Anti M-Fuzzy Subgroup and its Lower Level M-Subgroups

P.Sundararajan Department of Mathematics Arignar Anna Govt. Arts College, Namakkal-637 002.

ABSTRACT

In this paper, we introduce the concept of an anti M-fuzzy subgroup of an M-group and lower level subset of an anti M-fuzzy subgroup and discussed some of its properties.

Keywords

M-group, fuzzy set, anti fuzzy subgroup, anti M-fuzzy subgroup of an M-group, level subset, and level M-subgroups.

AMS Subject Classification (2000): 20N25, 03E72, 03F055,

06F35, 03G25.

1. INTRODUCTION

The concept of fuzzy sets was initiated by Zadeh. Then it has become a vigorous area of research in engineering, medical science, social science, graph theory etc. Rosenfeld [5] gave the idea of fuzzy subgroups. Biswas .R [1] introduced the concept of anti fuzzy subgroups. N.Palaniappan, R.Muthuraj [6] discussed some of the properties of anti fuzzy group and its lower level subgroups. Author N. Jacobson [4] introduced the concept of M-group, M-subgroup. In this paper, we introduce the concept of an anti M-fuzzy subgroup of an M-group and lower level subset of an anti M-fuzzy subgroup and discussed some of its properties.

2. PRELIMINARIES

This section contains some definitions and results to be used in the sequel.

2.1 Definition

Let X be any non empty set. A fuzzy subset A of X is a function A : $X \rightarrow [0,1]$.

2.2 Definition

Let G be a group. A fuzzy subset A of G is called an anti fuzzy

subgroup if for x, $y \in G$,

- (i) $A(xy) \le max \{ A(x), A(y) \},\$
- (ii) $A(x^{-1}) = A(x)$.

2.1 Example

Let G be the Klein 4 – group. Then

$$G = \{e, a, b, ab\}$$
, $a^2 = b^2 = e$ with $ab = ba$.

Define a fuzzy subset A of G by,

R.Muthuraj Department of Mathematics H.H.The Rajah's College, Pudukkottai.-622 001.

A (e) = 0.2, A (a) = 0.3, A (b) = 0.4, A (ab) = 0.4.

Clearly A is an anti fuzzy subgroup of G.

2.3 Definition

A group with operators is an algebraic system consisting of a group G, a set M and a function defined in the product set $M \times G$ and having values in G such that, if ma denotes the element in G determined by the element a of G and the element m of M, then m(ab) = (ma)(mb) holds for all $a, b \in G$ and $m \in M$. We shall use the phrases "G is an M-group" to a group with operators.

A subgroup H of an M-group G is said to be an M-subgroup if $mx \in H$ for all $m \in M$ and $x \in H$.

2.4 Definition

Let G be an M-group and A be an anti fuzzy subgroup of G. Then A is called an anti M-fuzzy subgroup of G if for all $x \in G$ and $m \in M$, then $A(mx) \leq A(x)$. **2.2 Example**

Let A be a fuzzy subset of an M-group G, then A is defined by

$$A(x) = \begin{cases} 0.3 & \text{if } x \in G \\ 0.8 & \text{otherwise.} \end{cases}$$

Then it is easy to verify that A is an anti M-fuzzy subgroup of G.

3. PROPERTIES OF AN ANTI M- FUZZY SUBGROUPS

In this section, we discuss some of the properties of anti M-fuzzy subgroup.

3.1 Theorem

If A is an anti M-fuzzy subgroup of an M-group G, then for any $x,y \in G$ and $m \in M$, $A(m(xy)) \le max \{A(mx), A(my)\}$. **Proof**

Given that A is an anti M-fuzzy subgroup of an M-group G. Then , A(m(xy)) = A((mx)(my)) $\leq \max \{ A(mx), A(my) \},\$

 $Hence,\,A(m(xy)) \quad \leq \,max \,\,\{\,\,A(mx)\,,\,A(my)\}.$

3.2 Theorem

Let H be an M-subgroup of an M-group G. Define a

$$A(x) = \begin{cases} t_1 \text{ if } x \in H \\ \\ t_2 \text{ otherwise.} \end{cases}$$

For all $x \in G$ and $t_1 < t_2$, t_1 , $t_2 \in [0,1]$. Then A is an anti M-fuzzy subgroup of G.

Proof

Assume that H be an M-subgroup of an M-group G. Let $x,y \in G$.

i. If $x, y \in H$, then $xy \in H$.

Clearly, $A(x) = t_1$ and $A(y) = t_1$ and $A(xy) = t_1$.

Hence $A(xy) = t_1 = max \{ A(x), A(y) \}.$

- ii. If $x \notin H$ or $y \notin H$, then $xy \notin H$. Therefore, $A(x) = t_2$ or $A(y) = t_2$ and $A(xy) = t_2$.
 - Hence $A(xy) = t_2 = \max \{ A(x), A(y) \}.$
- iii. If $x \notin H$ and $y \notin H$, then $xy \in H$ or $xy \notin H$. Therefore, $A(x) = t_2$ and $A(y) = t_2$ and $A(xy) = t_1$ or $A(xy) = t_2$.

Hence $A(xy) \le t_2 = \max \{ A(x), A(y) \}.$

- iv. If $x \in H$, then $x^{-1} \in H$. Hence $A(x) = t_1 = A(x^{-1})$.
- v. If $x \notin H$, then $x^{-1} \notin H$.

Hence
$$A(x) = t_2 = A(x^{-1})$$
.

Clearly, A is an anti fuzzy subgroup of G.

Since H is an M-subgroup of G, we have $mx \in H$ for all $m \in M$

and $x \in H$. Therefore, $A(mx) = t_1 = A(x)$.

If $x \notin H$, then $A(mx) = t_2 = A(x)$.

Hence A is an anti M-fuzzy subgroup of G.

3.3 Theorem

Let A be an anti M-fuzzy subgroup of an M-Group G with identity e. Then A(m(xy⁻¹)) = A(e) \Rightarrow A(mx) = A(my) for all x, y in G.

Proof

Given that A is an anti M-fuzzy subgroup of an M-Group G and $A(m(xy^{-1})) = A(e)$. Then for all x, y in G,

$$A(mx) = A(m(x(y^{-1}y)))$$

$$= A(m(xy^{-1})y))$$

$$\leq max \{ A(m(xy^{-1})), A(my) \},$$

$$= max \{ A(e), A(my) \}$$

$$= A(my).$$

That is, $A(mx) \leq A(my)$.

Now, $A(my) = A((my)^{-1})$, as A is an anti M-fuzzy subgroup of G.

$$= A(my^{-1}),$$

= A(m ((ey⁻¹)))
= A(m((x⁻¹x)y⁻¹)),
= A(m(x⁻¹(x y⁻¹))),
 $\leq max \{ A(mx^{-1}), A(m(x y^{-1})) \},$
= max {A((mx)⁻¹), A(e)},
= max {A((mx), A(e)},
= A(mx).

That is, $A(my) \leq A(mx)$.

Hence A(mx) = A(my).

3.4 Theorem

A is an anti M- fuzzy subgroup of an M-Group if and only if $A(m(x y^{-1})) \leq max \{A(mx), A(my)\}$, for all x, y in G.

Proof

Let A be an anti M-fuzzy subgroup of an M-group G. Then for all x, y in G, $f(x,y) = \frac{1}{2} \int_{-1}^{-1} f(x,y) dx$

A (m(xy)) $\leq \max \{A(mx), A(my)\} \text{ and } A(x) = A(x^{-1}).$

Now,
$$A(m(x y^{-1})) \le max \{A(mx), A(my^{-1})\}\$$

= max $\{A(mx), A((my)^{-1})\}\$
= max $\{A(mx), A(my)\}\$

 $\label{eq:and only if A(m(x \ y^{-1})) \ \leq \ max \ \{ \ A(mx \) \ , \ A(my) \}.$

3.5 Theorem

The union of any two anti M-fuzzy subgroups of an M-group G is always an anti M-fuzzy subgroup of an M-group G.

Proof

Let G be an M-group. Let A and B be any two anti M-fuzzy subgroups of G.

Clearly $(A \cup B)$ is an anti fuzzy subgroup of G.

Now, we have to prove that $(A\cup B)$ is an anti M-fuzzy subgroup of G.

Now, $(A \cup B)(mx) = max \{ A(mx), B(mx) \},\$

 $\leq \mbox{ max } \{ \ A(x) \ , \ B(x) \ \}$, as A and B are anti M-fuzzy subgroups of G,

$$= (A \cup B)(x)$$
.

Hence $(A \cup B)(mx) \leq (A \cup B)(x)$.

That is, $(A \cup B)$ is an anti M-fuzzy subgroup of G.

3.6 Theorem

The intersection of any two anti M-fuzzy subgroups of an M-group G is always an anti M-fuzzy subgroup of an M-group G.

Proof

Let G be an M-group. Let A and B be any two anti M-fuzzy subgroups of G.

Clearly $(A \cap B)$ is an anti fuzzy subgroup of G.

Now, we have to prove that $(A \cap B)$ is an anti M-fuzzy subgroup of G.

Now, $(A \cap B)(mx) = \min \{ A(mx), B(mx) \},\$

 $\leq \mbox{ min } \{ \ A(x) \ , \ B(x) \ \}$, as A and B are

anti M-fuzzy subgroups of G,

 $= (A \cap B)(x)$.

Hence $(A \cap B)(mx) \leq (A \cap B)(x)$.

That is, $(A \cap B)$ is an anti M-fuzzy subgroup of G.

REMARK

Arbitrary union and arbitrary intersection of anti M-fuzzy subgroups are anti M-fuzzy subgroups.

4. PROPERTIES OF LOWER LEVEL SUBSETS OF AN ANTI M-FUZZY SUBGROUP OF AN M-GROUP

In this section, we introduce the concept of lower level subset of an anti M-fuzzy subgroup of an M-group and discuss some of its properties.

4.1 Definition

Let A be a fuzzy subset of S. For $t \in [0, 1]$, the lower level subset of A is the set, $\bar{A}_t = \{ x \in S : A(x) \le t \}.$

4.1 Theorem

Let A be a fuzzy subset of an M-group G. If A is an anti M-fuzzy subgroup of G, then the lower level subsets \overline{A}_t , $t \in Im(A)$ are M-subgroups of G.

Proof

Let $t\in Im(A)$ and x , $y\in \bar{A}_t.$

Then A(x) = t and A(y) = t.

Given that A is an anti M-fuzzy subgroup of G.

Therefore, A is an anti fuzzy subgroup of G.

Hence $A(xy) \le \max \{ A(x), A(y) \} = t$.

That is, $A(xy) \leq t$.

That is, $xy \in \overline{A}_t$.

Moreover, if $x\in \bar{A}_t$, then $A(x^{\text{-}1})$ = $A(x)\,\leq\,t.$

Then, $x^{-1} \in \overline{A}_t$.

Hence \bar{A}_t is a subgroup of G.

Now, for any $x \in \overline{A}_t$ and $m \in M$, then

 $A(mx) \leq A(x) \leq t.$

Hence $mx \in \overline{A}_t$.

Hence \bar{A}_t is an M-subgroup of G.

4.2 Theorem

Let A be a fuzzy subset of an M-group G. If the lower level subsets \overline{A}_t , $t \in Im(A)$ are M-subgroups of G, then A is an anti M-fuzzy subgroup of G.

Proof

Let the lower level M-subsets \overline{A}_t , $t \in Im(A)$ are M-subgroups of G.

If there exist $x_0, y_0 \in G$ such that

 $A(x_0y_0) \ge \max \{A(x_0), A(y_0)\}.$

Let $t_0 = (A(x_0y_0) + min\{A(x_0), A(y_0)\}) / 2$,

we have $A(x_0y_0) > t_0 > max \{A(x_0), A(y_0)\}.$

It follows that x_0 , $y_0 \in \bar{A}_{t^0}$, but $x_0y_0 \not\in \bar{A}_{t^0}$

Which is a contradiction to \bar{A}_{t0} is an M-subgroup of G.

Hence $A(xy) \leq \mbox{ max } \{ \ A(x) \ , \ A(y) \}.$

Similarly, we have $A(x^{-1}) = A(x)$.

Hence A is an anti fuzzy subgroup of G.

Now, suppose , for $m \in M$ and $x \in G$, A(mx) > A(x).

Let $t_0 = (A(mx) + A(x)) / 2$.

Then, $A(mx) > t_0 > A(x)$.

That is, for $m \in M$ and $x \in G$, then $x \in \overline{A}_{t0}$, but $mx \notin \overline{A}_{t0}$.

Which is a contradiction to \bar{A}_{t0} is an M-subgroup of G.

Hence $A(mx) \leq A(x)$.

Hence A is an anti M-fuzzy subgroup of G.

4.2 Definition

Let A be an anti M-fuzzy subgroup of an M-group G. Then the M-subgroups \bar{A}_t , for $t \in [0,1]$ and $t \ge A(e)$, are called lower level M-subgroups of A.

4.3 Theorem

Let A be an anti M-fuzzy subgroup of a group G. If two lower level subgroups A_{t1} , A_{t2} , for, t_1 , $t_2 \in [0,1]$ and t_1 , $t_2 \geq A(e)$ with $t_1 < t_2$ of A are equal then there is no x in G such that $t_1 < A(x) \leq t_2$. **Proof**

Let $A_{t1} = A_{t2}$.

Suppose there exists a $x \in G$ such that $t_1 < A(x) < t_2$ then

 $A_{t^{1.}} \subseteq A_{t^{2.}}$

Then $x \in A_{t2}$, but $x \notin A_{t1}$, which contradicts the assumption that, $A_{t1} = A_{t2}$.

Hence there is no x in G such that $t_1 < A(x) \le t_2$.

Conversely let, there is no x in G such that $t_1 < A(x) \le t_2$.

Since $t_1 < t_2$, then $A_{t^1} \subseteq A_{t^2}$.

But there is no x in G such that $t_1 < A(x) \le t_2$, $A_{t^2} \subseteq A_{t^1}$.

Hence $A_{t1} = A_{t2}$.

4.4 Theorem

A fuzzy subset A of G is an anti M-fuzzy subgroup of an M- group G if and only if the lower level subsets \bar{A}_t , $t \in Im(A)$ are M-subgroups of G.

Proof It is clear.

4.5 Theorem

Any M-subgroup H of a M-group G can be realized as a lower level M-subgroup of some anti M-fuzzy subgroup of G. **Proof**

Let A be a fuzzy subset and $x \in G$.

Define,

$$A(x) = \begin{cases} 0 & \text{if } x \in H \\ \\ t & \text{if } x \notin H \text{, where } t \in (0,1]. \end{cases}$$

We shall prove that A is an anti M-fuzzy subgroup of G.

Let x , $y \in G$.

- i. Suppose x, $y \in H$, then $xy \in H$ and $xy^{-1} \in H$. A(x) = 0, A(y) = 0, A(xy) = 0 and $A(xy^{-1}) = 0$. Hence $A(xy^{-1}) \leq \max \{ A(x), A(y) \}$.
- ii. Suppose $x \in H$ and $y \notin H$, then $xy \notin H$ and $xy^{-1} \notin H$. A (x) = 0, A(y) = t and A $(xy^{-1}) = t$ Hence A $(xy^{-1}) \leq \max \{A(x), A(y)\}.$
- iii. Suppose x, $y \notin H$, then $xy^{-1} \in H$ or $xy^{-1} \notin H$. A(x) = t, A(y) = t and A(xy^{-1}) = 0 or t. Hence A (xy^{-1}) $\leq \max \{ A(x), A(y) \}.$

Thus in all cases, A is an anti fuzzy subgroup of G.

i. Now, for all $m \in M$ and $x \in H$, then $mx \in H$. A(x) = 0 and A(mx) = 0. Hence $A(mx) \le A(x)$.

ii. Now, for all $m \in M$ and $x \notin H$, then $mx \in H$ or $mx \notin H$.

A(x) = t and A(mx) = 0 or t.

Then, $A(mx) \leq A(x)$.

Thus in all cases, A is an anti M-fuzzy subgroup of G.

For this anti M- fuzzy subgroup, $\bar{A}_t = H$.

REMARK

As a consequence of the Theorem 4.3 and 4.4, the lower level Msubgroups of an anti M-fuzzy subgroup A of an M-group G form a chain. Since $A(me) = A(m) \le A(mx)$ for all x in G and m in M and $A(m) = t_0$, we have the chain :

 $\{e\} = A_{t0} \quad \subset \quad A_{t1} \quad \subset \quad A_{t2} \quad \subset \quad \ldots \quad \subset \quad A_{tn} = G, \quad \text{where} \\ t_0 < \ t_1 < \ t_2 < \ldots \ldots < \ t_n.$

5. CONCLUSION

In this paper, we define a new algebraic structure of anti M-fuzzy subgroup of an M-group and lower level subset of an anti Mfuzzy subgroup and studied some of its properties. Futher, we wish to define the anti M-fuzzy normal subgroup of an M-group and its lower level subsets and also the same in Intuitionistic fuzzy and other some groups are in progress.

6. REFERENCES

- [1] Biswas .R, Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and Systems, 35(1990) 121-124.
- [2] Das. P.S, Fuzzy groups and level subgroups, J.Math.Anal. Appl, 84 (1981) 264-269.
- [3] Mohamed Asaad, Groups and Fuzzy subgroups Fuzzy sets and systems 39(1991) 323-328.
- [4] N. Jacobson , Lectures in Abstract Algebra , East West Press , 1951.
- [5] A.Rosenfeld, fuzzy groups, J. math. Anal.Appl. 35 (1971), 512-517.
- [6] N.Palaniappan, R.Muthuraj, Anti fuzzy group and Lower level subgroups, Antartica J.Math., 1 (1) (2004), 71-76.
- [7] R.Muthuraj, P.M.Sithar Selvam, M.S.Muthuraman, Anti Q-fuzzy group and its lower Level subgroups, International journal of Computer Applications (0975-8887), Volume 3no.3, June 2010, 16-20.
- [8] R.Muthuraj, M.Sridharan , M.S.Muthuraman and P.M.Sitharselvam , Anti Q-fuzzy BG-idals in BG-Algebra, International journal of Computer Applications (0975-8887), Volume 4, no.11, August 2010, 27-31.
- [9] P.Sundararajan, N.Palaniappan, R.Muthuraj, Anti M-Fuzzy subgroup and anti M-Fuzzy sub-bigroup of an M-group, Antratica Antartica J.Math., 6(1)(2009), 33-37.