
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.10, July 2011

19

Transformation of UML Class Diagram for Object

Oriented Database System

Dr. Vipin Saxena
Department of Computer Science

B.B. Ambedkar University (A Central University)
Rae Barely Road, Lucknow-25, U.P. (India)

Ajay Pratap
Department of Computer Science

B.B. Ambedkar University (A Central University)
Rae Barely Road, Lucknow-25, U.P. (India)

ABSTRACT

Now-a-days use of objects is a common approach in all aspects

of computing. An Object-Oriented database can utilize the

benefits of both the design and implementation of any

application. Object-Oriented database System is the fusion of

Database Management System with Object-Oriented System.

UML provides stable and industry standard notation for object-

oriented analysis and design models. A case study of NSC

scheme of Indian Postal Services is considered for storing the

data using object database modeling. UML class diagram and

sequence diagram are constructed for the post office system and

then the transformation of class diagram is done for the ease of

understanding and working.

General Terms

Equivalence, Transformation, Algorithms et. al.

Keywords

UML, OODBMS, Class Diagram, Sequence Diagram, OCL.

1. INTRODUCTION
The benefits of employing object technology in application

design and development are now well known. Viewing real life

problems in terms of objects can often lead to a more natural

design and thus a better implementation [1]. Many recent

research efforts have been devoted to the definition of object-

oriented database models. These are data models based on the

notions of object, class, attribute, and method, where classes and

attributes are used to describe the structural aspects of object and

methods are used to represent their dynamic aspects [2]. UML is

a language to specify, construct, present and document artifacts

of both software systems and business processes and other

systems that are not strictly software [3]. Object-oriented

software development has been in wide use for some time.

There is now a stable, industry-standard notation for object-

oriented analysis and design models – the Unified Modeling

Language (UML) [4], [5].

The class diagram shows the static structure of classes in the

system and it can also be used to measure the performance of

any system [6]. Martin Gogolla and Mark Richters have

presented the rules to make equivalences of various notations

[7]. Security technique on the designed data cube is explained

by saxena et al. [8]. Object Management Group [9] is an active

group for the production of various kinds of static and dynamic

types of UML diagram. In the Non-Postal Services, Indian

Postal Services has Public Provident Fund, National Savings

Certificate, Kisan Vikas Patra, Savings Bank Account and

Recurring Deposit Account [10].

Relational database management systems (RDBMSs) are not

designed to handle the complex data. The complexity of data is
increasing and so the object-oriented database management
systems (ODBMSs) would soon become the primary database

technology.

2. THE UML CLASS DIAGRAM
In recent years, the Unified Modelling Language (UML) has

emerged as the defacto standard for the representation of

software engineering diagrams (Rumbaugh et al.1999) [5]. The

UML class diagram contains classes, interfaces, collaborations,

and dependencies, associations and interface relationships [6].

The UML class diagrams are used to describe the static view of

any application. Classes and their relationships are the main

constituents of class diagram. A class is a description of a

concept which may have attributes and operations associated

with it. Classes are represented as rectangles and relationship

between two classes is drawn as a line.

3. TRANSFORMATION PROCESS
UML is very complex modeling language. The objective of

transformation is to explain more complex features in terms of

basic ones. Its static modeling with class diagram involves many

description primitives such as qualifiers, cardinality constraints,

association classes, compositions, aggregations and

generalizations. The n-ary associations and OCL constraints are

used for the transformation process.

The Object Constraint Language (OCL) is used to define

instructions for specifying constraints and actions in any model.

A constraint is a restriction on an element that limits the usage

of that particular element. The OCL is a notational and formal

mathematical expression language. When we view entire

modeling details and relationship of any class diagram it appears

complex but by using OCL, the complexity can be reduced.

Relationships in class diagram are removed after they have been

defined by the OCL expressions [6].

Multiplicities of all relationship types are not given but they are

required only when statistics of data are calculated. By using

these classes containing only binary associations and OCL

constrains can be transformed into equivalent class diagram that

involves cardinality constraints, qualifier, aggregation,

composition, generalization and association. The rules used to

design equivalent class diagram are called equivalence rules. In

this research paper we are implementing the transformation from

n-ary association to binary association.

http://www.indiapost.gov.in/15yearsPPF.html
http://www.indiapost.gov.in/KVP.html
http://www.indiapost.gov.in/SavingsAccount.html
http://www.indiapost.gov.in/5YearsRD.html

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.10, July 2011

20

4. CASE STUDY: POST OFFICE SYSTEM
In this section, we are designing the class diagram and sequence

diagram for the National saving Certificate scheme and then the

class diagram is transferred into equivalent class diagram.

4.1 The Class Diagram
Static representation of the system is done by UML class

diagram. The class diagram for Indian Postal Services is

represented in Figure 1. Two types of classes are present in this

class diagram: Persistent and Transient. Persistent classes are

those classes which can be stored in the database and object can

return its value between different executions of programs.

Fig 1: UML Class Diagram for Indian Postal Services

This class diagram contains seven persistent classes (Person,

Address, Customer, Postal Worker, Scheme, Schm_Invnt and

Purchase). These classes are connected to each other by various

relationships with their multiplicities. Diagram contains one

transient class (Control) for the smooth flow of interaction

between classes. Subclasses Customer and Postal Worker are

inherited from non-abstract class Person, which is disjoint and

incomplete inheritance. This shows the process of

generalization. Class postal worker has a qualifier Policy

Number. A qualifier is an attribute or set of attributes of

association. The postal worker can get details of customer by the

attribute Policy Number. The diagram also shows the

association between Scheme and Schm_Invnt classes by the

composition because each scheme has its own scheme

inventory, which cannot be shared by another one. The strong

form of aggregation is known as composition.

4.2 The Sequence Diagram

Fig 2: UML Sequence Diagram for Indian Postal Services

0..1

0..1 *

Person

{Persistent}

Person_ID

Name

<<Create>

Search ()

Postal_Wrkr

{Persistent}

PW_ID

Decr_Invnt ()

Search ()

Customer

{Persistent}

C_ID

Make_Pymnt ()

Search ()

Address

{Persistent}

Address_ID

Address

City

<<Create>

Search ()

Control

{Transient}

…………
Purchase ()

Integrity ()

ChechInh ()

Scheme

{Persistent}

Scheme_ID

Min_Amt

Max_Amt

Int_Rate

Locking_Prd

Maturity_Prd

<<Create>

Search ()

Purchase

{Persistent}

Purchase_Date

Maturity_Date

<<Create>

Search ()

Schm_Invnt

{Persistent}

Scheme_ID

Quantity

Min_Level

Max_Level

<<Create>

Search ()

Pol No.

1 1..2

1

*

*

1

1

*

*

1

*

*

*

*

1

1

<<Info>>

<<Res>>

<<Info>>

Make_Payment ()

[Invalid] <<Destroy>>

Cout << “x”

Continue

Decr_Invnt ()

GetDetails ()

<<Res>>

Continue

GetInfo (

)

<<Res>>

Available

GetInfo (

)

[Res<1] cout <<”x”

[Else] search ()

Continue

GetRequest ()

[Res<1] cout <<”x”

[Else] search ()

<<Found>>

Continue
: Schm_Invnt

: Customer

: Pol_Details

: Control : Postal_Wrkr

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.10, July 2011

21

Sequence diagram tells how objects interact with each other i.e.

how messages are being send and received. The control object is

used for the smooth functioning of the system and it handles all

objects from different classes. With the help of control object

the customer requests for any scheme to the postal worker by

using operation GetRequest(). If the request is valid then

integrity check is performed on scheme inventory object by

using integrity(). Interactions such as continue and destroy

control the flow.

The customer is informed about the availability of scheme and

makes payment by using Make_Payment(). Decr_Invnt()

decreases the number of schemes from the inventory after

selling the scheme. The details of policies sold, are stored in

Policy Details and a unique Policy Number is generated. Postal

worker or the customer can get information from the policy

details by using GetDetail() and GetInfo().

4.3 Designing the Equivalent Class diagram
Static modeling with UML class diagram involves many

description primitives such as qualifiers, cardinality constraints,

association classes, compositions, aggregations and

generalizations [7]. The objective of transformation is to explain

more complex features in terms of basic ones. Transformation

process generates an equivalent class diagram from the existing

one. Here the class diagram in Fig 1 is transformed into

equivalent class diagram.

The class diagram presented in Fig 1 shows following

complexities:

a. Attribute Policy No is used as quantifier;

b. Presence of association class;

c. Composition between the class Scheme and Scheme

Inventory;

d. Generalization relationship between the class person and

sub classes Customer and Postal Worker.

4.3.1 Equivalence Rule for Qualifier
The qualifier is translated into association class if it is already

present.

Fig 3: Equivalence rule for qualifier

The constraints require that the size of the set of customer object

determined by the combination of postal worker object and the

value of attribute Policy No is restricted by given lower and

upper bound.

Customer : Postal_Wrkr -> Set (Customer),

Postal_Wrkr : Policy details -> Postal_Wrkr,

Customer : Policy details -> Customer,

Policy Details : Postal_Wrkr -> Set (Policy

Details),

Policy Details : Customer -> Set (Policy

Details).

4.3.2 Equivalence Rule for Association Classes
The translation of association classes are done into ternary

associations, which is shown into Fig 4. A ternary association

GetDetails is used between postal worker, customer and policy

details. The constraint demands that a policy number is related

to exactly one post office and to exactly one customer, and there

cannot be a different policy numbers with the same links.

Sales Detail->forAll(p |

p.Postal Worker->size=1 and p.Customer->size=1

and

Sales Detail->forAll(p’ | (p. Postal Worker =

p’. Postal Worker and p.Customer=p’.Customer)

implies

p=p’))

Fig 4: Equivalence rule for Association Class

4.3.3 Equivalence Rule for Composition

Fig 5 shows that the composition relation is translated into

binary association. We require the part to be existentially

dependent for the aggregate and a strong form of forbidding

sharing.

Fig 5: Equivalence rule for Composition

Postal_Wrkr

{Persistent}

PW_ID

Decr_Invnt ()

Search ()

Customer

{Persistent}

C_ID

Make_Pymnt ()

Search ()
Policy Details

{Persistent}

Policy No

Scheme_ID

C_ID

Amount

Make_Pymnt ()

Search ()

Postal_Wrkr

Policy Details

Customer

{+Constraints}

Get Details

Postal_Wrkr

Policy Details

Customer

Schm_Invnt Scheme
0..1 *

{+Constraints}
Postal_Wrkr Customer

0..1 *

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.10, July 2011

22

4.3.4 Equivalence Rule for Generalization
As shown in Fig 6, UML generalizations are transformed to

special binary associations. The cardinalities make sure that

each specialized object is related with exactly one general

object. We can say that a special object is associated with a

unique general object.

Fig 6: Equivalence rule for Generalization

The multiplicity between person and subclasses is 1..1 and 0..1

that means the any object from class person has at most one

association with any object of sub class.

After that, we have to determine the average multiplicity and

number of objects for each association end and each class

extension. For this, we have to take information from the

system. The data is not in clustered form and so the extensions

of classes are stored.

Fig 7: Equivalent Class Diagram of Fig 1

Fig 7 presents the final equivalent class diagram of the class

diagram presented in Fig 1. The complex features of the class

diagram such as qualifiers, association classes, compositions and

generalizations are transformed into equivalent easy

representations.

5. CONCLUSION AND FUTURE WORK

UML diagrams are designed for an OODBMS and here we have

presented an approach to transform the existing UML class

diagram into equivalent class diagram. Our results suggest that

some of the UML class diagram concepts increases the

complexity and works as a shortcut for existing one. We have

translated few UML features such as qualifiers, association

classes, compositions and generalizations into association

relations with additional constraints because the association

concept is a very general and it is able to model many situations.

Further, it can be used for the performance analysis of the

software system using class diagram.

6. ACKNOWLEDGMENTS
The authors are thankful to Prof. B. Hanumaiah, Vice-

Chancellor, B.B. Ambedkar University (A Central University)

Lucknow for providing the excellent facility in the computing

lab of B. B. Ambedkar University, Lucknow, India. I am also

thankful to Mr. Martin Gogolla and Mr. Mark Richters for his

support to understand the concepts used in the design and

implementation of our project.

7. REFERENCES
[1] A Case Study of an Object Database Implementation, Billy

Gibson, APM. 1608.00.02 Draft 10th October 1995.

[2] Diego Calvanese, Maurizio Lenzerini. Making Object-

Oriented Schemas More Expressive. in Proc. of PODS’94,

[3] Luca Vetti Tagliati, Carlo Caloro. UML and Object

Oriented Drama, Online at http://www.jot.fm. Published by

ETH Zurich, Vol. 7, No. 1, January-February 2008.

[4] Fowler, Martin (2004) UML Distilled, Third Edition: A

Brief Guide to the Standard Object Modeling Language.

Addison- Wesley, Boston.

[5] Rumbaugh, James, Ivar Jacobson, and Grady Booch (2005)

The Unified Modeling Language Reference Manual, 2nd

ed. Addison-Wesley, Boston.

[6] Ahmad Alsaadi, “A Performance Analysis Approach Based

on the UML Class Diagram”

[7] Martin Gogolla and Mark Richters, “Equivalence Rules for

UML Class Diagrams”

[8] Saxena, V., Verma, N.M.P. and Pratap, A., “A Data Mining

Technique for a Secure Electronic Payment Transaction”,

International journal of Economics and finance, Vol. 2, No-

4, ISSN 1916-9728, November 2010.

[9] Object Management Group, Unified Modeling Language:

Superstructure, v.2.1.2. OMG, Needham, MA, USA, 2007

[10] “Indian post offices to go hi-tech” 25 November 2010.

www.indiapost.gov.in.

0..1 *

*
* {4374}

*

{32422}{+Constraints}

1..1

0..1 {1}

Policy Details

Person

Customer
Get Details

Postal_Wrkr

Purchase

Addres

s

Schm_Invnt Scheme

{+Constraints} {1} {1}

1..1 {1} {25450} {26112}

{19327} 1

*

1

{6}

 0..1 0..1

1..1 1.1

Person

Postal Wrkr Customer

Person

Postal Wrkr Customer

