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ABSTRACT 
Living species solve very complex problem of 
optimization through the mechanism of evolution and 
natural selection. Genetic Algorithm has been a field of 
active interest and applied to solve problems almost in all 
the fields like Computer Science, Electrical Engg., 
Mechanical Engg., Optimization, Biology and Image 
Processing etc. One important application of Genetic 
Algorithm is to search complex spaces and function 
optimization. A genetic algorithm begins its search with 
random solution of the problem. The initial population is 
evolved to new population using Genetic operators like 
reproduction, crossover and mutation. A Genetic 
Algorithm keeps evolving the successive populations 
unless some criterion is met or a reasonable acceptable 
solution is found. In this paper Genetic Algorithm has been 
applied to schwefel function to find the best fit 
chromosome so far.  
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1. INTRODUCTION 

1.1 Brief History of Genetic Algorithms   

 Humans being have normal tendency to look for the best 
possible or optimal solutions of the problems. In this 
attempt the earliest methods developed are either direct or 
gradient based. In direct methods the search is guided by 
the objective function and constraints. In the gradient 
based methods, like hill climbing, the first and second 
order derivatives are taken. The direct method fails where 
it is not possible to enumerate all possible values for the 
problem and hill climbing is successful only where not 
many peaks exist in the search space of a function. These 
traditional methods are not sufficient to be applied to a 
wider class of problems and lack global perspective. 
Moreover, most of these methods are serial in nature and 
cannot utilize the parallel computing environment[1]. 

 Idea of evolutionary computing was introduced in the 
1960s by I. Rechenberg in his work “Evolution strategies". 
His idea was then developed by other researchers. Genetic 
Algorithms (GAs) were invented by John Holland and 
developed by him and his students and colleagues. This 
lead to Holland's book "Adaption in Natural and Artificial 
Systems" published in 1975.  

John Holland gave a new technique to search the complex 
spaces which is known as Genetic Algorithms. It   is the 
adaptive heuristic search algorithm based on the 
evolutionary ideas of natural selection and genetics. 

 

1.2 What is Genetic Algorithm? 
GA’s are general purpose search algorithms that use the 
principles inspired by natural genetic population to evolve 
solutions to problems. The basic idea is to maintain a 
population of chromosomes, which represent candidate 
solutions to the concrete problem that evolves over time 
through a process of competition and controlled variation. 
Each chromosome in the population has an associated 
fitness to determine which chromosomes are used to form 
new ones in the competition process, which is called 
selection.  The balance between exploration and 
exploitation or ,in other words,  between creation of 
diversity and its reduction , by focusing on the individuals 
of higher fitness, is essential in order to achieve a 
reasonable behavior for GA’s in case of complicated 
optimization problem. 

2. GENETIC ALGORITHM: 

WORKING PRINCIPLE 

2.1 Working of Genetic Algorithm 
Genetic algorithm starts working on a randomly generated 
set of solutions, known as initial population. Each solution 
is represented by a fixed length string of binary numbers 
(i.e 101010…). Fitness is associated with each solution. 
The fitness evaluation is based on the objective function. 
In this each string representing the solution is called 
chromosome, each bit of the string is called the gene. The 
set of strings is called population[1]. 
 

 
 

Figure1: A flowchart of working of genetic algorithm 
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 2.2 Outline of the Basic Genetic 

Algorithm 

1. [Start] Generate random population of n 
chromosomes (suitable solutions for the 
problem)  

2. [Fitness] Evaluate the fitness f(x) of each 
chromosome x in the population  

3. [New population] Create a new population by 
repeating following steps until the new 
population is complete  

I. [Selection] Select two parent chromosomes 
from a population according to their 
fitness (the better fitness, the bigger 
chance to be selected)  

II. [Crossover] With a crossover probability 
cross over the parents to form a new 
offspring (children). If no crossover was 
performed, offspring is an exact copy of 
parents.  

III. [Mutation] With a mutation probability 
mutate new offspring at each locus 
(position in chromosome).  

IV. [Accepting] Place new offspring in a new 
population 

4. [Replace] Use new generated population for a 
further run of algorithm  

5. [Test] If the end condition is satisfied, stop, and 
return the best solution in current population  

6. [Loop] Go to step 2  

Genetic Algorithm generates new population of 
chromosomes by selecting the better fit solutions from 
existing population and applying genetic operators to 
produce new offspring of the solutions[6]. The process is 
repeated successively to generate new population 
iteratively. In this way every successive population is 
better fit then the previous population .This process is 
repeated until some criterion is met or a reasonably 
acceptable solution is found. 
 

2.3 Representation and Encoding of the 

Population 
When  we start to solve a problem with the help of  GA, 
encoding the solutions or chromosomes in the initial 
population  is the first decision to be made. The encoding 
of the chromosomes is problem dependent. There are 
various encoding schemes like binary encoding, 
permutation encoding, value encoding and tree encoding. 
For searching the complex spaces, binary encoding is 
being used. 
 
In binary encoding, each chromosome is a string of bits 0 
or 1.let us take a simple example to explain the encoding. 
Let us take a simple example to explain the coding. Let 
f(x) = x.sin (10π.x) + 1.0 where  
-1<=x<=2; be the function to be optimized for the 
maximum value of x. The values of x ranging between -1 
and 2. are encoded in binary strings. Let us take the length 
of the string l=16. Then there are 216(65536) possible 
values of x. these 216values are to be assigned to x. we 
assign the values as follows [6]: 
 
 
 

0000000000000000                     represents                   x=0 
0000000000000001                     represents                   
x=1*(π/21-1) 
0000000000000010                     represents                   
x=2*(π/21-1) 
. 

. 

1000000000000000                     represents                   
x=215*(π/21-1) 
1111111111111111                     represents                   
x=π-(π/216) just a value before π 
 
For a value x we can generalize that   
                                                                           
                      (Xmax-Xmin) 
X = Xmin +  ------------------  * DV(Si) 
                              21 -1 
                                                                       
where Dv(Si) is the decoded value of string Si. 
 

2.4 Evaluation of the Fitness 
 
Each string in initial population or subsequent population 
is assigned a fitness value which is related to the objective 
function. For maximizing a function the fitness can be 
equal to string’s objective function value. To find the 
optimal minimum the fitness will be equal to 1/(1+f(x)). 
The beauty of the binary coding is shielding between 
actual problem and the working of GA. The GA processes 
only the strings of bits which may represent any number of 
variables depending on the problem. We have to change  
only the definition of the coding. 

 

2.5 Reproduction and Selection 
Reproduction selects good strings from the population and 
puts them in mating pool. There are number of 
reproduction operators. The idea is to pick up the strings 
with above average fitness from current population and 
apply genetic operators to new strings for the successive 
population. One of the important techniques is the fitness 
proportionate selection. The chances of a string Si being 
selected to participate in reproduction are proportional to 
its fitness. This is performed by roulette wheel selection 
.Here; all the chromosomes are placed on an imaginary 
roulette wheel where each chromosome in the population 
gets a place big on the wheel proportionate to its fitness. A 
roulette wheel for five chromosomes is shown in fig 
below:  
 

2.5.1 Roulette Wheel Selection 
 

• Fitness level is used to associate a 
probability of selection with each individual 
solution. 

• We first calculate the fitness for each input 
and then represent it on the wheel in terms 
of percentages. 

• In a search space of ‘N’ chromosomes, we 
spin the Roulette Wheel. 

• Chromosomes with bigger fitness will be 
selected more times [4]. 
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Other techniques for selection are tournament selection, 
steady state selection rank selection. 
 

2.5.2 Crossover and Mutation 
Crossover and mutation are two basic operators of GA. 
Performance of GA very depends on them. Type and 
implementation of operators depends on encoding and also 
on a problem. Here the crossover and mutation are shown 
to work only on the binary encoding.  

In crossover operation the right side portion of the strings 
are swapped among themselves to create two new strings 
to represent the two new chromosomes and solutions. The 
process is shown below[1]: 

 

 

 

 

 

There are many ways how to do crossover and mutation. 
Mostly a single point crossover is used  in GA.the 
performance of GA depends on the retaining of good 
building blocks of the strings to successive generations. 
Crossover operator is responsible to search different ares 
of search space. In mutation some bits are inverted. The 
probability to mutate a bit is kept low. The mutation is 
used to kept diversity in the population. 

After reproduction crossover and mutation are applied to 
whole population one generation is completed. The GA 
operators are applied in the hope that they will produce the 
better fit solutions. Even  if some bad solutions are 
generated they would not survive over the generations and 

better  solutions contribute more to generate new but even 
better fit off springs over successive generations. 

3. SIMULATION FOR SCHWEFEL 

FUNCTION 

3.1 A Simple Simulation 
To illustrate the working of GA I’ve taken the example of 
schwefel function. 
No. of variables: n variables[5]. 
 
  Definition :  
                                 n 
 f(x) = 418.9829 n - ∑ (xi   sin√ | xi  | ) 
                                i=1 
 
                                                    
Search Domain: -500<= xi<=500 i=1,2,……….,n. 
Number of local minima: several local minima. 
 

3.2 Parameters of test simulation 
The parameter setting is very important to make GA work 
successfully. For the parameter setting, the population 
should be large enough for adequate supply of building 
blocks over the generations. The  probability of crossover 
and mutation should be set to allow adequate combining 
and mixing of building blocks but not to spoil too much of 
the good blocks contributing to the fitness[1]. 

3.3 Results of test simulation 

These results has been found out  by implementing the 
G.A in ‘C’ language[7]. 

 
Population Size (pop size) 80 
 
Dimension 2 
 
Cromosome length (lchrom)  10 
 
Maximum num of generationsmaxgen)  20 
 
Crossover Probability (pcross)  0.750000 
 
Mutation Probability (pmut)  0.015000 

Figure 3: Crossover Operator 

Figure 2: Roulette Wheel Selection 

Figure 4: Mutation Operator 

* Mutation (2
nd
 and 14

th
 bits 

mutated in figure 4) 
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3.4 Function Graph for n=2 

   The graph for the schwefel function [5] is shown in 
figure 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

4. CONCLUSION 
First of all it is important to get the idea  about the  
working of Genetic Algorithm. So this  paper gives the 
basic information about the G.A and tell us how to 
initialize the large number of population chromosomes, 
how to apply the operators like selection ,crossover and 
mutation on the population. The test simulations are the 
results after implementing all the operators on the initial 
population using the schwefel function. The simulation has 
been done for a number of generations .The results of the 
simulation gives the best fit chromosome found so far on 
the basis of fitness function.  
 

5. FUTURE TRENDS 
This paper is just the calculation of best fit chromosomes 
in the genetic algorithm by using the schwefel function. 
The future work in this paper can be on the comparison of 
encoding techniques in the genetic algorithms. The 
implementation can be done on different types of fitness 
functions. GA has a large number of application areas so it 
has a vast field for research work. To make Genetic 
Algorithm more effective and efficient it can be 
incorporated with other techniques within its framework to 
produce a hybrid Genetic Algorithm that can reap best 
from its combination. More research needs to be 
concentrated on the development of hybrid design 
alternatives for its efficiency enhancement. 
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