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ABSTRACT 

Grid computing can be defined as applying the resources of 

many computers in a network to a problem which requires a 

great number of computer processing cycles or access to large 

amounts of data. Thetask scheduling problem is the problem of 

assigning the tasks in the system in a manner that will optimize 

the overall performance of the application, while assuring the 

correctness of the result. In this paper we use the technique of 

PSO with Naive crossover to solve the taskscheduling problem 

in grid computing. The aim of using thistechnique is use the 

given resources optimally and assign the task to the resources 

efficiently. The simulated results show that PSO with Naive 

Crossover proves to be a better algorithm when applied to 

resource allocation anddisk scheduling in grid computing. 
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1. INTRODUCTION 
Grid computing is a network that is not in the same place but 

distributed resources such as computers, peripherals, switches, 

instruments, and data. Grid computing appears to be a promising 

trend for three reasons: 

1. Its ability to make more cost-effective use of a given 

amount of computer resources.  

2. It is a way to solve problems that can't be approached 

without an enormous amount of      computing power. 

3. Because it suggests that the resources of many 

computers can be cooperatively and perhaps 

synergistically harnessed and managed as 

collaboration toward a common objective.  

Grid computing can be used to compute large number of tasks 

on the resources which are geographically remotely located. 

Task scheduling is a challenging problem in grid computing 

environment [6]. Many parallel applications consist of multiple 

computational components. While the execution of some of 

these components or tasks depends on the completion of other 

tasks, others can be executed at the same time, which increases 

parallelism of the problem.  

Abraham et al and Braun et al [1] address the dynamic 

scheduling of jobs to the geographically distributed computing 

resources. They provide an introduction of computational grids 

followed by a brief description of the three nature’s heuristics 

namely Genetic Algorithm (GA), Simulated Annealing (SA) and 

Tabu Search (TS). Yang gao et al [7] proposed two algorithms 

that use the predictive models to schedule jobs at both system 

level and application level. M Aggrawal et al [2] presented a 

Genetic Algorithm based scheduler. The proposed scheduler 

used in both the intra-grid of a large organization and in a 

research grid consisting of large clusters, connected through a 

high bandwidth dedicated network. Shanshan Song et al [11] 

proposed a new Space-Time Genetic Algorithm (STGA) for 

trusted job scheduling in which they  consider three security-

driven heuristic modes: secure, risky and  f -risky. Lee Wang et 

al [12] developed a heuristic based approach to matching and 

scheduling in heterogeneous computing environment. In Lin 

JianNing et al [8] scheduling-algorithm based on genetic 

algorithm (GA) is addressed.  

In this paper simulated results prove that PSO with Linear 

Crossover proves to be better when it is applied for resource 

allocation in the field of grid computing. This paper is organized 

as follows. In section 2 the issues related to task scheduling is 

discussed. In section 3 particle swarm algorithm is introduced. 

In section 4 we discuss a need of a new algorithm i.e. PSO with 

Linear Crossover. In section 5 we implement PSO with Linear 

Crossover in our problem. In section 6 we see the simulation 

result of work done in section 5. 

2. TASK SCHEDULING ISSUES IN GRID 

COMPUTING 
Computational grid can be combination of hardware and 

software that can be used to solve complex computational 

problems. The resource in a computational grid can be anything 

which can be used to solve the given problem. For example a set 

of printers which are used for printing a set a documents. The 

overall objective of task scheduling is to minimize the 

completion time and to utilize the resources effectively and 

usually it is easy to get theinformation about the ability to 

process data of the available resource.[1][13]. 

The problem of task scheduling arises in a situation where there 

are more tasks than the available resources. Consider a scenario 

wherein there arex={1,2,3,4….X} tasks to be done and there are 

y={ 1,2,3,4…..Y} resources available. With the condition that 

the task is not allowed to migrate between resources. In such a 

situation if we have y> x then there is no reason for developing 

new algorithms for task scheduling because then resources can 

be allocated to the tasks on first come first serve basis, but if y< 

x then we need to develop new algorithms for task scheduling 

because now inefficient resource allocation can greatly hamper 

the efficiency and throughput of the scheduler. To formulate the 

problem, define Ta ={1,2,3,….X} as x independent tasks 

permutation and Rb={1,2,3,y} as y computing resources. 
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Suppose that the processing time Pa,b for task a computing on b 

resource is known. The completion time F(x) represents the total 

cost time of completion[13]. The objective is to find an 

permutation matrix m=(Mab), such that: 

Mab= 1if resource a performs task b 

elseMab =0 

which minimizes total cost: 

F(x) =∑∑ Pab *Mab (1) 

subject to ∑Mab = 1; ∀b ϵT (2) 

Mabϵ{0,1}, ∀aϵ R; ∀bϵT (3) 

 

The minimal F(x) represents the length of schedule whole tasks 

working on available resources. The scheduling constraints (2) 

guarantee that each task is assigned to exactly one resource. 

3. PARTICLE SWARM OPTIMISATION 
The particle swarm optimization algorithm, originally 

introduced in terms of social and cognitive behavior by Kennedy 

and Eberhart (1995) [9], solves problems in many fields, 

especially engineering and computer science. The individuals, 

called particles henceforth, are flown through the multi-

dimensional search space with each particle representing a 

possible solution to the multi-dimensional optimization problem. 

Each solution's fitness is based on a performance function 

related to the optimization problem being solved. The movement 

of the particles is influenced by two factors using information 

from iteration-to-iteration as well as particle-to-particle. As a 

result of iteration-to- iteration information, the particle stores in 

its memory the best solution visited so far, called pbest, and 

experiences an attraction towards this solution as it traverses 

through the solution search space. As a result of the particle-to-

particle interaction, the particle stores in its memory the best 

solution visited by any particle, and experiences an attraction 

towards this solution, called gbest , as well. The first and second 

factors are called cognitive and social components, respectively. 

Afteriteration, thepbestand gbestare updated for each particle if a 

better or more dominating solution (in terms of fitness) is found. 

This process continues, iteratively, until either the desired result 

is converged upon, or it is determined that an acceptable 

solution cannot be found within computational limits. For an n-

dimensional search space, the ith particle of the swarm is 

represented by an n-dimensional vector, Xi= (xi1 ,xi2 .....xin )T. 

The velocity of this particle is represented by another n-

dimensional vector Vi = (vi1; vi2...... vin )
T. The previously best 

visited position of the ith particle is denoted as Pi = (pi1, 

pi2,........pin )
T. `g'is the index of the best particle in the swarm. 

The velocity of the ith particle is updated using the velocity 

update equation given by 

 

vid =  vid +c1r1( pid  - xid) +  c2r2( pgd -xid)(4) 

and the position is updated using 

xid=  xid +  vid(5) 

where d  = 1, 2....n ; i  = 1;  2....S , where S  is the size of the 

swarm; c1  and c2  are constants, called cognitive and social 

scaling parameters respectively (usually, c1  = c2 ; r1 , r2  are 

random numbers, uniformly distributed in [0, 1]). Equations (4) 

and (5) are the initial version of PSO algorithm. A constant, 

Vmax, is used to arbitrarily limit the velocities of the particles and 

improve the resolution of the search. Further, the concept of an 

inertia weight was developed to better control exploration and 

exploitation. The motivation was to be able to eliminate the need 

for Vmax . The inclusion of an inertia weight (w) in the particle 

swarm optimization algorithm was first reported in the literature 

in 1998 (Shi and Eberhart, 1998) [13]. The resulting velocity 

update equation becomes: 

 

vid =  w * vid +  c1 r1( pid - xid) +  c2r2( pgd -xid)                  (6) 

Eberhart and Shi (2000) [14] indicate that the optimal 

strategy is to initially set w to 0.9 and reduce it linearly to 0.4, 

allowing initial exploration followed by acceleration toward an 

improved global optimum.  

4. PSO WITH NAIVE CROSSOVER 

OPERATOR 
Particle swarm optimization is a population based heuristic 

search technique. PSO uses iterative process to search the global 

optima in solution space. Crossover operator with PSO has a 

property of better exploration in initial generations soby using 

crossover search area is explored in a relatively better manner 

even in later generations. PSO has a higher convergence rate, by 

using crossover with PSO premature convergence is also 

reduced so that PSO does not get trapped in local optima. 

Crossover can help the particles to jump out of the local optima 

by sharing the others’ information. Two Particles generated by 

PSO are randomly selected for crossover operation and two new 

offspring are formed. The best offspring (in terms of fitness) is 

selected from the new offspring. This new best offspring 

replaces the worst parent particle which is selected for 

crossover. The replacement is done if the new best offspring has 

the good fitness value than the parent particle. 

 

4.1 Naive Crossover 
Naive crossover operator [3] produces two off springs from a 

pair of parents by randomly selecting a cross site between 1 and 

n, parents solution dimension and replacing the former and latter 

half of each parent from the cross site. Let 

( ….. ) and 

( .. ) are two parent solutions of 

dimension n at generation t. A cross site of value 3 will produce 

the offsprings shown in equation (7) and (8). 

 

Offspring 1: (  .. )  (7)      

Offspring 2: (  ….. )         (8) 

5. PROPOSED METHODOLOGY 
In this paper we have proposed a solution for grid scheduling 

using PSO with Naive Crossover operator. For solving any 

optimization problem we have to first formulate the problem 

according to optimization problem. 

 

5.1 Individual Representation 
To solve the problem, representation of the individual and 

fitness value is required, so we have to first represent the grid 

scheduling problem in terms of PSO with Naive Crossover 
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operator. In grid scheduling we have a set of tasks and a set of 

resources as input and a sequence, which informs that which 

task is to be operated on which resource and in which order as 

output. PSO with Naive Crossover is based on population 

concept and each individual in population represents a solution, 

in case of grid scheduling problem, solution is asequence of 

tasks which are to be performed. So we have to first formulate 

each individual of PSO with Naive Crossover. We took 

dimension as a number oftask and value as an initial sequence 

from the possible set of sequences to find optimal sequence, we 

represent task set as Xid={t1,t2,t3….tx} where i is the particular 

individual and d represents the dimension index and set of 

resources Rlm={r1,r2,r3….ry}, where l represents a particle/ 

sequence and m represents the tasks which are assigned to a 

resource. Task id and resource id is given to each task and each 

resource so that they can be easily differentiated from one other. 

Such as t1 is the task id of first task and r1 is the resource id of 

firstresource. Here x represents the total number of tasks. For 

eg.if we have 10 taskswhich are to be performed on 5 available 

resources, then we have dimension value as 10. 

Assuming that we have a dimension value={9,4,7,0,3,6,1,2,8,5}. 

Here 

9 represent value for first dimension of an individual which 

indicates 10th task. 

4 represent value for second dimension of an individual which 

indicates 5th task. 

7 represent value for third dimension of an individual which 

indicates8th task. 

0 represents value for fourth dimension of an individual which 

indicates 1st task. 

3 represent value for fifth dimension of an individual which 

indicates4th task. 

6 represent value for sixth dimension of an individual which 

indicates 5th task. 

1 represents value for seventh dimension of an individual which 

indicates 2ndtask. 

2 represent value for eighth dimension of an individual which 

indicates 3rd task. 

8 represent value for ninth dimension of an individual which 

indicates 9th task. 

5 represent value for tenth dimension of an individual which 

indicates 6th task. 

Then using the formula 

 

Rlm = Xid mod M    i.e. value of Task set mod Total resources (9) 

 

This fomula is used to determine the associated resources for the 

calculated tasks in the sequence. we can calculate the resource 

set as {4,0,3,2,1,2,3,1}. From this set, we can interpret that  

 

Task 9 is operated by resource 4, 

Task 4 is operated by resource 0, 

Task 7 is operated by resource 3, 

Task 0 is operated by resource 0, 

Task 3 is operated by resource 3, 

Task 6 is operated by resource 2, 

Task 1 is operated by resource 1, 

Task 2 is operated by resource 2, 

Task 8 is operated by resource 3, 

Task 5 is operated by resource 1 

Fitness Function After representation of each individual we 

have to calculate fitness value of each individual. In case of grid 

scheduling problem optimal solution is the minimization the 

value of equation(2). Our main objective is to minimize the 

fitness value, an individual who have the minimum fitness value 

is considered as the optimal solution. 

 

5.2 Algorithm: Grid Scheduling Using PSO 

with Naive Crossover Operator 

 

PHASE 1[Initialization Phase] 

for s = 0 to Swarmsize do 

for d = 0 to DimensionSize do 

Randomly initialize particle with sequence of tasks 

Compute resource for that particle/sequence 

end for d 

Compute fitness of that particle/sequence 

Compute global best 

end for s 

 

PHASE 2[Update Phase] 

repeat 

fors = 0 to Swarmsize do 

for d = 0 to ProblemDimension do 

A new sequence is generated 

 computeresources for that particle/sequence 

end for d 

compute fitness of updated particle 

if needed update historical information for global best(Pg) 

end for s 

 

PHASE 3[Crossover Operator Phase] 

ifcrossover criteria is met then then 

Select two random particles from current swarm for  

crossover operation 

Apply crossover operation to generate new particle 

New offspring generated from parents as a result of crossover. 

Compute the resources for that offspring using (6) 

compute the fitness of updated particle 

Replace the worst parent particle with new best offspring if it  

is better 

ifneeded update the historical information of global best(Pg) 

end if 

untilStopping Criteria is not met 

 

To solve the grid scheduling problem we have used the Particle 

Swarm Optimization (PSO) with Naive crossover operator. We 

set an initial population by selecting a random starting sequence 

from the set of x! sequences; where x is the total number of 

tasks. After getting the initial particle we calculate fitness value 

of each particle, according to equation(2). After that we 

calculate best among the entire particle and set it as an initial 

global best.PSO update equation is used to update old 

population and generate new sequences and then their resources 

are calculated. These sequences, along with their resources are 

then used to findthe fitness value of each individual of each 

particle of the population. After this if crossover criteria is 

satisfied, then crossover operation performed over two randomly 

selected particle and as a result a new sequence is generated. 

Then the resource of this offspring is calculated. Using the 

sequence and its resources the fitness value of the offspring is 

calculated. Based on the fitness value, if theoffspring is better 

than its worst parent then this particle replaces that parent. 
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6. EXPERIMENTAL RESULTS AND 

DISCUSSION 
This section focuses on the efficiency of the proposed algorithm 

PSO with linear crossover to solve grid task scheduling. This 

section shows the experimental results and the parameter 

settings of the proposed algorithm.  

 

6.1 Experimental Setup 
For every algorithm there are some control parameters which are 

used for its efficient working.  Hence, there are some control 

parameters for PSO with Naive Crossover operator also. We did 

an extensive literature survey and carried out our own 

experiments for determining the values of these control 

parameters. From this we found that the values which we have 

taken in this experiment are standard values and they are also 

suitable for this experiment.The   first control Parameter is 

Maximum function evaluation and the value of this parameter 

we have taken in our experiment as 20,000. The next parameter 

in our experiment is maximum number of population and we 

have taken its value to be 40. Another control parameter is 

number of runs and we have taken its value in our experiment as 

30. It must be noted that each run contains maximum function 

evaluation, which is 20,000 in our experiment. The fourth 

control parameter is Dimension and it depends upon the number 

of tasks. The next control parameter is the value of   c1 & c2 

which we have taken as 1.14. And w (Inertia weight) is also a 

control parameter and we have taken its value as 0.7. 

In this experiment we are using the feature of naive crossover 

operator in the PSO algorithm. The control parameter for 

Crossover operator is Probability. Therefore we need to find the 

value of this parameter also. Its value can range from 0.1 to 0.9. 

In our experiment we get the best result when the value of 

probability is 0.8. 

 

6.2 Experimental Results 
In this section we analyze the result obtained by our algorithm. 

To test the efficiency of our algorithm results of PSO with Naive 

crossover is compared with PSO algorithm results. In a grid 

scheduling task we already have the information about the 

number of resources, number of tasks, and the amount of time 

that will be taken by a resource to complete a task. We just need 

to find the sequence which will provide us the optimal results. 

We conducted the experiment by varying the number 

ofresources as well as varying the number of tasks and then we 

compared our results with that of PSO. In particular, we have 

taken three cases in which we have taken different number of 

resources and tasks.  

Here, we are provided with 3 resources and 10 tasks. Given 

below are the execution time of PSO and PSO with Naive 

crossover operator with differing probability. 

From the table, it can be concluded that by using Naive 

Crossover operator we get better results when the probability is 

0.3, 0.4 & 0.8. The execution timetaken by PSO is 1158 units. 

The minimum execution time taken by the PSO with Naive 

crossover operator is 993 units. The sequence generated when 

the probability used in Naive Crossover operator was 0.8 is 

9,0,5,1,2,3,4, 6, 8, 7. 

 

 

Table 1. Execution time calculated by PSO and PSO with 

Naive crossover operator for 10 tasks by 3 resources 

 Probability used in PSO with Naive crossover operator 
 

PSO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 
1158  
 

 
1292 

 
1208 

 
1101 

 
1108 

 
1241 

 
1205 

 
1205 

 
993 

 
1270 

 

Here, we are provided with 5 resources and 17 tasks. Given 

below are the execution time of PSO and PSO with Naive 

crossover operator with differing probability. 
 

Table 2. Execution time calculated by PSO and PSO with 

Naive crossover operator for 17 tasks by 5 resources 

 Probability used in PSO with Naive crossover operator 
 

PSO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 

2258  

 

 

2521 

 

2461 

 

2452 

 

2376 

 

2380 

 

2097 

 

2334 

 

2293 

 

2293 

 

From the table, it can be concluded that by using Naive 

Crossover operator we get better results when the probability is 

0.6. The time taken by the PSO is 2258 units and the minimum 

time taken by PSO with naive operator is 2097 units. The 

sequence generated when the 0.6 probability was used in Naive 

Crossover operator is 13,6,0,8,7,10,12,13,4,6,14,16,0,1,2,3,5. 

 

Here, we are provided with 10 resources and 27 tasks. Given 

below are the results of PSO and PSO with Naive crossover 

operator with differingprobability. 

 

Table 3. Execution time calculated by PSO and PSO with 

Naive crossover operator for 27 tasks by 10 resources 
 Probability used in PSO with Naive crossover operator 

 
PSO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 

3670  

 

 

3410 

 

3774 

 

3674 

 

3674 

 

3606 

 

3726 

 

3726 

 

3726 

 

3606 

 

From the table, it can be concluded that by using Naive 

Crossover operator we get better results when the probability is 

0.1, 0.5, and 0.9. The time taken by PSO is 3670 units while the 

minimum execution time taken by PSO with Naive crossover 

operator is 3410 units. The sequence generated when the 0.1 

probability was used in Naive Crossover operator is 

11,24,16,18,6,8,13,20,7,12,19,5,25,23,26,0,1,9,14,21, 

2,10,22,15,16,4,17,3. 

 

7. CONCLUSION 
It can be concluded from the results that proposed PSO with 

Naive crossover operator performs better than the existing PSO 

algorithm. There is no specific value for crossover probability 

for which we can obtain best results for grid scheduling. It 

depends upon number of tasks and number of resources. As 

future work we have the intention to apply other types of nature 

inspired algorithms to the grid scheduling problem, comparing 

their results with the ones accomplished by the PSO with Naïve. 
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