & 4 for year). Here it

Fig. (5): Comparative Graph between ASCII
and Character representation

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

22

proposed the following format Fig. (7) that takes only 2-byte to
store any particular date as compared to 8-byte entry [9].

Fig. (7)

In this method any given date is converted in to a 16-bit number
using the following formula.

Date = 512*(year-1980)+32*month + day

For example 09/09/2004 is any date, then it’s corresponding 2-
byte number will be 12585, and its corresponding binary
equivalent is 0011000100101001. And putting it into our bit
format Fig. (8) what one get is the binary equivalent of day,
month and year. In this field for NULL 0 and for temporal
variable UC or NOW 511 could be used.

Fig. (8)
Now the conversion into actual date takes place in following
manner

Year: - First right shifts the entry by 9 to get the year.

Month: - First left shifts the entry by 7 position followed by right
shift by 12 positions.

Day: - First left shifts the entry by 11 positions followed by
right shift of 11 positions.

2.4 Number
An attribute having this type is often used to represent certain
quantity or amount or extent that anything may have. It can be
either the integer or float depending upon the nature or accuracy
of the quantity.
By far the most compact and exact representation of this type of
data is their own binary equivalent. But it has found that of the
following method, which can take advantage of nature and format
of the quantity.

2.4.1 Differential Method
In this approach when one wants to compress this type of data we
can either look out for the smallest or largest value for this
attribute, and store this value together with the table structure.
Now the original value could be represented as the difference
between the original value and this value, which in fact will be
less than the original quantity, if the values are distributed in a
linear fashion. For example if it has the following values like755,
762,792,720,725,789 then if one choose 720 as the base value and
store it together with the attribute definition in the table structure,
then the original data will be stored as 35,42,72,0,5,69 much less
than the original one. Now during the query processing these
values could be used directly without any additional processing if
the query is being modified to process them.

2.4.2 Delta Codes
Sometimes, there may appear patterns of numbers that are
practically unpredictable, but with adjacent terms close to each
other, such as readings of temperature. What one could do is to
record the first value, and from there record the difference to the
next. For example:
{23, 27, 25, 24, 21, 19, 22, 22, 24, 27, 26}={23, +4, –2, –1, –3, –
2, +3, +0, +2, +3, –}
Since the increment is from zero to three, we only need two bits to
store them [6]. Note, however that the increments can be either
positive or negative. This can be handled by the concept of
negative binary numbers, where all integers – positive, zero, and
negative can be represented as whole numbers.

2.5 Time
The usual ways of storing a time stamp of any event require 6-
byte and implemented in that manner in most of the database
systems. But here again one could save substantial space by
representing a time stamp in a manner that require only 2-byte for
its storage. The Bit-wise distribution of Hour, Minutes and Second
is shown in following Fig. (9).

Fig. (9)

The time can be converted into a 2-byte value using the
following formula.

Time = 2048*HOUR+32* MINUTE + SEC/2

This scheme is quite common in traditional MS-DOS file system
where second value is measured in two-second interval. If one
wants to be more precise it has to add one more bit to
accommodate second entry because 6 bits are required to
represent 60-second domain. We will take the first mentioned
scheme to represent time of any event. Let a time value of
16:40:24 in HH : MM: SS format, applying this to formula one
gets time = 34060 and its binary equivalent is as shown in Fig.
(10)

Fig. (10)

So in this way one can represent this time stamp. Now to get each
of these separately it has to perform the bit wise shift operation in
the following way. In this field 1952 could be used for temporal
variable & 1984 for NULL value.

Hour: Right shift the entry by 11 Bit position.

Minutes: Left shift by 5-Bit position followed by right
shift of 10 times.

Second: Left shift by 11-bit position followed by right
shift of 11 times & multiply it by 2.

3. PERFORMANCE EVALUATION
In modern database systems table structure is also stored together
with the database file so that any application can make use of it.
When we consider this compression scheme we will store this

Y Y Y Y Y Y Y M M M M D D D D D

0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 D D

H H H H H M M M M M M S S S S S

H H H H H M M M M M M S S S S S
Hour Minute Second

Year Month Day

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

23

structure without any modification, it is only the data that will be
stored according to this new scheme. The file also store some
additional words like field separator, end of record to mark and
distinguish separate attribute and record, and these will be there in
proportion to the number of records in the file. Now we have
following data table about various employees together with their
annual salary, departments along with their joining dates in the
following format of tabular form included their storage of bits
required according to ASCII value as shown below Table 3.

In this above table take the base value for salary attribute is
115150. So the stored values will be 190, 740, 525, 830, 0, 75,
and 25. That can be stored in less than 6 bytes as shown in below
table. The total no. of bits required to store the above table is :

(336 + 384 + 336 + 448 + 336 + 336) = 2176.

By applying our method which has been discussed in proposed
solution method in this paper, the new table which has been
created after applying our differential method is as shown below
Table 4.

After compression using differential method the total no of bits
required is (210+240+102+112+112+112) =888. Now the
compression is = 888/2176 = 0.408. So we have the compression
ratio is 0.408, which is a good compression ratio. It means it
compresses 60% of original size. Only we need 40% of original
size.

In the another method, which is based on delta codes, we can
arrange the contents of table according to ascending order of
attribute salary and then use delta codes to store them and record
the difference to the next. Before, use of delta code and contents
of table are arranged in ascending order according to their Salary
value. Its advantage is that, we can save one bit for each value,
which is set to show sign of the difference as shown in Table 5.

In the above table the total no. of bits required is

(210 + 240 + 126 + 112 + 112 + 112) = 912. So the compression
ratio is = 912/2176= 0.4191.

Comparing above two methods that is Delta methods and
Differential compression method, the best one is differential
compression method, since in Delta compression, compression
ratio is 41.91% but in differential method is 40%. So the better
choice is Differential method.

Finally compression between ASCII, Differential, and Delta are
compared in tabular and graphical forms as shown below Table- 6
and Fig. (11).

Table 6. Comparison between ASCII, Differential and
Delta Code

ASCII code Differential code Delta code

2176 888 912

Fig. (11): Comparison between ASCII, Differential and
Delta Code

4. CONCLUDING REMARK
Any compression scheme over daily operational database is not as
efficient as it should be, because every time when a operation is
performed (either deletion, insertion) it can only be performed on
an uncompressed version, so either we first uncompress all the
database then perform operation on them and then again
recompress them at the end, but it is not a feasible solution at all
[8]. So compression scheme work well only on those databases,
which are required occasionally, so data warehouse are the best
candidate for compression schemes [13]. Even when a new record
has to refresh or loaded inside the warehouse one can insert the
compressed format of that record at the end of the file without
having to uncompress the original database [7]. So because of
this, Warehouse is the best candidate for this above mentioned
Delta and Differential compression scheme. Along with Data
Warehouse this scheme can also be used with the hand held
devices like in cell phones, palmtop, Discman, digital library etc.
Now in the implementation how to handle the different group of
bits in a fixed format system, this problem can be solved by a
proprietary file system as used in system like Oracle, Sybase etc.
or one can allocate the sufficient number of bytes to accommodate
a particular field. For example one wants to store “” for that it
need 6 bytes all together, but with modified 5 bit coding it can be
represented in 30 bit, which means one can represent it with space
of 4 bytes instead of 6 bytes. With this above-mentioned
compression scheme or storage scheme query processing doesn’t
requires the uncompressed format of data, rather than original
query can itself be modified to handle this scheme and right now
we are working on this aspect. The above compression between
ASCII, Delta and Differential code, it can understand that 60%
and more data have been compressed, which is one of the better
results than any other method. As one can see in Fig. (11), the
comparison between ASCII, Differential and Delta Codes the best
Compression is Differential Code.

ASCII Differential code Delta code
0

500

1000

1500

2000

2500

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

24

Table 3. Performance by taking ASCII value

Name
No.
of

bits

Depart-
ment

No.
of

bits
Salary

No.
of

bits
Join bate

No.
of

bits
Time in

No.
of

bits

Time
out

No.
of

bits
Sushil 48 Marketing 72 115340 48 12/05/2003 64 10:35:40 48 16:30:00 48

Manish 48 Finance 56 115890 48 01/12/2002 64 09:40:40 48 15:50:00 48
Avnish 56 Account 56 115675 48 05/11/2004 64 11:00:00 48 16:00:00 48
Ratnesh 56 HR 16 115980 48 17/04/2002 64 10:30:30 48 16:15:00 48
Sumit 40 Marketing 72 115150 48 21/10/2001 64 09:50:50 48 16:20:20 48
Vinay 40 Finance 56 115225 48 25/05/1998 64 09:30:40 48 16:25:50 48
Rajeev 48 Account 56 115175 48 12/06/1995 64 10:00:00 48 16:30:35 48
Total
No.
Bits

336 384 336 448 336 336

Table 4. Performance by taking Differential Method

Name
No.
of

bits

Depart-
ment

No.
of

bits
Salary

No.
of

bits
Join bate

No.
of

bits
Time in

No.
of

bits

Time
out

No.
of

bits
Sushil 30 Marketing 45 190 18 12/05/2003 16 10:35:40 16 16:30:00 16

Manish 30 Finance 35 740 18 01/12/2002 16 09:40:40 16 15:50:00 16
Avnish 35 Account 35 525 18 05/11/2004 16 11:00:00 16 16:00:00 16
Ratnesh 35 HR 10 830 18 17/04/2002 16 10:30:30 16 16:15:00 16
Sumit 25 Marketing 45 0 6 21/10/2001 16 09:50:50 16 16:20:20 16
Vinay 25 Finance 35 75 12 25/05/1998 16 09:30:40 16 16:25:50 16
Rajeev 30 Account 35 25 12 12/06/1995 16 10:00:00 16 16:30:35 16
Total
No.
Bits

210 240 102 112 112 112

Table 5. Performance by taking Delta Method

Name
No.
of

bits

Depart-
ment

No.
of

bits
Salary

No.
of

bits
Join bate

No.
of

bits
Time in

No.
of

bits

Time
out

No.
of

bits
Sumit 25 Marketing 45 115150 36 21/10/2001 16 09:50:50 16 16:20:20 16
Rajeev 30 Account 35 25 12 12/06/1995 16 10:00:00 16 16:30:35 16
Vinay 25 Finance 35 50 12 25/05/1998 16 09:30:40 16 16:25:15 16
Sushil 30 Marketing 45 115 15 12/05/2003 16 10:35:40 16 16:30:00 16

Avinash 35 Account 35 335 18 05/11/2004 16 11:00:00 16 16:00:00 16
Manish 30 Finance 35 215 18 01/12/2002 16 09:30:40 16 15:50:00 16
Ratnesh 35 HR 10 90 12 17/04/2002 16 10:30:30 16 16:15:00 16
Total
No.
Bits

210 240 126 112 112 112

5. REFERENCES
[1] A.S. Tanenbaum “Computer Network” (Fourth Edition

Prentice-Hall of India Limited).

[2] Cleary, J.G and I.H Witten “Data Compression using
Adaptive Coding and Partial String Matching” (1984).

[3] Cormack, G. V. 1985. “Data Compression on a Database
System”. Commun. ACM 28 12, (Dec.), 1336-1342.

[4] Debra A. Ielwer and Daniel S. Hirschberg “Data
Compression” –IEEE JUNE 2002.

[5] M. Morris Mano “Digital logic and Computer Design”
(Prentice-Hall of India Limited).

[6] Navathe S.B, Elmasn R. “Fundamentals of Database
System” (Pearson Education).

[7] Pujari. A. K “Data Mining Technique” (University Press).

International Journal of Computer Applications (0975 – 8887)
Volume 25– No.7, July 2011

25

[8] Reghbati, H.K “An Overview of Data Compression
Technique” IEEE computer (1981).

[9] Saloman D. “Data Compression The Complete Reference”
Springer, 3rd Edition (2004).

[10] William Stallings, “Network Security Essentials Application
and Standard” (Pearson Education).

[11] Ziv , Jacob & A. Lempel “Compression of Individual
Sequence via Variable Rate Coding” IEEE Transaction on
Information Theory, Year (1978).

[12] Holger Kruse, Amar Mukherjee, “Data Compression Using
Text Encryption” FL 32816 Page No. 1068-0314/97 Years
1997 IEEE Department of Computer Science University of
Central Florida Orlando, 32816.

[13] Jianzhong Li and Hong Gao “Efficient Algorithms for On-
line Analysis Processing On Compressed Data Warehouses”
Harbin Institute of Technology, China.

[14] En-hui Yang and John C. Kieffer, “On the Performance of
Data Compression Algorithms Based Upon String
Matching” Fellow IEEE, IEEE TRANSACTIONS ON
INFORMATION THEORY, VOL, 44, NO. 1, JANUARY
1998 0018-9448 1998 IEEE.

[15] Ming-Bo Lin, Member and Yung-Yi Chang, “A New
Architecture of a Two-Stage Lossless Data Compression and
Decompression Algorithm” IEEE TRANSACTIONS ON
VERY LARGE SCALEINTEGRATION (VLSI) SYSTEMS,

VOL, 17, NO, 9, SEPTEMBER 2009 1063-8210 Years 2009
IEEE.

[16] ‘N. Magotra’, W. McCoy’, S. Stearns’ Dept. of EECE, “A
Lossless Data Compression In Real Time F. Livingston.”
University of New Mexico, Albuquerque, NM 87131: Dept,
9311, Sandia National Laboratory, Albuquerque, NM 87185
1058-6393/95 year 1995 IEEE.

[17] Thanos Makatos*, Yannis Klonatos, Manolis Marazakis,
Michail D. Flouris, and Angelos Bilas*, “ZBD: Using
Transparent Compression at the Block Level to Increase
Storage Space Efficiency”, Foundation for Research and
Technology – Hellas (FORTH), P.O. Box 2208, Heraklion,
GR 71409, Greece, 978-07695-2/10, © 2010 IEEE.

[18] Ming-Bo Lin, Member, IEEE, and Yung-Yi Chang, “A New
Architecture of a Two-Stage Lossless Data Compression and
Decompression Algorithm”, 1063-8210, ©2009 IEEE.

[19] Ying Li and Khalid Sayood, “Lossless Video Sequence
Compression Using Adaptive Prediction”, 1057-7149, ©
2007 IEEE.

