
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

9

Performance Comparison of Managed C# and Delphi
Prism in Visual Studio and Unmanaged Delphi 2009 and

C++ Builder 2009 Languages

Abdulkadir Karaci
Kastamonu University

Department of Computer and
Instructional Technology Education,

Education Faculty, Turkey

ABSTRACT
Managed C# and Delphi Prism in Visual Studio 2008 and
Unmanaged Delphi 2009 and C++ Builder 2009 programming

languages are increasingly gaining in popularity. In this study,

response times of these languages, memory consumptions and

code lengths were tested with various work loads and the results

belonging to these tests were given. Whether there was a
significant difference among the data obtained by the test results

was tested by using Friedman test and a significant difference

was found. Also, the differences between managed languages

and unmanaged languages were revealed by the results of the

performance test.

Keywords
Performance Test, Programming Language, C#, Delphi,

Managed, Unmanaged.

1. INTRODUCTION
Today most of software developers prefer managed languages

because managed languages have the properties of (1) memory

and data type security, (2) automatic memory management, (3)
dynamic code conduction, (4) determining the boundaries

between codes having type security and not having security.

Also, most of these languages are object-based [1].

The languages C#, Delphi Prism in Visual Studio 2008, Java are

managed languages. The languages C, C++, Delphi 2009, C++
Builder 2009 are unmanaged languages. There is not an

automatic memory method in the unmanaged languages and

they are not safe.

The NET platform of the Microsoft has been designed in order

to develop Windows applications more easily by ensuring a
sound framework [2]. The NET Framework is a complete

“application” development platform, which has been developed

by the Microsoft and, which has been established on open

Internet protocols and standards. It bears significant

resemblances to the Java Platform, which has been developed by
the Sun Microsystems before. The scope of application concept

here is very broad. Everything from a desktop application to a

web browser has been considered within this platform and has

been supported. It has been made possible that it can establish

web services easily for its communication with all the
applications in the world and with each other regardless of the

setting in which it was developed. This platform has been

designed as highly more movable than the operation system and

hardware [3].

Programmers and computer scientists have been working on the
advantages and disadvantages of various programming

languages [4]. For the purpose of contributing to the studies in

this field, in this article, the managed C#, Delphi Prism in Visual

Studio 2008 and the unmanaged Delphi 2009, C++ Builder 2009

programming languages are compared in terms of their response
time, memory consumptions and code lengths. Also, the

response times, memory consumptions and code lengths of the

managed and unmanaged languages are compared. Thus,

whether the managed languages, which are superior in terms of

safety, are superior in terms of speed (working time – response
time) will be revealed.

2. THE EXPERIMENTAL STUDY
Of the 400 software engineering research articles, which need
experimental validation, 40 percent do not include experimental

knowledge at all and this rate in other disciplines 15 percent [5].

Therefore, in this article, for the purpose of testing the

performances of the programming languages, the experimental

programs have been prepared and whether there is a significant
difference among the experimental results obtained have been

tested with the Friedman test.

2.1. The Test Platform

2.1.1.The Structure of the Programming Languages
Compared
The properties belonging to the programming languages, the

performances of which are compared are shown in Table 1.

Table 1. The Properties of the Programming Languages Used in the Performance Test

Programming Language Model of execution
Primary

purpose

Memory

management

C++ Builder 2009 CodeGear C++ Compiler 6.10 (bcc32) [6] Application Manual

Delphi 2009
High-performance 32-bit optimizing Delphi® native

code compiler [7]
Application Manual

C# 3.0 JIT compiled [8,9] Application Automatic

Delphi Prism in Visual Studio 2008 Rem Objects Oxygen compiler Application Automatic

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

10

C# is a powerful component oriented but a simple language of

the Microsoft primarily aiming at application developers and

developing applications by using the Microsoft .Net Framework.
C# plays a significant role in the Microsoft NET Framework

engineering. C# bears the most of the best properties of C++ and

Visual Basic; however, some of their inconsistencies and

working time errors have been eliminated, as a result, a clearer

and more logical language has emerged [10,11].

As C#, Delphi Prism is a language working in integration with

Visual Studio. Delphi Prism is preferred in order to develop

desktop and web applications by using the Visual Studio and

Delphi programming language. Prism, which is used in the

Visual Studio platform is not 100 % compatible with Delphi.
However, there are additions to and developments in the Delphi

Prism and Delphi.

The Delphi Prism, Delphi 2009, C++ Builder 2009 are the

programming languages produced by Code Gear and contained

in RAD studio. With Code Gear RAD Studio 2009,
Windows.NET, Web and database applications can be

developed. Delphi 2009 and C++Builder 2009 offer the fastest

way to build highly performative native Windows applications.

Delphi and C++Builder include visual designers and hundreds of

components to easily create rich user interfaces and versatile
database applications. RAD Studio’s Delphi Prism, powered by

the RemObjects Oxygene compiler, enables development for

both .NET and mono applications, and provides support for the

latest .NET

Framework technologies including ASP.NET, WinForms, WPF

and LINQ [12,13].

2.1.2 The Computer Properties
The properties of the computer used in the test are as in the

following:

- ASUS F3J series Notebook

- 100 Gigabyte Hard disk

- 2 Gigabyte RAM

- Intel Core 2 1.83 Gigahertz Processor

- Windows XP Professional Operation System

2.2. Workloads
The workload concept is an ultra significant component in the

problem of modeling computer systems [8]. The focus of

performance evaluations on workload decreases costs and

quantity of simulation [14]. Experimental system evaluations

generally contain a set of programs representing workload
system. Every performance evaluation program is run with

systems having different properties. The behavior of the system

is measured and its performance is commented [15]. Workload

contains a list of demands of the service from the system. For

example, workload constructed in order to compare some
database systems a group of queries [2]. Workloads in this study

are made up of programs, each of which measures a different

property of the programming language. These workloads are

shown in Table 2.

Table 2. Workload

Workload Code Explanation

Hello (1) Printing of “Hello World” on the screen for 5000 times

Matrix (2) Multiplication of two matrices of 500 x 500 dimensions

Sorting (3)
Sorting of the series with 10000 elements, the element values of which are in the worst situation with the

Selection Sorting algorithm.

Sieve (4) Estimation of the prime numbers at the interval of [1..8193] with the sieve algorithm for 10.000 times

Empty Loop (5) The empty loop at the interval of [1.. 100000000]

Mean (6) Estimation of the mean of the numbers at the interval of [1..3000] for 30000 times

Table (7)

Writing and Reading of the character knowledge

“abcdefghijklmnopqrstuvwxyz1234567890abcdefghijklmnopqrstuvwxyz123456 7890abcdefgh” with a text file

for 10000 times

The algorithms used as workloads have been coded in every

language, the performance of which will be tested by using
standard properties in a way that they are equal to each other.

These coded programs have been transformed into executable

code and their memory consumptions have been obtained from

Windows Operation System command prompt.

The Hello (1) program tests writing on the screen and loading
performance of the program, Matrix (2) and Mean (6) programs

integer arithmetic performance, Sorting (3) program loop and

logical decision performance. The Sieve (4) program estimates

prime numbers by using the classical Sieve Eratoshene

algorithm. The Sieve program tests the basic integer arithmetic
and logical comparison operation [16]. The Empty Loop (5)

program tests the loop performance, Table (7) program tests

writing in the text file and reading performance.

2.3. Performance Metric
The performance metrics used in the testing of the performance
of the programming languages are shown in Table 3.

Table 3. Performance Metrics

Performance Metrics

1 Code Length (LOC/CLOC)

2 Response Time (ms (millisecond))

3 Memory Use (KB (Kilobyte))

2.3.1. The Code Length of the Programs Written
The number of the code is commonly used in order to measure

the source code length of a program. (LOC (line of code)) [17].

The number of line is defined as LOC=NLOCK+CLOCK.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

11

NLOCK (Uncommented Source Line of Code) is a code line

which is not used during compilation. CLOCK (A Commented

Source Line of Code) is a code line which is used during
compilation. The best estimation should generally be performed

as in the following in order to estimate the source code length of

a program:

1. Empty lines

2. Lines involved in compilation (CLOC)

3. Data definitions and other commands

4. Lines produced by the software development instrument

The density of the lines compiled in a program can be estimated
with CLOC/LOC formula [18].

The line numbers of program codes used as a workload in this

study have been estimated in line with the explanations stated

above and they have been shown in Table 4.

Table 4. Code Lengths of the Programs Written

Test C# Delphi Prism (Delphi 2009.net)

 CL*
Data

Definitions

Code

Produced by
the Language

L* CL/L CL*
Data

Definitions

Code

Produced by
the Language

L* CL/L

Hello (1) 5 1 9 15 0,33 5 1 13 19 0,26

Matrix (2) 19 5 9 33 0,58 17 3 13 33 0,52

Sort (3) 15 3 9 27 0,56 16 3 13 28 0,57

Sieve (4) 20 3 9 32 0,63 23 3 13 39 0,59

Empty Loop (5) 4 2 9 15 0,27 4 2 13 19 0,21

Mean (6) 9 2 9 20 0,45 9 3 13 25 0,36

Table (7) 18 8 9 35 0,51 21 5 13 39 0,54

Mean 0,48 0,44

Test Delphi 2009 C Builder 2009

 CL*
Data

Definitions

Code

Produced by

the Language

L* CL/L CL*
Data

Definitions

Code

Produced by

the Language

L* CL/L

Hello (1) 4 2 5 11 0,36 5 3 3 11 0,45

Matrix (2) 17 3 5 25 0,68 19 6 3 28 0,68

Sort (3) 13 3 5 21 0,62 16 4 3 23 0,70

Sieve (4) 28 3 5 36 0,78 23 10 3 36 0,64

Empty Loop (5) 4 3 5 12 0,33 5 3 3 11 0,45

Mean (6) 8 3 5 16 0,50 9 5 3 17 0,53

Table (7) 21 4 5 30 0,70 23 7 3 33 0,70

Mean 0,57 0,59

* L:LOC CL:CLOC

The graphic of CLOC/LOC values given in Table 4 are shown in Figure 1.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

Hello

(1)

Matrix

(2)

Sort (3) Sieve

(4)

Empty

Loop

(5)

Mean

(6)

Table

(7)

Test

C
L

O
C

/L
O

C C#

Delphi Prism

Delphi 2009

C Builder 2009

Fig 1: Code density graphic compiled (CLOC/LOC)

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

12

2.3.2. Response Time
Response time is a significant concept in computer systems

performance studies. Response time is the measurement of the
time for which a user or an application has to wait until a

command requested is completed [8]. In this study, response

times of workloads run in the programming languages desired to
be measured are given in Table 5.

Table 5. Response Time of Workloads on Windows Operation System (ms millisecond)

Test C#
Delphi Prism (Delphi

2009.net)
Cbuilder 2009 Delphi 2009

 Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Hello (1) 296 484 342,525 281 344 318,725 312 359 334,45 281 344 317,675

Matrix (2) 3281 3562 3397,95 3062 3328 3168,05 953 1172 1076,5 515 625 554,2

Sort (3) 343 453 389,05 500 609 548,2 578 703 653,15 109 204 175,1

Sieve (4) 1546 1640 1596,25 1468 1515 1497,1 6797 6860 6824,225 766 844 791,425

Empty Loop (5) 203 296 244,7 109 187 146,475 391 516 457,625 93 110 100,75

Mean(6) 203 343 246,25 312 375 338,575 437 500 451,875 78 94 91,775

Table(7) 15 62 25,775 93 156 110,6 343 422 355,425 62 79 72,325

Mean 891.79 875.39 1450.46 300.46

0

1000

2000

3000

4000

5000

6000

7000

8000

Hello (1) Matrix (2) Sort (3) Sieve (4) Empty

Loop (5)

Mean (6) Table (7)

Test

R
e
s
p

o
n

s
e
 T

im
e

C#

Delphi Prism

Cbuilder 2009

Delphi 2009

Fig 2: Response Time Graphic of Workloads on Windows Operation System

Mean response times of all workloads by programming languages are shown in Figure 3.

891,79 875,39

1450,46

298,74

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

C# Delphi Prism Cbuilder

2009

Delphi 2009

Programming Language

M
e
a
n

 R
e
s
p

o
n

s
e
 T

im
e
s

Mean response times of all

workloads by programming

languages

Fig 3: Mean Response Times of All the Workloads by the Programming Languages

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

13

2.3.3. Memory Consumption
Memory consumption of every workload has been obtained

separately by programming languages by using Memory Booster
Gold. These values are shown as Kilobyte (KB) in Table 6.

Table 6. Memory Consumption (KB)

The graphic belonging to memory consumption data is shown in Figure 4.

0

2000

4000

6000

8000

10000

12000

14000

16000

Hello (1) Matrix (2) Sort (3) Sieve (4) Empty

Loop (5)

Mean (6) Table (7)

Test

M
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

K
B

)

C#

Delphi Prism

Cbuilder

Delphi 2009

Fig 4: Memory Consumption Graphic

2.4. Statistical Design
Minimal descriptive statistics contains the following for a data

set: total observation number, mean, median, standard deviation,

minimal value, maximum value and number of observations.

Presentation of descriptive statistics data on dependent variable
is significant [19]. Therefore, descriptive statistics data obtained

are shown in detail by programming languages in Table 7.

Table 7. Descriptive Statistics

Dependent Variable: Response Time

Workload
Programming

Language
Mean Std. Deviation Sub Limit Upper Limit N

Hello [1]

c# 342,5250 29,80362 332,616 352,434 40

d2009net 318,7250 17,41645 308,816 328,634 40

d2009 317,6750 15,98459 307,766 327,584 40

cbuilder 334,4500 14,42034 324,541 344,359 40
Total 160

Matrix [2]

c# 3397,9500 96,45564 3388,041 3407,859 40

d2009net 3168,0500 93,90174 3158,141 3177,959 40

d2009 554,2000 22,09444 544,291 564,109 40

cbuilder 1076,5000 50,49295 1066,591 1086,409 40

Total 160

Sort [3]

c# 389,0500 19,13776 379,141 398,959 40

d2009net 548,2000 21,57777 538,291 558,109 40

d2009 175,1000 25,53610 165,191 185,009 40

cbuilder 653,1500 23,80428 643,241 663,059 40

Total 160

Sieve [4]
c# 1596,2500 13,40254 1586,341 1606,159 40

d2009net 1497,1000 9,98922 1487,191 1507,009 40

Workload C#
Delphi Prism

(Delphi 2009.net)
C++ Builder 2009 Delphi 2009

Hello (1) 4404 4796 3828 1280

Matrix (2) 6648 7352 3516 3312

Sort (3) 4620 4572 1328 3828

Sieve (4) 4280 4568 1308 1416

Empty Loop (5) 4100 4476 1288 1336

Mean (6) 4340 4508 1316 1336

Table (7) 14656 9654 1420 1388

Mean
6149,71 5703,71 2000,57 1985,14

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

14

d2009 791,4250 18,17703 781,516 801,334 40

cbuilder 6824,2250 13,60522 6814,316 6834,134 40

Total 160

Empty [5]

c# 244,7 15,92804 234,791 254,609 40

d2009net 146,475 17,25523 136,566 156,384 40

d2009 100,75 7,87645 90,841 110,659 40

cbuilder 457,625 22,59077 447,716 467,534 40

Total 160

Mean [6]

c# 246,25 23,58482 236,341 256,159 40

d2009net 338,575 11,74054 328,666 348,484 40

d2009 91,775 5,21579 81,866 101,684 40

cbuilder 451,875 15,60603 441,966 461,784 40

Total 160

Table [7]

c# 25,775 9,75202 15,866 35,684 40

d2009net 110,6 18,17127 100,691 120,509 40

d2009 72,325 7,69411 62,416 82,234 40

cbuilder 355,425 18,26849 345,516 365,334 40

Total 160

Total

c# 891,7857 1131,39129 280

d2009net 875,3893 1035,17521 280

d2009 300,4643 256,45752 280

cbuilder 1450,4643 2210,59212 280

Total 1120

ANOVA is used when searching the effect of two independent

variables on a dependent variable [20]. In this study, the
dependent variable is response time, the independent variables

are the program and the programming languages. Significant

results have been obtained by applying two-way ANOVA on

these dependent and independent variables. However, because

variance equality assumption has not been ensured, these results
have not been presented in the article. Instead, the Friedman test,

a non-parametric method, has been used.

The Friedman test is the non-parametric correspondence of two-

way ANOVA test. When the same samples belonging to the

subjects have been treated and when these samples have been
measured at three or more points, the Friedman test is used

[20,21].

The Friedman test has been used in order to find whether there is

a significant difference among response times obtained as a
result of running of every workload on C#, Delphi Prism, Delphi

2009 and C Builder 2009 programming languages. A significant

difference has been found among response times obtained from

4 different programming languages as a result of the analysis of

response times [

2
(df =3, N=280) = 486.261, p< .05] obtained

as a result of running of workloads on programming languages.

The test data obtained from the Friedman test is shown in Table

8.

Table 8. The Friedman Test Data

The Programming

Language
N Mean Std. Deviation Mean Rank 2 df P

C# 280 891.7857 1131,39129 2.61

486.261 3 .000*
Delphi Prism 280 875.3893 1035,17521 2.51

Delphi 2009 280 300.4643 256,45752 1.25

C Builder 2009 280 1450.4643 2210,59212 3.63

3. RESULTS AND DISCUSSION
When the general means of response times belonging to all the

workloads obtained from performance tests, the Delphi 2009

programming language is in average three times as fast as C#
and Delphi Prism languages and five times as fast as C++

Builder 2009 languages. When C# and Delphi Prism languages

having Net technology are compared, Delphi Prism is 0.01 %

faster in terms of response time. However, because

measurements have been performed on millisecond, this
difference is not very significant. Also, the response times of

these languages having Net technology are in average 1.6 times

as fast as C++ Builder 2009 language.

When response times of the programming languages are

compared in detail by workloads, in all the languages, the

performance of which has been tested, the loading and print on
the screen speed of the programs is equal to each other with

small differences which can be ignored, by the result of Hello

(1) test.

By the result of Matrix (2) and Mean (6) tests, the Delphi 2009

language is approximately 5 times as fast as the C# and Delphi
Prism, and 3.5 times as fast as the C++ Builder 2009 languages.

As a result of this, the Delphi 2009 language gives a result five

times as fast as the C# and Delphi Prism languages, and 3.5

times as fast as the C++ Builder 2009 language in the integer

arithmetic.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

15

In the logical performance by the Sort (4) test results, the Delphi

2009 is 2.2 times as fast as C#, 3.1 times as fast as the Delphi

Prism, 3.7 times as fast as the C++ Builder 2009; the Delphi
Prism is 1.4 times as fast as the C#. By the Sieve (4) test results

which tested the basic integer arithmetic and logical comparison

operation, the Delphi 2009 is 2 times as fast as the C#, 1.8 times

as fast as the Delphi Prism, and 8.6 times as fast as the C++

Builder 2009. By the results of Empty (5) test which measured
the loop performance, the Delphi 2009 is 2.4 times as fast as the

C#, 1.4 times as fast as the Delphi Prism, and 4.5 times as fast as

the C++ Builder 2009.

Another salient result by the test results is that writing in and

reading the text file speed of the C# programming language is
faster than the other languages. By the results of the Table (7)

test, the C# language is 2.8 times as fast as the Delphi 2009, 4.4

times as fast as the Delphi Prism, and 14.2 times as fast as the

C++ Builder 2009. Although the C# language is slower than the

Delphi 2009 in other tests, it is faster in writing in and reading
the text file operation.

When the density of the lines compiled in the programming

languages (CLOC/LOC), the least code density is in the Delphi

Prism 2009 language with a 0.44 code density mean. The code

density mean of the other languages is respectively the C# 0.48,
the Delphi 2009 0.57, and the C++ Builder 2009 0.59. The C#

and Delphi Prism languages having Net technology have less

code density.

By the memory consumption mean of all the workloads, the

Delphi 2009 is the least memory consuming language with a
1985.14 KB. The memory consumption mean of the other

languages is respectively the C++ Builder 2000.57 KB, the

Delphi Prism 5703.71 KB, and the C# 6149.71 KB. The

programming language, the memory consumption of which is

the most is the C#. The C# and Delphi Prism languages consume
3 times as much memory as the other languages in average.

4. CONCLUSION
In terms of response time, the fastest programming language is
the Delphi 2009 and the slowest programming language is the

C++ Builder 2009. Although the managed language C# and the

Delphi Prism are powerful in terms of code density, they are

weak in terms of memory consumption and response time.

The Delphi 2009 is the most powerful programming language
both in terms of memory consumption and response time.

5. REFERENCES
[1] Blackburn, Stephen M.; McKinley, Kathryn S.,e.g., Wake

Up and Smell the Coffee : Evaluation Methodology for the

21st Century, Communications of the ACM 51 , 83-89,

(2008).

[2] J.R. Dick, K. B. Kent , J. C. Libby, A quantitative analysis

of the .NET common language runtime, Journal of Systems

Architecture 54, 679–696, (2008).

[3] Wikipedi World Wide Web site,

http://tr.wikipedia.org/wiki/.NET_Framework

[4]] L. Prechelt, ,An empirical comparison of seven

programming languages ,Computer, 33,23 – 29, (2000).

[5] N. Juristo, A. Moreno, Basics of Software Engineering

Experimentation, Kluwer Academic South America,

Boston, (2001).

[6] Codegear C++ Builder (2009): C++ Builder 2009 Web

Site:

http://www.codegear.com/article/38534/images/38534/CBu

ilder2009FeatureMatrix.pdf

[7] Codegear Delphi (2009): Delphi 2009 Website:
http://www.codegear.com/article/38548/images/38548/Del

phi2009FeatureMatrix.pdf

[8] P. Fortier, H. Michel, Computer Systems Performance

Evaluation and Prediction, Digital Pres,USA, Burlington,
(2003) .

[9] J. G. Allen, , J. S. Jin, , Code Generation for Just -in-Time

Compiled Mobile Collector Agents, , ACM International

Conference Proceeding Series 161,1-4, (2003).

[10] J. Sharp, Microsoft Visual C# 2008 Step by Step, Microsoft
Pres (USA, Washington, 2007).

[11] J. Sharp, Microsoft Visual C# 2005 Step by Step, Microsoft

Pres USA, Washington, (2005).

[12] CodeGear RAD Studio 2009 (2009): CodeGear RAD

Studio 2009 Web Site:
http://www.codegear.com/products/radstudio

[13] M. Cantù, Delphi 2007 Handbook, Wintech Italia Srl,

(2007).

[14] T. M. Conte, W. Hwu, Benchmark Characterization,

System Sciences, 1991. Proceedings of the Twenty-Fourth
Annual Hawaii International Conference on 1 364-372,

(1991).

[15] T. M. Conte, W. Hwu , “Benchmark Characterization for

Experimental System Evaluation,” Proc. Hawaii Int'l Conf.

System Science I, 6-18, (1990).

[16] R. C. Morin, Managed C# versus Unmanaged C++ (2009):

Web Site:

http://www.csharphelp.com/archives2/archive458.html

[17] M. ŞAHİN, Java, Python Ve Ruby Dillerinin Performans

Karşılaştırması, Akademik Bilişim 2007 Dumlupınar
Üniversitesi, (2007).

[18] M.Chiş, Evolutionary Decision Trees and Software Metrics

for Module Defects Identification, Proceedıngs Of World

Academy Of Scıence, Engıneerıng And Technology, 28,

273-277, (2008).

[19] K. El Emam, A Methodology for Validating Software

Product Metrics, National Research Council of

Canada,Ottawa, Ontario, Canada NCR/ERC-1076, (2000).

[20] Ş. Kalaycı,“SPSS Uygulamalı Çok Değişkenli İstatistik

Teknikleri”, Asil Yayın Dağıtım Turkey, Ankara, (2008).

[21] J.M. Sá, “Applied Statistics Using SPSS, STATISTICA,

MATLAB and R” , Springer Berlin Heidelberg,USA,

Newyork, (2007).

http://tr.wikipedia.org/wiki/.NET_Framework
http://www.codegear.com/article/38534/images/38534/CBuilder2009FeatureMatrix.pdf
http://www.codegear.com/article/38534/images/38534/CBuilder2009FeatureMatrix.pdf
http://www.codegear.com/article/38548/images/38548/Delphi2009FeatureMatrix.pdf
http://www.codegear.com/article/38548/images/38548/Delphi2009FeatureMatrix.pdf
http://www.codegear.com/products/radstudio
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=882
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=882
http://www.csharphelp.com/archives2/archive458.html
http://www.springerlink.com/content/?Author=Joaquim+Marques+de+S%c3%a1
http://www.springerlink.com/content/?Author=Joaquim+Marques+de+S%c3%a1

