
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.2, July 2011

42

BugML: Software Bug Markup Language

Naresh Kumar Nagwani,

Assistant Professor,

Department of Computer Science & Engineering,

National Institute of Technology Raipur

Dr. Shrish Verma,
Associate Professor,

Department of Electronics & Telecommunication,

National Institute of Technology Raipur

ABSTRACT
A software bug contains useful information related to software

development. Bug indicates the incorrect behavior of

implemented functionalities for the given requirements.

Numbers of standards exist to keep the software bug

information. Most of the bug tracking tools follows these

standards to store the software bug information. XML

(eXtensible Markup Language) is another most common and

famous standard to represent the data. In this paper the XML is

used to represent the software bug information and a new

markup language named BugML is proposed. The structure,

DTD (Document Type Definition) and XSD (XML Schema

Definition) is also explained for the language BugML.

Keywords
BugML, Bug Markup Language, Software Bug Representation,

XML Representation.

1. INTRODUCTION

1.1 Software Bug
A software bug is defect or fault in software. A software bug is

introduced into the system during the testing phase of software

by a quality engineer or tester. A bug indicates the incorrect

implementation of given software requirements, or sometimes it

may be due to some of the technical limitations also. A software

bug can be represented using number of attributes like bug title

(or summary), bug description, bug-id (a unique identified for a

software bug), date-of-reporting (date on which the bug is

reported.), assigned-To (team member to whom the software

bug is assigned.), reported-by (team member or tester by whom

the bug is reported into the system.) etc.

1.2 Software Bug: Defect or Fault?
Although the defect and fault is treated same and both are

considered as software bug, there are some differences between

the fault and defects. A fault is a subtype of the super type

defect. Every fault is a defect, but not every defect is a fault. A

defect is a fault if it is encountered during software execution

(thus causing a failure). A defect is not a fault if it is detected by

inspection or static analysis and removed prior to executing the

software.

1.3 Software Bug Repositories
The bug management of large size projects are typically done

with the help of bug tracking tools like Bugzilla, Trac, JIRA,

Perforce etc. These bug tracking tools provides various

interfaces to log new bugs, access bug information and update it.

These bug tracking tools manages the software bugs in online

software bug repositories. Example of such bug repository is

Mozilla bug repository https://bugzilla.mozilla.org. All these

different bug repositories are having their own standard

mechanism of storing the software bugs. So there is a need to

standard representation technique using which the software bugs

can be represented. The work proposed in this paper is to

document and represent the standard XML based mark up

language using which the software bug can be represented. This

mark up language for software bug is named as BugML

(Software Bug Markup Language).

1.4 IEEE standards for Software Bug

Attributes
There are two standards of IEEE for software defect

classifications [4-5]. IEEE Standard Classification for Software

Anomalies, IEEE Std 1044-1999 and IEEE Standard

Classification for Software Anomalies, IEEE Std 1044-2009

(Revision of IEEE Std 1044-1999). Various important attributes

of software bugs are mentioned in those standards. These

attributes are considered here to design the BugML. Various

IEEE standard defect and failure attributes are shown in table-1

and table-2. The proposed BugML is designed using the

mentioned standard attributes in these IEEE standard

specifications.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.2, July 2011

43

Table 1. Defect Attributes Defined in IEEE Standard 1044-2009

Attribute Definition

Defect ID Unique identifier for the defect.

Description Description of what is missing, wrong, or unnecessary.

Status Current state within defect report life cycle.

Asset The software asset (product, component, module, etc.) containing the defect.

Artifact The specific software work product containing the defect.

Version detected Identification of the software version in which the defect was detected.

Version corrected Identification of the software version in which the defect was corrected.

Priority Ranking for processing assigned by the organization responsible for the evaluation, resolution, and closure of the
defect relative to other reported defects.

Severity The highest failure impact that the defect could (or did) cause, as determined by (from the perspective of) the

organization responsible for software engineering.

Probability Probability of recurring failure caused by this defect.

Effect The class of requirement that is impacted by a failure caused by a defect.

Type A categorization based on the class of code within which the defect is found or the work product within which the

defect is found.

Mode A categorization based on whether the defect is due to incorrect implementation or representation, the addition of
something that is not needed, or an omission.

Insertion activity The activity during which the defect was injected/inserted (i.e., during which the artifact containing the defect

originated).

Detection activity The activity during which the defect was detected (i.e., inspection or testing).

Failure reference(s) Identifier of the failure(s) caused by the defect.

Change reference Identifier of the corrective change request initiated to correct the defect.

Disposition Final disposition of defect report upon closure.

Table 2. Failure Attributes Defined in IEEE Standard 1044-2009
Attribute Definition

Failure ID Unique identifier for the failure.

Status Current state within failure report life cycle.

Title Brief description of the failure for summary reporting purposes.

Description Full description of the anomalous behavior and the conditions under which it occurred, including the sequence of

events and/or user actions that preceded the failure.

Environment Identification of the operating environment in which the failure was observed.

Configuration Configuration details including relevant product and version identifiers.

Severity As determined by (from the perspective of) the organization responsible for software engineering.

Analysis Final results of causal analysis on conclusion of failure investigation.

Disposition Final disposition of the failure report.

Observed by Person who observed the failure (and from whom additional detail can be obtained).

Opened by Person who opened (submitted) the failure report.

Assigned to Person or organization assigned to investigate the cause of the failure.

Closed by Person who closed the failure report.

Date observed Date/time the failure was observed.

Date opened Date/time the failure report is opened (submitted).

Date closed Date/time the failure report is closed and the final disposition is assigned.

Test reference Identification of the specific test being conducted (if any) when the failure occurred.

Incident reference Identification of the associated incident if the failure report was precipitated by a service desk or help desk

call/contact.

Defect reference Identification of the defect asserted to be the cause of the failure.

Failure reference Identification of a related failure report.

This paper is divided into the seven sections. Section two

discusses about the related work done so far in the data

representation techniques using XML. In section three overview

of the BugML is given. Section four is consisting of DTD

(Document Type Definition) of the BugML. In section five the

BugML syntax is explained using example, section six is about

the XSD (XML Schema Definition) for the BugML and the

seventh section is consisting of the conclusion of the proposed

work.

2. RELATED WORK
Markup languages are designed for various purposes. In this

section some of the designed mark up languages is mentioned.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.2, July 2011

44

The aim of the Predictive Model Markup Language (PMML) is

to support the exchange of data mining models between

different applications and visualization tools. It is the result of a

standardization effort by a group of vendors. PMML is an XML-

based language (grammar) for describing data mining models.

Despite its name, it is not limited to predictive models. The

contribution of this paper is two-fold: an encouragement for

researchers to base their work on PMML and a slightly

enhanced PMML DTD for multi-relational rule models [1].

A XML application which provides the representation of Java

source code is called JavaML, is more natural for tools and

permits easy specification of numerous software-engineering

analyses by leveraging the abundance of XML tools and

techniques. A robust converter built with the Jikes Java compiler

framework translates from the classical Java source code

representation to JavaML, and an XSLT stylesheet converts

from JavaML back into the classical textual form [2]. The

design of RuleML, a rule markup language for the Semantic

Web is given by Boley et. al RuleML implementations via

XSLT is also explained [3].

Two popular XML based applications are XGMML and

LOGML. XGMML is graph description language and LOGML

is a web-log-report description language. The usefulness of both

of the applications is also explained in web mining [6]. A

framework is proposed by Suri and Singh which stores the

design elements in the form of a text document using DGML

(DesiGn Markup Language). A new syntax is created for DGML

based documents. This representation of pictorials design

elements in the form of text helps in design optimization,

reusing the existing design and early prediction of error prone

modules. A fresh new design can be obtained from existing

design after parsing it for well defined project requirements [8].

3. OVERVIEW OF BUGML
BugML is proposed to provide a standard of storing the software

bug information. Presently most of the minor functionalities

implementation and enhancement tasks are also managed using

the bug tracking systems, so BugML can also be used for

maintaining the enhancement and minor functionalities

implementation tasks. BugML is a structural document

consisting of BugML tags. These tags are designed with

parameters to store all the useful information regarding the

software bugs. A well-defined DTD is also there for the

grammatical verification of any document to be used for further

processing. And XSD is also defined which can be used

optionally to follow the schema of the bug documents.

<bug id=’’>

<summary> </summary>

<description user=’’ time=’’> </description>

<created-by id=’’ email=’’> <created-by>

<assigned-to id=’’ email=’’> <assigned-to>

< environment> </environment>

< status > </ status >

< version-detected > </version-detected >

< version-corrected > </version-corrected>

<priority> <priority>

< severity > </ severity>

<product> </product>

<component> </component>

<version> </version>

<platform> </platform>

<importance> </importance>

<target-milestone> --- </target-milestone>

<qa-contact> </qa-contact>

<reported>

 <reported-time> </reported-time>

 <reported-by id='1' user=''> </reported-by>

</reported>

<modified> </modified>

< cc-list>

 <cc id=’’ email=’’> </cc>

 <cc id=’’ email=’’> </cc>

 ………

 <cc id=’’ email=’’> </cc>

</ cc-list >

< bcc-list>

 <bcc id=’’ email=’’> </bcc>

 <bcc id=’’ email=’’> </bcc>

 ………

 <bcc id=’’ email=’’> </bcc>

</ bcc-list >

<comments>

 <comment id=’’ user=’’ time=’’>

 </comment>

 <comment id=’’ user=’’ time=’’>

 </comment>

 ………

 <comment id=’’ user=’’ time=’’>

 </comment>

</comments>

</bug>

Fig. 1: Structure of BugML with Attributes.

Figure-1 depicts the structure of BugML with various attributes

and Figure-2 shows a sample of Mozilla Bug.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.2, July 2011

45

Fig.2: Snapshot of a Mozilla bug (bug id = 11012)

4. THE DTD FOR THE BUGML
All the BugML tags for software bug representation are having

the DTD (Document Type Definition) entry for syntax check. A

strong characterization of an XML document is validity. An

XML document is valid if and only if it both is well-formed and

adheres to its specified document type definition, or DTD. A

document type definition is a formal description of the grammar

of the specific language to be used by a class of XML

documents. It defines all the permitted element names and

describes the attributes that each kind of element may possess. It

also restricts the structure of the nesting within a valid XML

document. Figure 3 shows the DTD for the BugML. Here all the

attributes and their corresponding data types and requirements

are explained. Figure 5 depicts the DTD for the BugML.

<!ELEMENT assigned-to (#PCDATA) >

<!ELEMENT bug (title, status, product, component, version,

platform, importance, target-milestone, assigned-to, qa-contact,

reported, modified, cc-list, description, comments) >

<!ATTLIST bug id NMTOKEN #REQUIRED >

<!ELEMENT cc (#PCDATA) >

<!ATTLIST cc id NMTOKEN #REQUIRED >

<!ATTLIST cc user NMTOKEN #REQUIRED >

<!ELEMENT cc-list (cc+) >

<!ELEMENT comment (#PCDATA) >

<!ATTLIST comment id NMTOKEN #REQUIRED >

<!ATTLIST comment time CDATA #REQUIRED >

<!ATTLIST comment user CDATA #REQUIRED >

<!ELEMENT comments (comment+) >
<!ELEMENT component (#PCDATA) >

<!ELEMENT description (#PCDATA) >

<!ATTLIST description time CDATA #REQUIRED >

<!ATTLIST description user CDATA #REQUIRED >

<!ELEMENT importance (#PCDATA) >

<!ELEMENT modified (#PCDATA) >

<!ELEMENT platform (#PCDATA) >

<!ELEMENT product (#PCDATA) >

<!ELEMENT qa-contact (#PCDATA) >

<!ELEMENT reported (reported-time, reported-by) >

<!ELEMENT reported-by (#PCDATA) >

<!ATTLIST reported-by id NMTOKEN #REQUIRED >

<!ATTLIST reported-by user NMTOKEN #REQUIRED >

<!ELEMENT reported-time (#PCDATA) >

<!ELEMENT status (#PCDATA) >

<!ELEMENT target-milestone (#PCDATA) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT version (#PCDATA) >

Fig. 3: DTD for BugML used to represent the software bug

information.

According to this DTD, there are several element types. The bug

element must contain exactly one id (unique bug identifier)

followed by other bug attribute body element. The CC (Carbon

Copy) mailing list can have zero or more number of elements.

All the attributes like summary, description etc. are of text data

types. The attribute reported is the combination of two elements

reported-time and reported-by, which is time at which the

software bug was reported and by whom the software bug was

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.2, July 2011

46

reported. Just like CC mailing list, the comment list is there,

where there can be zero of more number of comment elements

can be associated with a software bug. For each comment

element, comment-id, comment-user and comment-time are

associated.

5. SYNTAX OF BUGML
To discuss the syntax of BugML, let us take the example of the

software bug taken from an open source software’s bug

repository, named Mozilla bug repository [7]

(https://bugzilla.mozilla.org). Here the software bug id is

selected to demonstrate the BugML syntax. Most of the

important BugML tags are used here to represent the bug

document using BugML. The example of BugML syntax is

given in figure 4, a Mozilla bug with bug id 11012 is

represented using BugML syntax in this figure.

<bug id='11012'>

<title>[blocker] XP Menus Broken Throughout Apprunner

</title>

<status>VERIFIED FIXED</status>

<product>Core</product>

<component>Layout: View Rendering</component>

<version>Trunk</version>

<platform>x86 Other</platform>

<importance>P3 normal</importance>

<target-milestone> --- </target-milestone>

<assigned-to>Patrick C. Beard</assigned-to>

<qa-contact>rubydoo123</qa-contact>

<reported>

 <reported-time>1999-07-31 13:06 PDT</reported-

time>

 <reported-by id='1' user='chofmann'> David Hyatt

</reported-by>

</reported>

<modified> 1999-08-23 16:55 PDT (History) </modified>

<cc-list>

 <cc id='1' user='chofmann'>chofmann</cc>

</cc-list>

<description user='David Hyatt' time='1999-07-31 13:06:13

PDT'>With the most recent changes to nsViewManager.cpp

(made at 20:05 on 7/30/99), \n all of the XP menus in apprunner

come up filled with garbage.\n </description>

<comments>

 <comment id='1' user='phillip' time='1999-08-05

11:12:59 PDT'>is this a dup of bug 11101?</comment>

 <comment id='2' user='Patrick C. Beard' time='1999-

08-09 20:28:59 PDT'>This was fixed by backing out the

changes to nsViewManager.cpp, and adding them \n again more

carefully. Hyatt can verify this. </comment>

 <comment id='3' user='rubydoo123' time='1999-08-10

07:12:59 PDT'>Hyatt -- can you please verify this one?

thanks</comment>

 <comment id='4' user='David Hyatt' time='1999-08-11

10:19:59 PDT'>Yes.</comment>

 <comment id='5' user='rubydoo123' time='1999-08-23

16:55:59 PDT'>marking verified based on hyatt's

input.</comment>
</comments>

</bug>

Fig. 4: Syntax of BugML for Example Mozilla bug (bug id =

11012)

6. XSD FOR THE BUGML
XSD (Xml Schema Definition) for the BugML is represented in

figure 5 for the corresponding BugML DTD given in figure-3.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

name="bug" type="xs:string">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="title"/>

 <xs:element ref="status"/>

 <xs:element ref="product"/>

 <xs:element ref="component"/>

 <xs:element ref="version"/>

 <xs:element ref="platform"/>

 <xs:element ref="importance"/>

 <xs:element ref="target-milestone"/>

 <xs:element ref="assigned-to"/>

 <xs:element ref="qa-contact"/>

 <xs:element ref="reported"/>

 <xs:element ref="modified"/>

 <xs:element ref="cc-list"/>

 <xs:element ref="description"/>

 <xs:element ref="comments"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:NMTOKEN"

 use="required"/>

 </xs:complexType>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="id" type="xs:NMTOKEN"

 use="required"/>

 <xs:attribute name="user" type="xs:NMTOKEN"

 use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="cc"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="id" type="xs:NMTOKEN"

 use="required"/>

 <xs:attribute name="time" type="xs:string"

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.2, July 2011

47

 use="required"/>

 <xs:attribute name="user" type="xs:string"

 use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded"

ref="comment"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="time" type="xs:string"

 use="required"/>

 <xs:attribute name="user" type="xs:string"

 use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="reported-time"/>

 <xs:element ref="reported-by"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="id" type="xs:NMTOKEN"

 use="required"/>

 <xs:attribute name="user" type="xs:NMTOKEN"

 use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:schema>

Fig. 5: XSD of BugML.

7. CONCLUSION
In this paper a new standard named BugML is proposed for

storing the software bug information. The standard is based on

XML, which is a very famous way for organizing the data. The

DTD and XSD for the BugML are also discussed, and syntax of

BugML is explained using example. The proposed standard can

be used for any software bug repositories to represent the

software bug information. This can also be used effectively for

software bug data transfer using web services and other web

standards of data transfer.

8. REFERENCES
[1] Dietrich Wettschereck and Stefan M¨uller, “Exchanging

Data Mining Models with the Predictive Modelling Markup

Language”, In Proc. of Int. Workshop on Integration and

Collaboration Aspects of Data Mining, Decision Support

and Meta-Learning, Freiburg, 2001.

[2] Greg J. Badros, “JavaML: A Markup Language for Java

Source Code”, In Proceedings of the 9th International

World Wide Web Conference, 2000.

[3] Harold Boley, Said Tabet and Gerd Wagner, “Design

Rationale of RuleML: A Markup Language for Semantic

Web Rules”, In International Semantic Web Work- ing

Symposium (SWWS), 2001.

[4] IEEE Standard Classification for Software Anomalies,

IEEE Std 1044-1999.

[5] IEEE Standard Classification for Software Anomalies,

IEEE Std 1044-2009 (Revision of IEEE Std 1044-1999).

[6] John R. Punin, Mukkai S. Krishnamoorthy, Mohammed J.

Zaki, “LOGML: Log Markup Language for Web Usage

Mining”, WEBKDD 2001 - Mining Web Log Data Across

All Customers Touch Points, Third International

Workshop, San Francisco, CA, USA, August 26, 2001.

Revised Papers, volume 2356 of Lecture Notes in

Computer Science, pages 88–112. Springer, 2002.

[7] Mozilla bug repository, https://bugzilla.mozilla.org.

[8] P. K. Suri and Gurdev Singh, “Framework to represent the

software design elements in markup text – Design Markup

Language (DGML)”, IJCSNS International Journal of

Computer Science and Network Security, VOL.10 No.1,

pp. 164- 170,January 2010.

