
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

1

A Publish/Subscribe Model for QoS-aware Service
Provisioning and Selection

Elarbi Badidi

Faculty of Information Technology,

United Arab Emirates University, P.O. Box 17551,

Al-Ain, United Arab Emirates

ABSTRACT
With the growing adoption of the Service Oriented Architecture

(SOA) in the industry and the wide deployment of Web services,
users are increasingly requiring services that are capable of

meeting their quality-of-service (QoS) requirements. In this

paper, we propose a novel framework for QoS-aware Web

service provisioning, which relies on QoS brokers, to mediate

between clients and service providers, and a QoS Notification
Broker that implements a publish/subscribe model to handle

notifications on significant changes in QoS offerings.

Furthermore, we describe a multi-attributes algorithm for the

selection of potential service providers that can fulfill clients’

requests. The algorithm calculates the utility value of each
service provider, per Web service type, based on the client QoS

requirements. One of the advantages of the approach is that

service providers may provide several service types. These

services may be simple Web services or composite Web services

aggregated from other services. The publish/subscribe model
allows QoS brokers to be aware of significant changes in the

QoS offerings of service providers; and consequently, be able to

make informed selection decisions. Besides, the proposed

selection algorithm allows ranking service providers by
matching their up-to-date QoS offers against the QoS required

by the client.

Keywords

Web services; Service Oriented Architecture; QoS; QoS

management; QoS Broker; Notification broker.

1. INTRODUCTION
The proliferation of broadband, wireless, and cellular networks

has led to a remarkable rise in the number of users who are

using a variety of modern Internet-enabled devices to consume

online business services. Service oriented computing and Web

technologies facilitate the deployment of business applications
on the web, collaboration among businesses, and application

integration on a global scale. The current most promising

technology to rely on the idea of service oriented computing is

Web services technology. It provides the basis for the

development, the deployment, and the invocation of business
processes, distributed over the Internet, via standard APIs

(Application Programming Interfaces) and protocols.

As a result of this rapid growth, users increasingly require

services that can meet their QoS requirements. Thus, businesses

should provide QoS-aware services if they want to remain
competitive. Most research work on the support of QoS in SOA

focused on identifying QoS requirements and mechanisms for

QoS management. Numerous efforts have investigated

approaches for describing QoS offerings of Web services and

for publishing QoS-aware Web services. This includes the Web

Services Management Framework (WSMF) [1] and the Web

Services Offer Language (WSOL) [2]. Furthermore, many
frameworks and middleware infrastructures have been proposed

to provide support for the management ofthe QoS of Web

services and to provide users with QoS-aware services [3][4][5].

The authors in [3] have designed and implemented a QoS

brokerage system, which monitors QoS with respect to
availability, performance, and reliability of Web services. In [4],

the authors proposed a framework that is relying on a QoS

broker for the composition of QoS-aware Web services. The

broker’s components implement dynamic service composition,

service selection, and service adaptation. The authors in [5]
described a Web service framework that supports QoS

management using QoS brokers. Clients interact with the UDDI

(Universal Description, Discovery and Integration) registry

through the QoS brokers. The brokers publish QoS information
they obtain from service providers in the UDDI and help clients

choose services according to their functional and QoS needs.

A key aspect of QoS management, which is not addressed

adequately by most QoS management systems, is the

management of the continual change in the QoS delivered by
service providers. This change is mainly due to the variation in

workload. Clients are notified of these changes only after a

certain period and can suffer degradation in the QoS they are

expecting from service providers.

To cope with the issues of QoS-aware service provisioning,
QoS-driven selection of service providers, and management of

the continual change in QoS offerings, we propose a novel

framework for QoS management. The main components of the

framework are QoS brokers and a QoS Notification Broker. QoS

brokers mediate between clients and service providers with
regards to the services and the QoS that service providers should

deliver. They receive notifications on any significant change in

the QoS offering of service providers by means of the QoS

Notification Broker, which implements a publish/subscribe

model. Furthermore, we describe a multi-attributes decision
algorithm for the selection of service providers by QoS brokers

on the basis of the QoS they can offer and the client QoS

requirements.

The remainder of the paper is organized as follows. Section 2

provides background information on the concept of QoS and the
various models for QoS information representation. Section 3

presents an overview of our proposed framework, and describes

the programming interfaces of the framework’s components

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

2

then the interactions among them. Section 4 describes our

proposed multi-attributes decision algorithm for the selection of

QoS-aware service providers. Section 5 discusses some issues
and challenges of the approach. Finally, Section 6 concludes the

paper and describes future work.

2. BACKGROUNDAND RELATED WORK

2.1 Quality-of-Service in SOA
The term “QoS” originates from the fields of

telecommunications, distributed multimedia, and networking.

QoS refers to a collection of qualities or characteristics of a

service, such as availability, security, response-time, throughput,

latency, reliability, and reputation. The arrangement between the
customer and the service provider is referred to as the Service

Level Agreement (SLA). An SLA describes agreed service

functionality, cost, and qualities [6]. Availability represents the

percentage of time that the Web service is operating. Security

characteristics comprise the authentication mechanisms that the
service offers, encryption, and access control. The Web service

provider may offer different security levels depending on the

client’s request. Response-time is the time a service takes to

respond to diverse types of requests. Throughput is the speed at

which a service can process requests. Latency is the elapsed
time between sending a request and receiving the response.

Reputation is a qualitative measure of web services

trustworthiness. It depends on the end-users’ experiences in

using a Web service [7].

2.2 QoS Representation Models
Various models and approaches have been proposed in literature

for representing QoS parameters in SOA and for providing QoS

support in Web services. The most significant ones are:

 Extension of WSDL (Web Services Description Language)

with QoS information

 Extension of UDDI with QoS information

 Utilization of a QoS broker

 Utilization of WS_Policy

2.2.1 WSDL Extension
The initial specification of WSDL does not provide support for

the description of nonfunctional properties of a Web service.
Several proposals for extending WSDL with QoS information

have been proposed [8][9]. Kang [9] advocates the use of

annotations, which WSDL supports, to describe QoS

information in a WSDL document. In [8], the authors proposed

extension of WSDL with QoS information using a meta-model
transformation, which is consistent with the Model Driven

Architecture (MDA) principles and recommendations. The

WSDL meta-model is then transformed into a QoS-enabled

WSDL (Q-WSDL) meta-model, which can be used to specify

QoS attributes.

Another relevant research work regarding the integration of QoS

attributes in WSDL is the work of WSQM TC, an OASIS

technical committee for Web service quality model, which

published the Web Services Quality Model (WSQM). WSQM

models and explains the quality factor, quality action, and
quality attributes for Web services. The authors in [10] describe

the WSQDL (Web Services Quality Description Language),

which uses WSQM.

2.2.2 UDDI Extension
This approach consists to extend the current UDDI data

structure with QoS information of a Web service. Many research
works advocate the utilization of tModels structures to express

QoS attributes [11][12][13]. In [11], the authors proposed three

approaches, namely type-based, keyword-based and ontological-

based approaches, to model QoS tModel (Technical Model) that

can be stored in the UDDI. In [13], the KeyName attribute of the
tModel holds the name of a quality attribute while the KeyValue

attribute holds its values. Blum et al. [12] submitted their work

to OASIS UDDI Specification TC for standardization. A. Shaikh

et al. [14] developed a compliant UDDI, called UDDIe that

allows storing QoS attributes within the property bag element.

2.2.3 Utilization of a Brokerage Service
This approach has been used in several works

[15][16][3][4][5][17]. The QoS broker acts as an intermediary

between clients and service providers. The functions of the QoS

broker typically include monitoring and collecting QoS

information of Web services, making selection decisions on
behalf of clients, and negotiating SLAs and QoS assurances with

Web services.

2.2.4 Utilization of WS_Policy
Other works [18] [19] have proposed extensions to the Web

services Policy Framework (WS-Policy) to represent QoS
policies of Web services [20]. WS_Policy does not define how

policies are discovered or attached to a Web service. The

WS_PolicyAttachment specification [21] defines such

mechanisms, especially for associating policy with WSDL

artifacts and UDDI elements.

The above approaches can be combined to enable better support

of QoS in SOA. Furthermore, some efforts have added further

structure, specifically QoS constraints, to Web services

descriptions through the use of ontologies [22] [23].

3. A FRAMEWORK FOR QOS-AWARE

SERVICE PROVISIONING
In any business activity with a system of delivery and

consumption, brokers emerge to facilitate business between

consumers and providers. This is the case for service delivery in

a SOA and Web-based environment. QoS brokers can be used to

decouple clients from service providers while managing the
provisioning of QoS.

Figure 1 depicts our framework for Web service provisioning.

The main components of the framework are clients, QoS

brokers, QoS Notification Broker, and Service providers.

Multiple QoS brokers may be deployed, one for each local
domain for instance. A discovery service will allow clients to

bind to the right QoS broker.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

3

Figure 1: Framework for QoS -aware service provisioning

3.1 QoS Brokers
A QoS broker is a mediator service that decouples clients from

service providers. It is in charge of handling subscriptions of

clients in which they express their interest to consume some type

of service, and registration of service providers that are willing
to provide some types of service. The QoS broker may also find

service providers that offer a certain service type by looking up

an UDDIe directory [14]. In addition to the basic functionalities

of a traditional UDDI server, the UDDIe server provides support

for the specification of the QoS that a service provider can
ensure to its clients. Given that Web services providers and

clients do not normally have the capabilities to negotiate,

manage, and monitor QoS, they delegate management tasks,

such as Web services selection and QoS negotiation, to the QoS

Broker. QoS brokers are aware of the current QoS of service
providers through a QoS Notification Broker that implements a

topic-based publish-subscribe system.

Figure 2 shows the architecture of the QoS broker, which

includes several components that cooperate in order to deliver

personalized services to clients with various devices. These
components are the Request Dispatcher, the QoS Negotiator, the

QoS Information Manager, the Profile Manager, and the Policy

Manager. They are under the control of the Coordinator

component. They allow carrying out various management

operations such as admission control, QoS-based service
selection,QoS negotiation, user profile management, and

policies management. The back-end databases maintain

information about services’ policies, clients’ profiles and

preferences, and dynamic QoS information.

The Request Dispatcher is in charge of the admission control of
incoming requests by determining whether the received requests

can use the requested services. The Request Dispatcher is also in

charge of implementing different policies for the selection of

service providers, based on the client’s QoS requirements and

the service providers’ QoS offerings. We describe a new
algorithm for QoS-aware server selection in Section 4. The

algorithm takes account of the current conditions and

capabilities of potential service providers as well as the QoS

required by the client and his/her weights for quality attributes.

Figure 2: Architecture of the QoS Broker

The QoS Negotiator is in charge of carrying out the negotiation

process in order to reach an agreement as to the QoS to be

delivered to the client. First, the client notifies the QoS broker

about its required service and its preferred level of QoS. Based

upon available QoS information, the Request Dispatcher selects
an appropriate service provider, according to the selection

policy, capable of satisfying the required QoS. Then, the

QoSNegotiator approaches this service provider to determine

whether it can ensure the required level of QoS given its current

conditions. Afterwards, the client and the service provider sign a
contract. The contract specifies the service type that the provider

should offer to the client, the QoS to ensure, the cost of service,

and actions to take when there is a violation of the agreement on

QoS. If the selected service provider is unable to deliver the

required QoS, the broker selects another service provider and
reiterates the negotiation process.

The Profile Manager is responsible for managing clients’

profiles, including their preferences in terms of personalized

services and required QoS.

The Policy Manager is responsible for managing different kinds
of policies such as authorization policies and QoS-aware

selection policies of service providers.

3.2 QoS Notification Broker
The QoS Notification Broker implements a topic-based

publish/subscribe system in which service providers are the

publishers and QoS brokers are the subscribers. Figure 3 depicts

this model. QoS offerings of Web service types, requested by

clients, represent the topics of the system. The Publish/subscribe
messaging model is a one-to-many pattern of asynchronous

message distribution based on registration of interest. In this

model, publishers associate the name of a topic to each message

(“publish”) rather than addressing it directly to subscribers.

Then, the message system sends the message to all eligible
recipients that expressed their interest in receiving messages on

that topic (“subscribe”). As opposed to point-to-point messaging

systems, such as message queuing, the publish/subscribe model

of asynchronous communication is a far more scalable

architecture. This is because the source of the information has
only to concern itself with creating the information, and can

leave the task of servicing potential recipients to the messaging

system. It is a loosely coupled architecture in which senders

often do not need to know who their potential subscribers are,

and the subscribers do not need to know who generates the
information.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

4

Figure 3: Topic-based publish/subscribe system

In addition to this model for getting QoS updates, the QoS

Notification Broker implements a normal on-demand

request/response model, in which it requests up -to-date QoS

offering from service providers once a QoS broker requires QoS
information for a given Web service type. Therefore, the QoS

Notification Broker may either pull QoS offering from service

providers or let service providers push updated QoS offering.

Service providers, typically residing in different domains,

deliver services to clients with various QoS. Therefore, a QoS
broker is in charge of selecting appropriate QoS-aware service

providers to deliver services requested by a client. In section 4,

we describe our proposed selection algorithm that allows the

ranking of service providers based on the QoS they can offer

and the QoS required by the client.

3.3 Service Providers
As shown in Figure 1, service providers can offer several types

of services using Web services. These Web services can be
simple or composite Web services that are the result of the

composition of many simple or composite services. In order to

estimate their current QoS for each service type they offer,

service providers should use monitoring techniques that allow

collecting measurement data at selected observation points. By
aggregating collected data, the service provider can determine

the value of each QoS indicator. If there is a significant change

in the current QoS of services, the service provider notifies the

QoS Notification Broker about the change in its QoS offering.

Then, the QoS Notification Broker notifies any subscriber to the
corresponding QoS offering of that change.

Figure 4 depicts the process of QoS evaluation and notification

at the service provider site. Monitoring data is collected at

various points of observation. It is then used by the QoS

Evaluator component in order to provide an estimation of the
current QoS offerings. QoS Information is made available to the

QoS Negotiator and QoS Notifier components. The QoS

Negotiator is responsible for negotiating with QoS brokers, or

directly with clients, the service and the QoS level to be

delivered. The QoS Notifier is in charge of notifying the QoS
Notification Broker of substantial changes in the QoS offering

of a given service type.

Figure 4:Service provider architecture

3.4 Interfaces and Interaction Model
To describe the interactions between the components of the

framework, we consider only the case of a single QoS broker.

The model can be easily extended to consider several QoS
brokers. Figure 5 depicts the interfaces of the framework’s

components, and Figure 6 shows the interactions among them.

The QoS Notification Broker acts as an intermediary between

publishers (service providers) and subscribers (QoS brokers) on

a collection of Web service types (QoS offerings).

A QoS broker invokes the registerSubsriber() method of the

QoS Notification Broker to register its interest in using the

services of the QoS Notification Broker. If the processing of this

method is successful, the QoS Notification Broker returns a

subscription ID to the QoS broker that will be used as parameter
in subsequent requests for service.

The QoS broker invokes the subscribe() method of the QoS

Notification Broker to register its interest to receive updates on

QoS offerings of some service types. Conversely, the QoS

broker may invoke the unsubscribe() method of the QoS
Notification Broker if it is not interested anymore in receiving

updates on the QoS offering of a Web service type.

Similarly, a service provider invokes registerPublisher() of the

QoS Notification Broker to register its interest to publish QoS

offering of some types of Web service through the QoS
Notification broker. If the processing of that method is

successful, the QoS Notification Broker returns a registration ID

to the service provider that is used in subsequent requests of the

service provider.

Figure 5:Interfaces of the framework’s components.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

5

Figure 6: Diagram of interactions among the framework

components

The QoS Notification Broker receives notifications on QoS

offering change through its notify() method that a service
provider invokes. It, then, notifies a QoS broker about that

change by invoking its notify() method. Furthermore, a QoS

broker may request the current value for a given Web service

type by invoking getCurrentQosOffering() of the QoS

Notification broker, which forwards the request to service
providers that are providing that Web service type requested by

the QoS broker. A newly-subscribed QoS broker can invoke

getLastQosOffering() in order to get the last value of a given

Web service type that other QoS brokers have already received.

The QoS Notification Broker has also two private additional
methods findRegisteredSubscribers() and

findRegisteredPublishers(). The first method is invoked to get

the list of QoS brokers, which have subscribed to a given Web

service type. The Notification broker calls this method once it

has received a notification of QoS offering change for that Web
service type. The second method is invoked to get the list of

service providers that are publishing the Web service type

requested by a QoS broker that has invoked

getCurrentQosOffering().

This mode of interaction allows service providers to notify QoS
brokers about any substantial change in their QoS offerings. In

the same way, it allows QoS brokers to request information

regarding the QoS offering of service providers that are offering

a service type requested by the client. Using up -to-date

information on QoS offerings allows QoS brokers to make
informed decisions during the selection of appropriate service

providers, which can fulfill the QoS requirements of a client.

3.5 A MULTI-ATTRIBUTES SELECTION

ALGORITHM
As we have stated earlier, the QoS broker is in charge of
selecting appropriate service providers to deliver services

requested by the client. Several service providers may provide

the same service to the client. Thus, the selection has to be done

according to the service providers’ QoS offerings and the

client’s QoS requirements. In this section, we describe our
proposed algorithm for the selection of service providers, which

relies on using multi-attributes utility functions. We describe

how the algorithm works in the case of a single domain.

However, it can be easily extended to the case of multiple

domains as depicted by Fig. 1.

As numerous potential service providers, within the domain, can
deliver the Web service required by a consumer, it is essential to

consider only potential service providers that can satisfy the

QoS required by the client.

Let be the list of QoS indicators considered
in the system. QoS indicators may concern for instance

parameters such as availability, throughput, response time,

reputation, and cost of service. Let be the list

of Web service types to which a client has subscribed by
showing its interest in receiving their QoS offerings. The client

may, for example, require these service types to create a

composite service.

Let be the list of service providers,
which have subscribed with the QoS Notification broker. Two

service providers may provide similar or different Web service
types. One service provider offers, for example, flight booking

and hotel reservation services while the other provider offers

only hotel reservation.

For a given service type, candidate service providers typically

provide service functionality with different QoS. The following

vector expresses the QoS offer of a service provider for a

Web service type .

To enable sorting and ranking of service provider candidates, we

consider normalized values of the QoS offers and utility

functions to map the vector of QoS values into a single real
value. We define

as the normalized value of the ith quality indicator for service

type by the service provider

For each QoS offering, to which the client subscribed, the client
specifies the min values of the normalized QoS indicators that he

can tolerate. The following vector expresses the minimum QoS

requirements that the client tolerates for a given Web service

type with :

is the minimal acceptable value of for service type .

, and .

Therefore, the following matrix expresses the whole QoS

requirements of the client for all its subscribed Web service

types and all QoS indicators considered in the system:

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

6

 (1)

A zero value in the matrix means that the client has no constraint

on the corresponding QoS parameter. The algorithm aims to find

for each Web service type , to which the client subscribed, a

suitable service provider, which can meet the minimum quality
requirements of the client. The following matrix expresses the

QoS offer of a service provider .

 (2)

is the value of for service type that can assure.

, with and

is suitable for provisioning Web service type if the client’s

minimum QoS requirements are satisfied. This means that :

for and

The client can assign relative weights to the QoS indicators. He
may even set weights for each Web service type to which it

subscribed. For example, for the flight booking Web service

type, more weight may be given to the availability indicator than

to the cost indicator. For the hotel reservation Web service type,

more weight may be given, for example, to the cost indicator
than to the other QoS indicators. Therefore, the weight matrix is

given by:

 (3)

is the weight given to quality indicator for service type

. and and and

The score of a given QoS indicator for a given Web service
type by offer is:

for and

The score matrix of offer, for all QoS indicators and all
Web service types of the system is:

 (4)

Given the weight matrix and the minimum QoS requirements

matrix, the minimum score matrix is:

 (5)

Where

for and

The difference matrix, , shows whether can
satisfy or not all QoS requirements for all Web service types to

which the client has subscribed. A value that is less than zero in

this matrix means that cannot satisfy the QoS requirements
for the corresponding Web service type and QoS indicator.

Therefore, we have to reason per Web service type, and consider

only service providers that can meet the QoS requirements for

that Web service type. The utility function per Web service type

for a candidate service provider offer is:

. (6)

This value corresponds to the linear additive utility function.

The following vector expresses the utility vector of for all
Web service types:

 (7)

Considering the utility functions of the entire candidate service

providers, we get the following decision matrix:

 … Max
Utility

Selected
SP

 … … …

 … … …

… … … … … … …

 … … …

A zero in the decision matrix means that the corresponding

service provider cannot meet the QoS requirements of the

corresponding Web service type. The maximum value of all

utility functions in a row j corresponds to the best QoS offer that

can fulfill the QoS requirements of the client for the Web
service type . The most appropriate service provider (MASP)

for delivering Web service type is the provider that maximizes

the above utility functions.

. (8)

If no service provider meets the client’s QoS requirements for a

given Web service type, then the QoS broker may ask the client

to lower its QoS expectations.

Figure7 summarizes the steps of the algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

7

Step-1: Construct the normalized matrix , defined in (1), of

the client’s minimum QoS requirements .

Step-2: Construct the client’s weight matrix W, defined in

(3), and the minimum score matrix , defined in (5).

Step-3: For each candidate Service provider regis tered
with the QoS broker,

a) Construct the normalized matrix , defined in (2), of

the QoS offering of .
b) Calculate the score matrix , defined in (4), that

represents the score of the QoS offering of against
the client QoS requirements for each Web service type.

c) Calculate . If a value of this matrix is less

than zero, then i t means that cannot satis fy the QoS
requirements of the client for the associated Web

service type and the associated QoS indicator. Only
rows with positive values will be considered in the next
s teps .

d) Calculate the Utili ty vector defined in (7). Note that
rows with negative values in the difference matrix will
have a score 0 in the decision matrix created in s tep 4.

Step-4: Create the decision matrix, and fill out the maximum
utili ty value for each Web service type and the SP providing

that value.

The most sui table service provider (MSSP) for each
Web service type is given by equation (8).

Figure 7: QoS-based service providerselection algorithm

4. ISSUES AND CHALLENGES
Performance monitoring, billing, managing clients’ expectations

are significant concerns among others that a service provider has

to handle. The service provider must ensure that its services are

highly available and that its clients can access them. Security is

also a prime concern with any application service. Therefore, the
service provider should design and implement simple and

efficient security solutions such as an identity management

service. In this scenario, each client of the service provider has

an identity account, which the system uses to authenticate the

client and track all his requests for service.

In the proposed model, the QoS Notification Broker sends

notifications to QoS brokers by relying on the good will of

service providers for signaling any significant change in their

QoS. Both QoS brokers and the QoS Notification Broker do not

have the necessary tools to carry out independent monitoring of
the QoS delivered by service providers. Therefore, it is

necessary to extend the framework by implementing some form

of QoS monitoring at the QoS broker level in order to evaluate

the real QoS delivered by a service provider. Moreover, we have

deliberately considered only a single QoS Notification Broker in
the framework in order to show how QoS brokers become aware

of changes in the QoS offered by service providers. The model

can be easily extended to support multiple QoS Notification

brokers.

Another concern that should be handled by QoS brokers and the
QoS Notification Broker is the heterogeneity in the

representation and modeling of QoS information by each service

provider, as we have described earlier in the background. With

this heterogeneity in QoS representation models, QoS brokers
should provide a common ontology-based QoS model and the

mappings from the various models to this common model.

Furthermore, the interaction model, described in previous

sections, provides the basis for the development of an API that

all components of the framework can use to interact with each
other. Heterogeneity of the APIs offered by various QoS brokers

and service providers is one of the challenges of the approach.

5. CONCLUSION AND FUTURE WORK
As a result of the emergent demand for QoS-aware services,

service providers are increasingly using SOA and the Web

services technology to implement services that can ensure

several QoS levels. In this paper, we have presented a novel

framework for QoS-aware service provisioning. The framework
relies on QoS brokers, to mediate between clients and service

providers, and a QoS Notification broker, to handle the

notifications on the changes in the QoS offerings of service

providers, using a publish/subscribe model.

We have described the model of interactions among the
components of the framework, and a multi-attributes decision

algorithm for the ranking and selection of appropriate service

providers that can meet the client QoS requirements.

As a future work, we are planning to investigate more on the

issue of a common ontology-based model for QoS
representation that all components of the framework can use;

and then, describe the mappings from the various QoS

representation models described in the literature to that common

model. Moreover, we intend to build a prototype of the

framework together with some real scenarios for QoS-aware
service provisioning.

6. REFERENCES
[1] Catania,N., Kumar,P., Murray,B., PourhedariH.,

VambenepeW., and WursterK., 2003. “Web Services

Management Framework, Version 2.0,” Hewlett

Packard, http://xml.coverpages.org/WSMF-Overview.pdf

[2] Tosic,V., Pagurek,B., and Patel,K., 2003. “WSOL – A

Language for the Formal Specification of Classes of
Service for Web Services,” In Proceedings of The 2003

International Conference on Web Services (ICWS'03),

CSREA Press, pp. 375-381.

[3] Yeom, G. and Min,D., 2005. “Design and Implementation

of Web Services QoS Broker,” In Proceedings of The
International Conference on Next Generation Web Services

Practices (NWeSP 2005), pp. 459- 461.

[4] Tao,Y. and Lin,K.J., 2005. “A Broker-based Framework

for QoS-aware Web Service Composition,” In Proceedings

of The 2005 IEEE International Conference on
eTechnology, e-Commerce and e-Service (EEE'05), pp. 22-

29.

[5] Zuquim, G.D. and Felgar de Toledo,M.B., 2006. “A Web

Service Architecture Providing QoS Management,” In

Proceeding of The Fourth Latin American Web Congress
(LA-WEB'06), pp. 189-198.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.1, July 2011

8

[6] Dan,A. et al., 2004. “Web services on demand:

WSLAdriven automated management,” IBM Systems

Journal, 43(1), pp. 136-158.

[7] Menascé,D.A., 2002. “QoS Issues in Web Services,” IEEE

Internet Computing, 6(6), pp. 72–75.

[8] D’Ambrogio,A., 2006. "A model‐driven wsdl extension for
describing the qos of web services," in Proceedings of the

International Conference on Web Services (ICWS’06).

[9] Kang,Y.H., 2007. "Extended Model Design for Quality

Factor Based Web Service Management," Future

Generation Communication and Networking (FGCN 2007),
Vol. 2.

[10] Lee,Y. and Yeom,G., 2007. “A Quality Chain Modeling

Methodology for Ternary Web Services Quality View,” In

Proceedings of the 5th ACIS International Conference on

Software Engineering Research, Management &
Applications (SERA '07), pp. 91-97.

[11] Lo,C.C., Cheng,D.Y., Lin,P.C.,and Chao,K.M., 2008. "A

study on representation of QoS in UDDI for web services

composition," In International Conference on Complex,

Intelligent and Software Intensive Systems (CISIS 2008),

pp. 423‐428.

[12] Blum,A. and Carter,F., 2004. "Representing Web Services

Management Information in UDDI".

[13] Xu,Z., Martin,P., Powley,W. and Zulkernine,F., 2007.

"Reputation‐enhanced qos‐based web services discovery,"

In IEEE International Conference on Web Services (ICWS

2007), pp. 249‐256.

[14] Shaikh Ali,A., Rana,O.F., Al-Ali,R., and Walker,D.W.,

2003. “UDDIe: an Extended Registry for Web Services,”

In Proceedings of The IEEE Symposium on Applications
and the Internet Workshops, pp. 85 – 89.

[15] Tian,M., Gramm,A., Naumowicz,T., Ritter,H., and

Schiller,J., 2003. “A Concept for QoS Integration in Web

Services”, In Proceedings of the First IEEE Web Services
Quality Workshop.

[16] Yu,T. and Lin,K.J., 2004. “The Design of QoS Broker

Algorithms for QoS-Capable Web Services,” In

Proceedings of the IEEE International Conference on

eTechnology, e-Commerce and e-Service (EEE'04), Vol.
00, pp. 17-24.

[17] Badidi,E. andEsmahi,L., 2011. “A Scalable Framework for

Policy-based QoS Management in SOA Environments,”

Journal of Software, Academy Publisher, 6(4) pp. 544-553.

[18] Zuquim,G.D. and Felgar de Toledo,M.B., 2006. “A Web
Service Architecture Providing QoS Management,” In

Proceeding of The Fourth Latin American Web Congress

(LA-WEB'06), pp. 189-198.

[19] Chaari,S., Badr,Y., and Biennier,F., 2008. “Enhancing Web

Service Selection by QoS-based Ontology and WSPolicy,”
In Proceedings of The ACM Symposium on Applied

Computing (SAC 2008), pp. 2426-2431.

[20] Bajaj,S., et al., 2007. “Web Services Policy 1.5

Framework,” W3C Candidate Recommendation 28

February 2007. http://www.w3.org/TR/2007/CR-ws-
policy-20070228/

[21] W3C, “Web Services Policy Attachment,”

http://www.w3.org/Submission/WS-PolicyAttachment".

[22] Trastour,D., Bartolini,C., and Castillo,J.G., 2001. “A

semantic Web approach to service description for
matchmaking of services,” In Proceedings of the

International Semantic Web Working Symposium

(SWWS).

[23] Maximilien,E.M. and Singh,M.P., 2004. “A Framework

and Ontology for Dynamic Web Services Selection,” IEEE
Internet Computing, 8(5), pp. 84–93.

