
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.11, July 2011

7

Grid Scheduling using PSO with Naive Crossover

Vikas Singh

ABV- Indian Institute of
Information Technology and

Management,
GwaliorMorena Link Road,

Gwalior, India

Deepak Singh
Raipur Institute of
Technology Raipur

Raipur, India

Shyam Swarup
ABV- Indian Institute of

Information Technology and
Management, Gwalior

Morena Link Road,
Gwalior, India

ABSTRACT

Grid computing can be defined as applying the resources of

many computers in a network to a problem which requires a

great number of computer processing cycles or access to large

amounts of data. Thetask scheduling problem is the problem of

assigning the tasks in the system in a manner that will optimize

the overall performance of the application, while assuring the

correctness of the result. In this paper we use the technique of

PSO with Naive crossover to solve the taskscheduling problem

in grid computing. The aim of using thistechnique is use the

given resources optimally and assign the task to the resources

efficiently. The simulated results show that PSO with Naive

Crossover proves to be a better algorithm when applied to

resource allocation anddisk scheduling in grid computing.

Keywords

Grid scheduling, PSO with Naive Crossover Operator, Tasks,

Resources

1. INTRODUCTION
Grid computing is a network that is not in the same place but

distributed resources such as computers, peripherals, switches,

instruments, and data. Grid computing appears to be a promising

trend for three reasons:

1. Its ability to make more cost-effective use of a given

amount of computer resources.

2. It is a way to solve problems that can't be approached

without an enormous amount of computing power.

3. Because it suggests that the resources of many

computers can be cooperatively and perhaps

synergistically harnessed and managed as

collaboration toward a common objective.

Grid computing can be used to compute large number of tasks

on the resources which are geographically remotely located.

Task scheduling is a challenging problem in grid computing

environment [6]. Many parallel applications consist of multiple

computational components. While the execution of some of

these components or tasks depends on the completion of other

tasks, others can be executed at the same time, which increases

parallelism of the problem.

Abraham et al and Braun et al [1] address the dynamic

scheduling of jobs to the geographically distributed computing

resources. They provide an introduction of computational grids

followed by a brief description of the three nature’s heuristics

namely Genetic Algorithm (GA), Simulated Annealing (SA) and

Tabu Search (TS). Yang gao et al [7] proposed two algorithms

that use the predictive models to schedule jobs at both system

level and application level. M Aggrawal et al [2] presented a

Genetic Algorithm based scheduler. The proposed scheduler

used in both the intra-grid of a large organization and in a

research grid consisting of large clusters, connected through a

high bandwidth dedicated network. Shanshan Song et al [11]

proposed a new Space-Time Genetic Algorithm (STGA) for

trusted job scheduling in which they consider three security-

driven heuristic modes: secure, risky and f -risky. Lee Wang et

al [12] developed a heuristic based approach to matching and

scheduling in heterogeneous computing environment. In Lin

JianNing et al [8] scheduling-algorithm based on genetic

algorithm (GA) is addressed.

In this paper simulated results prove that PSO with Linear

Crossover proves to be better when it is applied for resource

allocation in the field of grid computing. This paper is organized

as follows. In section 2 the issues related to task scheduling is

discussed. In section 3 particle swarm algorithm is introduced.

In section 4 we discuss a need of a new algorithm i.e. PSO with

Linear Crossover. In section 5 we implement PSO with Linear

Crossover in our problem. In section 6 we see the simulation

result of work done in section 5.

2. TASK SCHEDULING ISSUES IN GRID

COMPUTING
Computational grid can be combination of hardware and

software that can be used to solve complex computational

problems. The resource in a computational grid can be anything

which can be used to solve the given problem. For example a set

of printers which are used for printing a set a documents. The

overall objective of task scheduling is to minimize the

completion time and to utilize the resources effectively and

usually it is easy to get theinformation about the ability to

process data of the available resource.[1][13].

The problem of task scheduling arises in a situation where there

are more tasks than the available resources. Consider a scenario

wherein there arex={1,2,3,4….X} tasks to be done and there are

y={ 1,2,3,4…..Y} resources available. With the condition that

the task is not allowed to migrate between resources. In such a

situation if we have y> x then there is no reason for developing

new algorithms for task scheduling because then resources can

be allocated to the tasks on first come first serve basis, but if y<

x then we need to develop new algorithms for task scheduling

because now inefficient resource allocation can greatly hamper

the efficiency and throughput of the scheduler. To formulate the

problem, define Ta ={1,2,3,….X} as x independent tasks

permutation and Rb={1,2,3,y} as y computing resources.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.11, July 2011

8

Suppose that the processing time Pa,b for task a computing on b

resource is known. The completion time F(x) represents the total

cost time of completion[13]. The objective is to find an

permutation matrix m=(Mab), such that:

Mab= 1if resource a performs task b

elseMab =0

which minimizes total cost:

F(x) =∑∑ Pab *Mab (1)

subject to ∑Mab = 1; ∀b ϵT (2)

Mabϵ{0,1}, ∀aϵ R; ∀bϵT (3)

The minimal F(x) represents the length of schedule whole tasks

working on available resources. The scheduling constraints (2)

guarantee that each task is assigned to exactly one resource.

3. PARTICLE SWARM OPTIMISATION
The particle swarm optimization algorithm, originally

introduced in terms of social and cognitive behavior by Kennedy

and Eberhart (1995) [9], solves problems in many fields,

especially engineering and computer science. The individuals,

called particles henceforth, are flown through the multi-

dimensional search space with each particle representing a

possible solution to the multi-dimensional optimization problem.

Each solution's fitness is based on a performance function

related to the optimization problem being solved. The movement

of the particles is influenced by two factors using information

from iteration-to-iteration as well as particle-to-particle. As a

result of iteration-to- iteration information, the particle stores in

its memory the best solution visited so far, called pbest, and

experiences an attraction towards this solution as it traverses

through the solution search space. As a result of the particle-to-

particle interaction, the particle stores in its memory the best

solution visited by any particle, and experiences an attraction

towards this solution, called gbest , as well. The first and second

factors are called cognitive and social components, respectively.

Afteriteration, thepbestand gbestare updated for each particle if a

better or more dominating solution (in terms of fitness) is found.

This process continues, iteratively, until either the desired result

is converged upon, or it is determined that an acceptable

solution cannot be found within computational limits. For an n-

dimensional search space, the ith particle of the swarm is

represented by an n-dimensional vector, Xi= (xi1 ,xi2xin)T.

The velocity of this particle is represented by another n-

dimensional vector Vi = (vi1; vi2...... vin)
T. The previously best

visited position of the ith particle is denoted as Pi = (pi1,

pi2,........pin)
T. `g'is the index of the best particle in the swarm.

The velocity of the ith particle is updated using the velocity

update equation given by

vid = vid +c1r1(pid - xid) + c2r2(pgd -xid)(4)

and the position is updated using

xid= xid + vid(5)

where d = 1, 2....n ; i = 1; 2....S , where S is the size of the

swarm; c1 and c2 are constants, called cognitive and social

scaling parameters respectively (usually, c1 = c2 ; r1 , r2 are

random numbers, uniformly distributed in [0, 1]). Equations (4)

and (5) are the initial version of PSO algorithm. A constant,

Vmax, is used to arbitrarily limit the velocities of the particles and

improve the resolution of the search. Further, the concept of an

inertia weight was developed to better control exploration and

exploitation. The motivation was to be able to eliminate the need

for Vmax . The inclusion of an inertia weight (w) in the particle

swarm optimization algorithm was first reported in the literature

in 1998 (Shi and Eberhart, 1998) [13]. The resulting velocity

update equation becomes:

vid = w * vid + c1 r1(pid - xid) + c2r2(pgd -xid) (6)

Eberhart and Shi (2000) [14] indicate that the optimal

strategy is to initially set w to 0.9 and reduce it linearly to 0.4,

allowing initial exploration followed by acceleration toward an

improved global optimum.

4. PSO WITH NAIVE CROSSOVER

OPERATOR
Particle swarm optimization is a population based heuristic

search technique. PSO uses iterative process to search the global

optima in solution space. Crossover operator with PSO has a

property of better exploration in initial generations soby using

crossover search area is explored in a relatively better manner

even in later generations. PSO has a higher convergence rate, by

using crossover with PSO premature convergence is also

reduced so that PSO does not get trapped in local optima.

Crossover can help the particles to jump out of the local optima

by sharing the others’ information. Two Particles generated by

PSO are randomly selected for crossover operation and two new

offspring are formed. The best offspring (in terms of fitness) is

selected from the new offspring. This new best offspring

replaces the worst parent particle which is selected for

crossover. The replacement is done if the new best offspring has

the good fitness value than the parent particle.

4.1 Naive Crossover
Naive crossover operator [3] produces two off springs from a

pair of parents by randomly selecting a cross site between 1 and

n, parents solution dimension and replacing the former and latter

half of each parent from the cross site. Let

(…..) and

(..) are two parent solutions of

dimension n at generation t. A cross site of value 3 will produce

the offsprings shown in equation (7) and (8).

Offspring 1: (..) (7)

Offspring 2: (…..) (8)

5. PROPOSED METHODOLOGY
In this paper we have proposed a solution for grid scheduling

using PSO with Naive Crossover operator. For solving any

optimization problem we have to first formulate the problem

according to optimization problem.

5.1 Individual Representation
To solve the problem, representation of the individual and

fitness value is required, so we have to first represent the grid

scheduling problem in terms of PSO with Naive Crossover

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.11, July 2011

9

operator. In grid scheduling we have a set of tasks and a set of

resources as input and a sequence, which informs that which

task is to be operated on which resource and in which order as

output. PSO with Naive Crossover is based on population

concept and each individual in population represents a solution,

in case of grid scheduling problem, solution is asequence of

tasks which are to be performed. So we have to first formulate

each individual of PSO with Naive Crossover. We took

dimension as a number oftask and value as an initial sequence

from the possible set of sequences to find optimal sequence, we

represent task set as Xid={t1,t2,t3….tx} where i is the particular

individual and d represents the dimension index and set of

resources Rlm={r1,r2,r3….ry}, where l represents a particle/

sequence and m represents the tasks which are assigned to a

resource. Task id and resource id is given to each task and each

resource so that they can be easily differentiated from one other.

Such as t1 is the task id of first task and r1 is the resource id of

firstresource. Here x represents the total number of tasks. For

eg.if we have 10 taskswhich are to be performed on 5 available

resources, then we have dimension value as 10.

Assuming that we have a dimension value={9,4,7,0,3,6,1,2,8,5}.

Here

9 represent value for first dimension of an individual which

indicates 10th task.

4 represent value for second dimension of an individual which

indicates 5th task.

7 represent value for third dimension of an individual which

indicates8th task.

0 represents value for fourth dimension of an individual which

indicates 1st task.

3 represent value for fifth dimension of an individual which

indicates4th task.

6 represent value for sixth dimension of an individual which

indicates 5th task.

1 represents value for seventh dimension of an individual which

indicates 2ndtask.

2 represent value for eighth dimension of an individual which

indicates 3rd task.

8 represent value for ninth dimension of an individual which

indicates 9th task.

5 represent value for tenth dimension of an individual which

indicates 6th task.

Then using the formula

Rlm = Xid mod M i.e. value of Task set mod Total resources (9)

This fomula is used to determine the associated resources for the

calculated tasks in the sequence. we can calculate the resource

set as {4,0,3,2,1,2,3,1}. From this set, we can interpret that

Task 9 is operated by resource 4,

Task 4 is operated by resource 0,

Task 7 is operated by resource 3,

Task 0 is operated by resource 0,

Task 3 is operated by resource 3,

Task 6 is operated by resource 2,

Task 1 is operated by resource 1,

Task 2 is operated by resource 2,

Task 8 is operated by resource 3,

Task 5 is operated by resource 1

Fitness Function After representation of each individual we

have to calculate fitness value of each individual. In case of grid

scheduling problem optimal solution is the minimization the

value of equation(2). Our main objective is to minimize the

fitness value, an individual who have the minimum fitness value

is considered as the optimal solution.

5.2 Algorithm: Grid Scheduling Using PSO

with Naive Crossover Operator

PHASE 1[Initialization Phase]

for s = 0 to Swarmsize do

for d = 0 to DimensionSize do

Randomly initialize particle with sequence of tasks

Compute resource for that particle/sequence

end for d

Compute fitness of that particle/sequence

Compute global best

end for s

PHASE 2[Update Phase]

repeat

fors = 0 to Swarmsize do

for d = 0 to ProblemDimension do

A new sequence is generated

 computeresources for that particle/sequence

end for d

compute fitness of updated particle

if needed update historical information for global best(Pg)

end for s

PHASE 3[Crossover Operator Phase]

ifcrossover criteria is met then then

Select two random particles from current swarm for

crossover operation

Apply crossover operation to generate new particle

New offspring generated from parents as a result of crossover.

Compute the resources for that offspring using (6)

compute the fitness of updated particle

Replace the worst parent particle with new best offspring if it

is better

ifneeded update the historical information of global best(Pg)

end if

untilStopping Criteria is not met

To solve the grid scheduling problem we have used the Particle

Swarm Optimization (PSO) with Naive crossover operator. We

set an initial population by selecting a random starting sequence

from the set of x! sequences; where x is the total number of

tasks. After getting the initial particle we calculate fitness value

of each particle, according to equation(2). After that we

calculate best among the entire particle and set it as an initial

global best.PSO update equation is used to update old

population and generate new sequences and then their resources

are calculated. These sequences, along with their resources are

then used to findthe fitness value of each individual of each

particle of the population. After this if crossover criteria is

satisfied, then crossover operation performed over two randomly

selected particle and as a result a new sequence is generated.

Then the resource of this offspring is calculated. Using the

sequence and its resources the fitness value of the offspring is

calculated. Based on the fitness value, if theoffspring is better

than its worst parent then this particle replaces that parent.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.11, July 2011

10

6. EXPERIMENTAL RESULTS AND

DISCUSSION
This section focuses on the efficiency of the proposed algorithm

PSO with linear crossover to solve grid task scheduling. This

section shows the experimental results and the parameter

settings of the proposed algorithm.

6.1 Experimental Setup
For every algorithm there are some control parameters which are

used for its efficient working. Hence, there are some control

parameters for PSO with Naive Crossover operator also. We did

an extensive literature survey and carried out our own

experiments for determining the values of these control

parameters. From this we found that the values which we have

taken in this experiment are standard values and they are also

suitable for this experiment.The first control Parameter is

Maximum function evaluation and the value of this parameter

we have taken in our experiment as 20,000. The next parameter

in our experiment is maximum number of population and we

have taken its value to be 40. Another control parameter is

number of runs and we have taken its value in our experiment as

30. It must be noted that each run contains maximum function

evaluation, which is 20,000 in our experiment. The fourth

control parameter is Dimension and it depends upon the number

of tasks. The next control parameter is the value of c1 & c2

which we have taken as 1.14. And w (Inertia weight) is also a

control parameter and we have taken its value as 0.7.

In this experiment we are using the feature of naive crossover

operator in the PSO algorithm. The control parameter for

Crossover operator is Probability. Therefore we need to find the

value of this parameter also. Its value can range from 0.1 to 0.9.

In our experiment we get the best result when the value of

probability is 0.8.

6.2 Experimental Results
In this section we analyze the result obtained by our algorithm.

To test the efficiency of our algorithm results of PSO with Naive

crossover is compared with PSO algorithm results. In a grid

scheduling task we already have the information about the

number of resources, number of tasks, and the amount of time

that will be taken by a resource to complete a task. We just need

to find the sequence which will provide us the optimal results.

We conducted the experiment by varying the number

ofresources as well as varying the number of tasks and then we

compared our results with that of PSO. In particular, we have

taken three cases in which we have taken different number of

resources and tasks.

Here, we are provided with 3 resources and 10 tasks. Given

below are the execution time of PSO and PSO with Naive

crossover operator with differing probability.

From the table, it can be concluded that by using Naive

Crossover operator we get better results when the probability is

0.3, 0.4 & 0.8. The execution timetaken by PSO is 1158 units.

The minimum execution time taken by the PSO with Naive

crossover operator is 993 units. The sequence generated when

the probability used in Naive Crossover operator was 0.8 is

9,0,5,1,2,3,4, 6, 8, 7.

Table 1. Execution time calculated by PSO and PSO with

Naive crossover operator for 10 tasks by 3 resources

 Probability used in PSO with Naive crossover operator

PSO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1158

1292

1208

1101

1108

1241

1205

1205

993

1270

Here, we are provided with 5 resources and 17 tasks. Given

below are the execution time of PSO and PSO with Naive

crossover operator with differing probability.

Table 2. Execution time calculated by PSO and PSO with

Naive crossover operator for 17 tasks by 5 resources

 Probability used in PSO with Naive crossover operator

PSO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2258

2521

2461

2452

2376

2380

2097

2334

2293

2293

From the table, it can be concluded that by using Naive

Crossover operator we get better results when the probability is

0.6. The time taken by the PSO is 2258 units and the minimum

time taken by PSO with naive operator is 2097 units. The

sequence generated when the 0.6 probability was used in Naive

Crossover operator is 13,6,0,8,7,10,12,13,4,6,14,16,0,1,2,3,5.

Here, we are provided with 10 resources and 27 tasks. Given

below are the results of PSO and PSO with Naive crossover

operator with differingprobability.

Table 3. Execution time calculated by PSO and PSO with

Naive crossover operator for 27 tasks by 10 resources
 Probability used in PSO with Naive crossover operator

PSO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3670

3410

3774

3674

3674

3606

3726

3726

3726

3606

From the table, it can be concluded that by using Naive

Crossover operator we get better results when the probability is

0.1, 0.5, and 0.9. The time taken by PSO is 3670 units while the

minimum execution time taken by PSO with Naive crossover

operator is 3410 units. The sequence generated when the 0.1

probability was used in Naive Crossover operator is

11,24,16,18,6,8,13,20,7,12,19,5,25,23,26,0,1,9,14,21,

2,10,22,15,16,4,17,3.

7. CONCLUSION
It can be concluded from the results that proposed PSO with

Naive crossover operator performs better than the existing PSO

algorithm. There is no specific value for crossover probability

for which we can obtain best results for grid scheduling. It

depends upon number of tasks and number of resources. As

future work we have the intention to apply other types of nature

inspired algorithms to the grid scheduling problem, comparing

their results with the ones accomplished by the PSO with Naïve.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.11, July 2011

11

8. REFERENCES
[1] Abraham, A., Buyya, R., Nath, B.: Natures heuristics for

scheduling jobs on computational grids. In: The 8th IEEE

International Conference on Advanced Computing and

Communications (ADCOM 2000). pp. 45{52. Citeseer

(2000)

[2] Aggarwal, M., Kent, R., Ngom, A.: Genetic algorithm

based scheduler for computational grids (2005)

[3] Deb, K.: Multi-objective optimization using evolutionary

algorithms. Wiley (2001)

[4] Eberhart, R., Shi, Y.: Comparing inertia weights and

constriction factors in particle swarm optimization. In:

Evolutionary Computation, 2000. Proceedings of the

2000Congress on. vol. 1, pp. 84{88. IEEE (2000)

[5] Eberhart, R., Shi, Y., Kennedy, J., Corporation, E.: Swarm

intelligence. Elsevier (2001)

[6] Foster, I., Kesselman, C.: The grid: blueprint for a new

computing infrastructure. Morgan Kaufmann (2004)

[7] Gao, Y., Rong, H., Huang, J.: Adaptive grid job scheduling

with genetic algorithmsFuture Generation Computer

Systems 21(1), 151{161 (2005)

[8] Jian-Ning, L., Hui-Zhong, W.: Scheduling in Grid

Computing Environment Basedon Genetic Algorithm [J].

Journal of computer research and development 12 (2004)

[9] Kennedy, J., Eberhart, R.: Particle swarm optimization. In:

Neural Networks,1995. Proceedings., IEEE International

Conference on. vol. 4, pp. 1942{1948. IEEE(1995)

[10] Shi, Y., Eberhart, R.: A modi_ed particle swarm optimizer.

In: Evolutionary Computation Proceedings, 1998. IEEE

World Congress on Computational Intelligence.The 1998

IEEE International Conference on. pp. 69{73. IEEE (1998)

[11] Song, S., Kwok, Y., Hwang, K.: Security-driven heuristics

and a fast genetic algorithm for trusted grid job scheduling

(2005)

[12] Wang, L., Siegel, H., Roychowdhury, V., Maciejewski, A.:

Task matching and scheduling in heterogeneous computing

environments using a genetic-algorithm based approach.

Journal of Parallel and Distributed Computing 47(1), 8{22

(1997)

[13] Zhang, L., Chen, Y., Sun, R., Jing, S., Yang, B.: A task

scheduling algorithm based on pso for grid computing.

International Journal of Computational

IntelligenceResearch 4(1), 37{43 (2008)

