
International Journal of Computer Applications (0975 – 8887)

Volume 25– No.7, July 2011

13

Genetic Algorithm: A Search of Complex Spaces

Namita Khurana, Anju Rathi, Akshatha.P.S
Lecturer in Department of (CSE/IT)
KIIT College of Engg., Maruti Kunj,

Sohna Road, Gurgaon, India

ABSTRACT
Living species solve very complex problem of
optimization through the mechanism of evolution and
natural selection. Genetic Algorithm has been a field of
active interest and applied to solve problems almost in all
the fields like Computer Science, Electrical Engg.,
Mechanical Engg., Optimization, Biology and Image
Processing etc. One important application of Genetic
Algorithm is to search complex spaces and function
optimization. A genetic algorithm begins its search with
random solution of the problem. The initial population is
evolved to new population using Genetic operators like
reproduction, crossover and mutation. A Genetic
Algorithm keeps evolving the successive populations
unless some criterion is met or a reasonable acceptable
solution is found. In this paper Genetic Algorithm has been
applied to schwefel function to find the best fit
chromosome so far.

Keywords: Genetic Algorithm, Schwefel function,
Crossover, Mutation, Selection

1. INTRODUCTION

1.1 Brief History of Genetic Algorithms

 Humans being have normal tendency to look for the best
possible or optimal solutions of the problems. In this
attempt the earliest methods developed are either direct or
gradient based. In direct methods the search is guided by
the objective function and constraints. In the gradient
based methods, like hill climbing, the first and second
order derivatives are taken. The direct method fails where
it is not possible to enumerate all possible values for the
problem and hill climbing is successful only where not
many peaks exist in the search space of a function. These
traditional methods are not sufficient to be applied to a
wider class of problems and lack global perspective.
Moreover, most of these methods are serial in nature and
cannot utilize the parallel computing environment[1].

 Idea of evolutionary computing was introduced in the
1960s by I. Rechenberg in his work “Evolution strategies".
His idea was then developed by other researchers. Genetic
Algorithms (GAs) were invented by John Holland and
developed by him and his students and colleagues. This
lead to Holland's book "Adaption in Natural and Artificial
Systems" published in 1975.

John Holland gave a new technique to search the complex
spaces which is known as Genetic Algorithms. It is the
adaptive heuristic search algorithm based on the
evolutionary ideas of natural selection and genetics.

1.2 What is Genetic Algorithm?
GA’s are general purpose search algorithms that use the
principles inspired by natural genetic population to evolve
solutions to problems. The basic idea is to maintain a
population of chromosomes, which represent candidate
solutions to the concrete problem that evolves over time
through a process of competition and controlled variation.
Each chromosome in the population has an associated
fitness to determine which chromosomes are used to form
new ones in the competition process, which is called
selection. The balance between exploration and
exploitation or ,in other words, between creation of
diversity and its reduction , by focusing on the individuals
of higher fitness, is essential in order to achieve a
reasonable behavior for GA’s in case of complicated
optimization problem.

2. GENETIC ALGORITHM:

WORKING PRINCIPLE

2.1 Working of Genetic Algorithm
Genetic algorithm starts working on a randomly generated
set of solutions, known as initial population. Each solution
is represented by a fixed length string of binary numbers
(i.e 101010…). Fitness is associated with each solution.
The fitness evaluation is based on the objective function.
In this each string representing the solution is called
chromosome, each bit of the string is called the gene. The
set of strings is called population[1].

Figure1: A flowchart of working of genetic algorithm

Offspring
New Generation

Reproduction

Population

(Chromosomes)

Parents

Genetic

Operators

Fitness

Evaluation

Decoded
strings

Manipulation

Selection

(Mating Pool)

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.7, July 2011

14

 2.2 Outline of the Basic Genetic

Algorithm

1. [Start] Generate random population of n
chromosomes (suitable solutions for the
problem)

2. [Fitness] Evaluate the fitness f(x) of each
chromosome x in the population

3. [New population] Create a new population by
repeating following steps until the new
population is complete

I. [Selection] Select two parent chromosomes
from a population according to their
fitness (the better fitness, the bigger
chance to be selected)

II. [Crossover] With a crossover probability
cross over the parents to form a new
offspring (children). If no crossover was
performed, offspring is an exact copy of
parents.

III. [Mutation] With a mutation probability
mutate new offspring at each locus
(position in chromosome).

IV. [Accepting] Place new offspring in a new
population

4. [Replace] Use new generated population for a
further run of algorithm

5. [Test] If the end condition is satisfied, stop, and
return the best solution in current population

6. [Loop] Go to step 2

Genetic Algorithm generates new population of
chromosomes by selecting the better fit solutions from
existing population and applying genetic operators to
produce new offspring of the solutions[6]. The process is
repeated successively to generate new population
iteratively. In this way every successive population is
better fit then the previous population .This process is
repeated until some criterion is met or a reasonably
acceptable solution is found.

2.3 Representation and Encoding of the

Population
When we start to solve a problem with the help of GA,
encoding the solutions or chromosomes in the initial
population is the first decision to be made. The encoding
of the chromosomes is problem dependent. There are
various encoding schemes like binary encoding,
permutation encoding, value encoding and tree encoding.
For searching the complex spaces, binary encoding is
being used.

In binary encoding, each chromosome is a string of bits 0
or 1.let us take a simple example to explain the encoding.
Let us take a simple example to explain the coding. Let
f(x) = x.sin (10π.x) + 1.0 where
-1<=x<=2; be the function to be optimized for the
maximum value of x. The values of x ranging between -1
and 2. are encoded in binary strings. Let us take the length
of the string l=16. Then there are 216(65536) possible
values of x. these 216values are to be assigned to x. we
assign the values as follows [6]:

0000000000000000 represents x=0
0000000000000001 represents
x=1*(π/21-1)
0000000000000010 represents
x=2*(π/21-1)
.

.

1000000000000000 represents
x=215*(π/21-1)
1111111111111111 represents
x=π-(π/216) just a value before π

For a value x we can generalize that

 (Xmax-Xmin)
X = Xmin + ------------------ * DV(Si)
 21 -1

where Dv(Si) is the decoded value of string Si.

2.4 Evaluation of the Fitness

Each string in initial population or subsequent population
is assigned a fitness value which is related to the objective
function. For maximizing a function the fitness can be
equal to string’s objective function value. To find the
optimal minimum the fitness will be equal to 1/(1+f(x)).
The beauty of the binary coding is shielding between
actual problem and the working of GA. The GA processes
only the strings of bits which may represent any number of
variables depending on the problem. We have to change
only the definition of the coding.

2.5 Reproduction and Selection
Reproduction selects good strings from the population and
puts them in mating pool. There are number of
reproduction operators. The idea is to pick up the strings
with above average fitness from current population and
apply genetic operators to new strings for the successive
population. One of the important techniques is the fitness
proportionate selection. The chances of a string Si being
selected to participate in reproduction are proportional to
its fitness. This is performed by roulette wheel selection
.Here; all the chromosomes are placed on an imaginary
roulette wheel where each chromosome in the population
gets a place big on the wheel proportionate to its fitness. A
roulette wheel for five chromosomes is shown in fig
below:

2.5.1 Roulette Wheel Selection

• Fitness level is used to associate a
probability of selection with each individual
solution.

• We first calculate the fitness for each input
and then represent it on the wheel in terms
of percentages.

• In a search space of ‘N’ chromosomes, we
spin the Roulette Wheel.

• Chromosomes with bigger fitness will be
selected more times [4].

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.7, July 2011

15

Other techniques for selection are tournament selection,
steady state selection rank selection.

2.5.2 Crossover and Mutation
Crossover and mutation are two basic operators of GA.
Performance of GA very depends on them. Type and
implementation of operators depends on encoding and also
on a problem. Here the crossover and mutation are shown
to work only on the binary encoding.

In crossover operation the right side portion of the strings
are swapped among themselves to create two new strings
to represent the two new chromosomes and solutions. The
process is shown below[1]:

There are many ways how to do crossover and mutation.
Mostly a single point crossover is used in GA.the
performance of GA depends on the retaining of good
building blocks of the strings to successive generations.
Crossover operator is responsible to search different ares
of search space. In mutation some bits are inverted. The
probability to mutate a bit is kept low. The mutation is
used to kept diversity in the population.

After reproduction crossover and mutation are applied to
whole population one generation is completed. The GA
operators are applied in the hope that they will produce the
better fit solutions. Even if some bad solutions are
generated they would not survive over the generations and

better solutions contribute more to generate new but even
better fit off springs over successive generations.

3. SIMULATION FOR SCHWEFEL

FUNCTION

3.1 A Simple Simulation
To illustrate the working of GA I’ve taken the example of
schwefel function.
No. of variables: n variables[5].

 Definition :
 n
 f(x) = 418.9829 n - ∑ (xi sin√ | xi |)
 i=1

Search Domain: -500<= xi<=500 i=1,2,……….,n.
Number of local minima: several local minima.

3.2 Parameters of test simulation
The parameter setting is very important to make GA work
successfully. For the parameter setting, the population
should be large enough for adequate supply of building
blocks over the generations. The probability of crossover
and mutation should be set to allow adequate combining
and mixing of building blocks but not to spoil too much of
the good blocks contributing to the fitness[1].

3.3 Results of test simulation

These results has been found out by implementing the
G.A in ‘C’ language[7].

Population Size (pop size) 80

Dimension 2

Cromosome length (lchrom) 10

Maximum num of generationsmaxgen) 20

Crossover Probability (pcross) 0.750000

Mutation Probability (pmut) 0.015000

Figure 3: Crossover Operator

Figure 2: Roulette Wheel Selection

Figure 4: Mutation Operator

* Mutation (2
nd
 and 14

th
 bits

mutated in figure 4)

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.7, July 2011

16

International Journal of Computer Applications (0975 – 8887)

Volume 25– No.7, July 2011

17

3.4 Function Graph for n=2

 The graph for the schwefel function [5] is shown in
figure 5

4. CONCLUSION
First of all it is important to get the idea about the
working of Genetic Algorithm. So this paper gives the
basic information about the G.A and tell us how to
initialize the large number of population chromosomes,
how to apply the operators like selection ,crossover and
mutation on the population. The test simulations are the
results after implementing all the operators on the initial
population using the schwefel function. The simulation has
been done for a number of generations .The results of the
simulation gives the best fit chromosome found so far on
the basis of fitness function.

5. FUTURE TRENDS
This paper is just the calculation of best fit chromosomes
in the genetic algorithm by using the schwefel function.
The future work in this paper can be on the comparison of
encoding techniques in the genetic algorithms. The
implementation can be done on different types of fitness
functions. GA has a large number of application areas so it
has a vast field for research work. To make Genetic
Algorithm more effective and efficient it can be
incorporated with other techniques within its framework to
produce a hybrid Genetic Algorithm that can reap best
from its combination. More research needs to be
concentrated on the development of hybrid design
alternatives for its efficiency enhancement.

6. REFERENCES
[1] D.E.Goldberg, “Genetic Algorithms in search,

Optimization and Machine Learning”, Addison
Wesley Publishing Company, Ind. U.S.A, 1989.

[2] Charles C.Peck, Atam P. Dhawan, “Genetic algorithm
as global random search methods: An alternative

Perspective”, Evolutionary Computation, Volume 3
Issue1, MIT Press, march 1995.

[3] Math world available at: http://mathworld.com.

[4] Pratibha Bajpai et al./Indian Journal of Computer
Science and Engineering Vol 1 No 3 199-206, “
Genetic Algorithm-an Approach to solve Global
Optimization Problems”.

[5] Test Functions available at: http://www-
optima.amp.i.kyoto
u.ac.jp/member/student/hedar/Hedar_files/TestGO_fil
es/Page2530.htm

[6] Melanie Mitche,”An introduction to genetic
Algorithm”, MIT press,1998.

[7] L.T.Leng, Guided Genetic Algorithm, Doctoral
Dissertation.University of Essex, 1999.

[7] Yashwant Kanitkar “Pointers in c”.

[8] Lawrence Davis. Handbook of Genetic Alogorithms.
Van Nostrand Reinhold, NewYork, 1991.

[9] D. Whitley, D.Garrett, and J.Watson. Genetic Quad
Search.

[10] Math works available at: www.mathworks.com

[11] Wikipedia (2004).Genetic Algorithm. Available
from URL:
http://en.wikipedia.org/wiki/Genetic_algorithm

[12] Holland, J. (1975). Adaptation In Natural and
Artificial Systems. University of Michigan Press, Ann
Arbor.

[13] Schaffer, J.D. and Eshelman, L. (1993). Real-coded
genetic algorithms and interval schemata.
Foundations of Genetic
Algorithms,2,ed.D.Whitley.Morgan Kaufmann, an
Mateo, A.

[14] Schwefel, H.P. (1981). Numerical optimization of
Computer models. John Wiley, New York.

[15] Baker, J. (1985). Adaptive selection methods for
genetic algorithms. In proceedings of the International
Conference on Genetic Algorithms and Their
Applications.

[16] L.T.Leng,Guided genetic algorithm,Doctrol
Dissertation. University of Essex,1999.

[17] L. Painton, J.Campbell, “Genetic Algorithms in
optimization of system Reliability” Reliability, IEEE
Transaction on Volume: 44 ,Issue 2, Digital Object
Identifier.

[18] T.Weise, “Global Optimization Algorithms-Theory
and Application”.

Figure 5: Function Graph

