
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.4, July 2011

41

Reverse Engineering for Malicious Code Behavior Analysis

using Virtual Security Patching

A.EdwinRobert1,
G.Manivasagam2

1
ResearchScholar,

2
Lecturer,

KarpagamUniversity,

Pollachi Main Road,
Coimbatore

N.Sasirekha
ResearchScholar,

KarpagamUniversity,
Pollachi Main Road,

Coimbatore

Dr.M.Hemalatha
Head,Departmentof Software

Systems
KarpagamUniversity,
Pollachi Main Road,

Coimbatore

ABSTRACT

Computer hardware and Internet is growing so fast today,

security threats of malicious executable code are getting more

serious. Basically, malicious executable codes are categorized

into three kinds – virus, Spam, Trojan horse, and worm. Current

anti-virus products cannot detect all the malicious codes,

especially for those unseen, polymorphism malicious executable

codes[1]. The newly developed virus will create the damages

before it has been found and updated in database. Spy ware is

becoming a real concern [2]. The proposed architecture classifies

the behavior of the new type virus and it identifies the malicious

code through the virtual server, where all the unwanted code

executions and dependable are get refined first before it reaches

the actual server. This phenomenon is known as virtual

engineering. The security features in the virtual server get

processed virtually through reverse engineering technique [3].

Here the user or the administrator checks the application first

automatically in the virtual server and it analyze the behavior

and filters the malicious code and protects the actual server, this

process is very fast compare to other architecture which we have

noticed in emerging operating systems.

General Terms

Virtual Security, Patching,Virtual Engineering and Virtual

Process

Keywords

Function Extraction Technology, Malicious code, Patching,

Reverse Engineering, Security threats, Virtual Engineering.

1. INTRODUCTION
Within this paper, security flaws have been identified in the

software applications in the industry. In the software market

where no specific control is applied to applications submitted by

developers. This behavior is one of the consequences of the

open source nature of the software applications and is a platform

for spy ware spreading like the one discussed in this paper. As

software applications in the industry becomes more popular, the

number of visitors to the software market is likely to rise, and

software checks may become necessary to maintain the

platform's trustworthiness. More granularities for application

permission might be a solution, for example by not authorizing

full Internet access but rather access to specific web site(s). The

Anti-virus benchmark pointed out that there is no silver bullet to

prevent spy ware, user awareness still remains the best way to

prevent spy ware installation.

1.1 Security Flaws
An Error of commission or omission in a Software Application

(SA) may allow protection mechanisms to be bypassed[4].

Developer’s awareness is also necessary, as several security

flaws were discovered recently in banking applications that

could take entire control of their devices, as all applications are

running with root access.

1.2 Patching and Slow Patching Process
A Patch is a piece of software designed to fix problems with, or

update a computer program or its supporting data[5]. This

includes fixing security vulnerabilities and other bugs, and

improving the usability or performance. Though meant to fix

problems, poorly designed patches can sometimes introduce new

problems.

Within the industrial chain is the slow patching process. The

reason is that so many manufacturers distribute embedded

software devices, when a security update is required it is up to

the manufacturers to provide it to their customers. So software

applications distribution requires more time than for competitors

like Apple[6]. This slow patching process leads to a rise of

Jailbreak devices, as users want access to the latest releases. As

a consequence, the restrictions are completely bypassed and

users are more exposed to spyware an application claiming to be

the latest version of a famous Twitter client, which actually runs

spyware in the background and uploads all private data to the

attacker.

1.3 Malicious Web Application Risks &

Exploitation
Since the patching process in the web applications in the

industry is relatively slow, an attacker could use spyware as a

process to escalate privilege on the phone by exploiting new

problems by altering or eliminating vulnerabilities by

controlling the inputs and outputs to and from the applications.

A virtual process can be created to mitigate a given vulnerability

through packet manipulation & proxies via brokering the

protocols to the application in question. The virtual process itself

is created through vulnerabilities discovered in the Linux kernel

before the patch release. The Application and the slow patching

process are responsible for much of the current threat landscape

for software applications. In order to improve its overall

security, better controls of the Software industrial Market as

well as a better patching system are required.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.4, July 2011

42

2. PROPOSED ARCHITECTURE
The purpose of this paper will be to explore a guideline to the

spy ware development using reverse engineering techniques and

provide real case attack scenarios. The basic idea of the

proposed system is, it will analyze the behavior of the malicious

codes and based on the behavior signature of the malicious code

the algorithm will detect the type of common viruses, worms,

spam and Trojans in the virtual server and protect the actual

database in the server. The Virtual server has the virtual security

mechanism which filters out and protects the system from

further execution of the spy wares.

2.1 Function Extraction Process
Function extraction (FX) is a disruptive new technology with

potential to improve the economics of software development and

increase the dependability of software systems [7]. The behavior

of the code is analyzed using the function extraction technology.

3. REVERSE ENGINEERING
The activity of examining and copying a product developed by

another company in order to make your own product through a

legally sanctioned method of copying a technology which (as

opposed to starting from scratch) begins with an existing

product and works backward to figure out how it does what it

does. When the product's basic principle or core concept is

determined, the next step is to reproduce the same results by

employing different mechanisms to avoid any (legally

forbidden) patent infringement. Reverse engineering will be

used, because most users do not check the permissions of the

applications loaded onto their software applications. Even

security professionals admit they do not often check permissions

of their applications [8].

3.1 Virtual Process
A virtual process can be defined as the ability to do

“vulnerability mitigation” means to reduce attacks and threats in

a separate layer. By incorporating a “Virtual Processing”

strategy, an organization can greatly improve efforts to reduce

their organizational risk through quick remediation of

vulnerabilities in web software[9] . As the web interface has

become the ubiquitous interface to software, this paper will

provide an overview of virtual processing web applications with

a focus on the open source project. Through the adoption of

Virtual processing as another tool in the information security

arsenal, this article will illustrate how organizations can

decrease the risk from software vulnerabilities and provide

overall better defenses across their technology environments. In

situations where traditional patches are not feasible, a virtual

process can be utilized to reduce the likelihood of a successful

attack.

3.2 Reducing Risk through Virtual

Engineering
Problems in applications without having to touch the

applications themselves or as a policy for an intermediary device

Web Application Firewall (WAF) that is able to identify/block

attempts to exploit a specific Website vulnerability. A virtual

process deals with the process or method of fixing the rule

language of the packet manipulator. This paper, focus on Virtual

Engineering with Virtual Security, a popular and extremely

versatile Open Source Web Application Firewall (WAF) used to

create and apply custom virtual processes. The range and

capabilities in Virtual Security are far reaching and in this paper

we will focus specifically on Virtual processing approaches with

Virtual Security.

4. FISH EYE SECURITY
The architecture of the environment for which packet

manipulation can occur is key and a cornerstone to the virtual

process success [10]. Using Fish Eye Security, several network

arrangements exists to allow packet manipulation for a virtual

engineering to be implemented.

4.1 Embedded Security
The first arrangement is to run Security embedded as a Fish

Module on the server which is aimed to defend and apply virtual

engineering concepts for the given application. In this case Fish

Eye Security runs embedded with the applications which it is

defending, as a Fish Module changes are needed to enable

defense and virtual Engineering capabilities for the web

applications.

5. REVERSE ENGINEERING
A dramatic increase of functionality, quantity, size, and

complexity of software-intensive embedded systems in the

automotive industry can be observed. In particular, the growing

complexity drives current reverse engineering practices to the

limits. The second architecture to run Fish Eye Security to

enable defense and virtual engineering is to configure Security

on a reverse proxy server running Fish [11]. In this case Security

can defend and apply virtual Engineering to numerous

applications, on numerous servers which it is tasked to oversee.

The purpose is to deduce design decisions from end products

with little or no additional knowledge about the procedures

involved in the original production. The same techniques are

subsequently being researched for application to legacy software

systems, not for industrial or defense ends, but rather to replace

incorrect, incomplete, or otherwise unavailable documentation

5.1 Method
Reverse engineering may also be necessary if alternative

methods of obtaining technical data are more costly than the

actual reverse engineering process. Generally, many products

are protected by copyrights and patents. Patents are the stronger

protection against copying since they protect the ideas behind

the functioning of a new product, whereas a copyright protects

only its look and shape[12].

Fig 2. Reverse Engineering with Virtual Server

Web

Firewall
Linux

Tomcat

Window

s

Reverse

Engineering

V
irtu

a
l S

erv
er

http://www.businessdictionary.com/definition/method.html
http://www.businessdictionary.com/definition/copying.html
http://www.businessdictionary.com/definition/technology.html
http://www.businessdictionary.com/definition/work.html
http://www.businessdictionary.com/definition/product.html
http://www.businessdictionary.com/definition/concept.html
http://www.investorwords.com/11189/step.html
http://www.investorwords.com/10993/same.html
http://www.businessdictionary.com/definition/result.html
http://www.investorwords.com/8901/avoid.html
http://www.businessdictionary.com/definition/patent.html

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.4, July 2011

43

Fig 3. Scope of Fish Eye

6. REVERSE ENGINEERING WITH

VIRTUAL SERVER
With this model many advantages exist as security separation

layer exists and the defense is truly operating system and

programming language diagnostic [13]. Fish Eye Security can be

configured to protect various web applications running on a

various operating systems, whether they are Linux, Windows,

UNIX, Mac OS etc. – it matters not. An added benefit to this

model is that administration efforts can occur with greater ease,

as you're dealing with one technology stack to administer

instead of splitting administration expertise across several O/S

environments. A key and fundamental assumption to both

architecture models is that your applications and security are

tightly coupled. Virtual Security is tasked to maintain the

integrity of the application, and proper application request

filtering must be maintained with this defense approach.

6.1 Architecture Advantages
Deciding which are the right and the best architecture approach

for your organization will truly depend on your business needs.

Fish Eye Security on each individual server can be quickly stood

up and ready to be brought online without requiring a change to

the network, thus reducing the number of overall team members

involved to implement. Also with this architecture, no new

hardware is really needed to implement an embedded Security

install. One of the downsides to running Security embedded is

that while the Security application footprint is minimal, it will

still share the computing resources of the server hosting the web

application. The embedded architecture is the potential

administration troubles that can quickly get out of hand in

managing multiple servers with rule sets and configuration, as

more web servers and web applications are introduced to the

company's application lineup. This can be aided through scripted

deployment and auto updating, but it does involve a bit more

complexity to maintain a growing number of servers which may

increase exponentially as the organization grows over the years.

Running Security on a reverse virtual server does have several

business advantages as the expertise to maintain and update one

instance of Security with virtual Engineering and configuration

can be leveraged against many web application and servers

which need to be defended and virtually patched. The

organization can respond to taking other vulnerable applications

“under the wing” fairly quickly, which may not have originally

been identified as candidates needing crucial patches. The

flexibility of this architecture approach shines since the

applications that might need critical patches can quickly be

arranged to be covered by Security for protection and virtual

processing, even though the applications may be written in a

variety of languages and running on different operating systems.

This architecture also works well for closed source proprietary

web based vendor software, which your organization may run,

but which the vendor may not still be in business or adequately

capable of patching the software.

A few drawbacks to the reverse proxy server implementation

include introducing a single point of failure if the reverse proxy

fails or bottlenecks traffic. With the advances in virtualization

and on demand resource balancing this may become less of an

issue and drawback to this approach. In all architectures there

are advantages and disadvantages. Ultimately, the decision boils

down to whether your organization chooses to implement

centralized (reverse proxy) virtual processing administration or a

decentralized (embedded) virtual processing administration

approach.

7. THE VULNERABLE WEB

APPLICATION
With either architecture in place, the environment is set to

deploy an in response to a reported vulnerability. To get an

understanding of how a Virtual process can be applied to

mitigate a real application vulnerability, we'll turn to a case

where the code handling user logins of a company commerce

portal is flawed, leaving the website susceptible to a SQL

injection attack [14].

7.1 The Unauthorized Access

This vulnerability could be used by an attacker to gain

unauthorized access to information or escalate his privileges in

the system, gaining administrator access. Once the attacker has

gained administrative privileges, the potential end result of the

successful exploitation of this web application vulnerability

could translate into significant dollar losses for the business as

information stored in the application is up for grabs for those

with mal intent. With this security compromise, the potential

damage to the company's reputation and the loss of consumer

confidence is great, as customer or financial data could be stolen

and sold on the black market or company trade secrets lost.

8. FISH EYE STATE CODE BEHAVIOR

ALGORITHM
Fish Eye State Code Behavior Algorithm (FECB) is a proactive

or table driven filtering algorithm. FECB is based on the

traditional link state routing algorithm. Each and every node

collects the information about the structure of the vertices from

the neighboring nodes and calculates the filtering table. It then

disseminates the information locally to the neighboring nodes.

The FECB differs from the traditional link state filtering

algorithm in the way it disseminates the information across the

neighboring nodes [15]. It reduces the overhead associated with

updating paths by introducing the notion of multi-level fish eye

scope. The scope of the fisheye has been given in figure 3. The

frequency of exchanging the filtering information with

neighbors depends on the distance between the source and the

destination. From the link state entries the node calculates the

optimal shortest routes to other nodes. FECB is simple, scalable

and efficient in ad hoc communications.

8.1 Representation of Code Behavior in

FECB
The network is represented as an undirected graph G= (V, E)

where V = number of vertices or nodes in the network and E =

number of edges or undirected links in the network[16]. Each

node has a unique identifier which represents a host with a

device with transmission range R, and an infinite storage space.

Virus

Spams

Trojans

Virus

Worms

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.4, July 2011

44

A link between two nodes i and j is formed when the distance

between i and j becomes less than R. The link (i, j) is moved if

distance between i and j exceeds the range R. In FECB, for each

node i, one list and three tables are maintained.

(i) A Neighbor list Ai

(ii) A Structure table STi

(iii) A Next host table NEXTi

(iv) A Distance table Dti

Ai stores all the nodes those are neighbors to the node i. The

structure table contains the most up to date information about

the structure of the vertices from the link state message. The

information in the structure table are required while calculating

the filtering table. The structure table has three fields;

destination address, destination sequence number, link state

list[12] Any destination j in STi link state list has two parts

STi.LS(j) which denotes the link state information reported by

node j and STi.SEQ(j) indicates the time stamp at which j has

generated the link state information. For each destination j,

NEXTi(j) denotes the next hop to forward packets destined to j.

Di(j) denotes the distance of the shortest path from i to j. A

weight function can be used measure the distance of a link and is

denoted by E-> Z0+ , which returns 1 if there is a direct link

between two nodes , else, it returns ∞.

8.2 FECB ALGORITHM

The FECB algorithm is given below

Step 1: Initialize Array List Ai, Neighbour node Ni, Structure of

node list STi, Next host NEXTi,Queue Qi,

Distance between two nodes Dti

Step 2 : if (Ai.Qi≠empty)

For Ai= 0 to Ai.Qi

{

Ai=Ai.Qi;

Ni=Ni +Ai.source; [Neighbour node]

STi.LS(j)=STi.LS(j) + Ai.source;

}

For j= 1 to V [Vertices]

{

 //J records the transaction time and link state information -

time stamp

if (j<>i) && (Ai.STM(j))>STi.STM(j))

{

STi.STM(j)=Ai.STM(j);

STi.LS(j)=Ai.LS(j);

}

}

Step 3 : for j= 1 to Ni

{

 If weight (i,j)= ∞

 Ni=Ni- j [source]

}

Step 4 : for x =1 to N

{

 STi.LS(i) = STi.LS(i) + x [Source];

Spy.fileid =i;

}

for x Є N

{

for ScopeLevel l:= 1 to L do

if ((Clock() mod UpdateIntervall = 0)

^ (Di(x) Є FisheyeScopel))

then spy.STi = spy.STi + STi.LS(x); [source]

}

// Di(x) is calculated using

//Disjkstra’s Shortest path algorithm

step 5 : publish(j,spy) to all j Є Ai;

9. FECB - BEHAVIORAL SYNTHESIS
Behavioral synthesis is an automated architecture process that

interprets an algorithmic description of a desired behavior and

creates hardware that implements that behavior. Starting with an

algorithmic description in a high-level language, behavioral

synthesis architectures automatically create the cycle-by-cycle

detail needed for hardware implementation.

9.1 RTL Implementation
 Most behavioral synthesis approaches leverage the existing

logic synthesis architecture set by creating a register-transfer

level (RTL) implementation from the algorithmic description.

The architecture description made possible by a behavioral

synthesis architecture flow differs in a number of specific ways

from that which is required for traditional logic synthesis. Logic

synthesis uses an RTL description of the architecture.

Behavioral synthesis uses a high-level un-timed, or partially

timed, functional description. These descriptions can contain

large portions of algorithm that, after behavioral synthesis, will

be spread over many clock cycles. These algorithms can, and

typically do, contain loops and array accesses that are not

typically seen in register-transfer level (RTL) architectures.

The behavioral synthesis architecture will figure out how best to

schedule that over the multiple cycles in order to meet

architecture constraints.It will also determine the data path,

multiplexing and finite state machine needed to implement the

architecture. Behavioral synthesis will interpret this as a Fish

eye control-dataflow graph (FCDFG) which represents the

dependencies of the various operations as shown in Figure 4.

 A(8) if

 t1

 B(8) t2

 C(8) if t3

 t4

 D(8) if

Fig 4 : Control Data Flow Graph

Given that CDFG and the list of available functional units

(adders, multipliers, etc.) shown in Table 1, the behavioral

synthesis architecture could choose to schedule the operations in

several different ways, depending on the design goals, such as

performance or area. In the given table,the first row represents

four(4),Ten(10) conditions which we need eight (8) and

twenty(20) functional units respectively. The execution time

delay for the respective conditional statements using the time

stamp function STi.LS(j) and it covers the respective functional

unit area

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.4, July 2011

45

 Table 1: Functional Units

 Assuming minimizing area is the design goal, the behavioral

synthesis process select the schedule shown in Table 2. using

the needed operator per cycle calculating for the

Cycle1[source] and Cycle2[linkstate] and based on the control

data flow graph[CDFG] it produces the 16,20 operators and it

needs 0.5 seconds with source state t1 to the link state in t2

cycles respectively using the function STi.LS

Table 2: Minimum Area Schedule

After determining that schedule, behavioral synthesis will create

the (RTL) register-transfer level implementation. Note the

multiplexing that has been added in front of the multiplier

because it is being shared. Additionally, behavioral synthesis

would also determine the FSM (Fish Eye State Module) .

10. CONCLUSION
This paper gives some Guidelines to enhance the security

mechanism to improve and to detect malicious code using Fish

Eye Code Behavior Algorithm. Compared with content filtering

mechanism and slow patching process this one is different in

code behavior features. The algorithm is much efficient and

reliable that it can detect and filter the latest Viruses, Trojans,

Spam and Worms especially in the emerging operating systems

and in the current Software industrial scenario.

11. REFERENCES
[1] Bright Hub available at: www.brighthub.com

[2] Info Security available at: www.infosecurity-us.com

[3] Computer Security Training, Network Research & Resources

available at: www.sans.org

[4] PHYSORG available at : www.physorg.com

[5] TalkTechToMe available at:www.gfi.com/blog/tag/patch-

management

[6] HACKER BOSS available at: www.hackerboss.com

[7] Function Extraction Technology: Automated Calculation of

Computer Progam Behavior available at:

www.cert.org/sse/fxmc.html

 [9] Web Application Vulnerabilities available at:

www.acunetix.com/vulnerabilities

[10] D.Slur, J.Crupi, and D.Malks, “Core J2EE patterns: Best

practices and architecture strategies”. Sun Micro Systems,

 2001.

[11] G.Abowd, R.Allen, and D.Garlan, “Using Style to Give

Meaning to Software Architecture”, ACM, New York,

1993.

[12] guardian.co.uk available at:

www.guardian.co.uk/2011/google-android- patent-lawsuits-

batt.

[13] Peter Braun, Manfred Broy, Frank Houdek, Matthias

Kirchmayr and Mark Müller,et al.Online First™, 20

October 2010

 [14] Securing SQL Server available at:

www.securingsqlserver.com/tag/sql-injection

 [15] Performance comparison and analysis of mobile ad hoc

routing protocols: An International Journal (CSEIJ),

Vol.1, No.1, April 2011

[16] Dahl O.-J., Dijkstra E. W., and Hoare C. A.,Structured

Programming, Academic Press, 1972

AUTHOR PROFILE:
A.EdwinRobert, MCA., M.Phil., in Computer Science. He is a

Doctoral research scholar in Computer Science at the Karpagam

University, Coimbatore, Tamilnadu,India.He is currently

working as Assistant Professor in Software Systems Department

at Karpagam University,Coimbatore,TamilNadu.He had five

years of teaching experience. He has presented a paper in

National Conference. His area of research is Software

Engineering.

N.Sasirekha, completed MCA., M.Phil., in Computer Science.

She is a Doctoral research scholar in Computer Science at the

Karpagam University, Coimbatore, Tamilnadu, India. She is

currently working as Assistant Professor in PG Department of

Computer Applications at Vidyasagar College of Arts and

Science, Udumalpet, Tamilnadu. She has presented eleven

papers in various National Conferences and one paper in

International Conference. She has published a paper in National

and International Journal. Her area of research is Software

Engineering.

Dr.M.Hemalatha, completed MCA., MPhil., PhD in Computer

Science and Currently working as a Asst Professor and Head ,

Dept of Software Systems in Karpagam University. She has ten

years of experience in teaching and published Twenty Seven

papers in International Journals and also presented Seventy

papers in various National Conferences and one paper in

International Conference. Her areas of research are Data mining,

Software Engineering, Bioinformatics and Neural Networks.

She is also a reviewer in several National and International

Journals.

Functional

Unit

Delay Area

4.4 = 8 1.34 2433.2

10.10=20 2.34 1770.6

Operator #Needed Cycle 1 Cycle 2

8.8=16 0.5 t1+source t2. linkstate

10.10=20 0.5 t1+source t2. linkstate

