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ABSTRACT 

This paper about Greater Common Divisor GCD, the paper 

shows that there is a lot of algorithms, some of these algorithm 

is good in timing and make low number of iteration, the other 

make a lot of iteration with a lot of time! But as we see in the 

analysis of the algorithms that some of the algorithms is faster 

than the others in small numbers (like Brute force is faster than 

Bishop Algorithm in the small numbers, but in the large 

numbers the Bishop Algorithm is too fast with comparison with 

the brute force) so the researchers recommend to develop the 

Bishop algorithm the make it more efficient in computing the 

GCD for small numbers. In the other hand the Dijkstra 

algorithm is too close in timing and number of iteration with the 

Bishop algorithm. But as we see in the analysis the best 

algorithm to use in computing the GCD in all type of integers is 

the Extended Euclidean algorithm which makes few loops with 

small or large numbers. 
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1. INTRODUCTION 
In this paper the researchers will present and analysis the next 

algorithms of the Greatest Common Divisor (GCD):  

1- Brute Force Algorithm. 

2- Dijkstras Algorithm. 

3- Extended Euclidean Algorithm. 

4- Lehmers GCD Algorithm. 

5- Bishops Method for GCD. 

6- Fibonacci GCD's. 

The research will start about history of GCD algorithms, the 

definition of the GCD, Some Properties of GCD; discuss the 

selected algorithms for computing GCD, and analysis of these 

algorithmsIN 300 B.C, the Euclids method for finding GCD for 

two integers was described. This simple algorithm is often 

regarded as the grandfather of all algorithms in number theory 

today. This algorithm will not be discussed in this paper, but we 

will discuss the mentioned algorithms in the introduction [1]. 

The Greatest Common Divisor (GCD) of two integers A and 

B, not both zero, is the largest integer that divides both of them. 

It is convenient to set GCD(0,0) = 0.We assume that A and B 

are nonnegative integers. 

For example: GCD(3,5) = 1 , but GCD(3,6) = 3 , that means 3 

and 5 divide on the common integer 1 which is the greatest 

integer that divides the two numbers, so with 3 and 6 , 1 divide 3 

and 6 but 3 divide 3 and 6 and 3 is greater than 1 then the 

GCD(3,6) is 3 not 1. you can analysis the number to make sure 

of the GCD, as example 6 and 12: 

 6  : 1 3 6 

 12 : 1 2 3 4 6 12 

So the GCD (5, 12) is 6 as shown above. The GCD(A,B,C,….) 

can be also defined for more than two integers as the largest 

divisor positive integer shared by all of the number A,B,C…. [2] 

And here are Some Properties of GCD: 

1- Every common divisor of A and B 

divides GCD of A and B. 

2- If m is ant integer, the 

GCD(mA,mB) = m GCD(A,B). 

EX: GCD(2,3) = 1 , GCD(2*2,3*2) = 2* 

GCD(2,3) = 1*2 = 2 where GCD(4,6) = 2. 

3- If m is a nonzero common divisor 

of A and B then GCD(A/m,B/m) = 

GCD(A,B)/m. 

EX: GCD(6,12) =6 , 6 and 12 divide on 2, 

GCD(6/2,12/2) = GCD(3,6) = 3 equal to 

GCD(6,12) = 6/2 = 3. 

4- GCD of three numbers 

GCD(A,B,C) can be computed as 

GCD(GCD(A,B),C) = 

GCD(A,GCD(B,C)). 

EX: GCD(2,4,6) = 2 = GCD(GCD(2,4) ,6) = 

GCD(2,6) = 2 = GCD(2,GCD(4,6))= GCD(2,2) = 

2. 

5- GCD(A,B) = GCD(B,A). 

EX:GCD(6,12)= 6  = GCD(12,6). 

6- The GCD of A and B is closely 

related to their least common 

multiplier LCM(A,B): where 

GCD(A,B) * LCM(A,B) = AB. 

EX: GCD(18,12) =6 , LCM(18,12) = 36 , 6 * 36 

= 216 = 18*12. 

7- GCD(A,B) = GCD(A,B+An) for 

all integers n. 

EX: GCD(2,4) = 2 , GCD(2,4+2*2) = GCD(2,8) 

= 2 , GCD(2,4+2*3) = GCD(2,10) = 2[3]. 
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2. Discussion of Selected Algorithms for 

Computing GCD 

2.1 Brute Force Algorithm: 

Definition: 

The idea of this algorithm is to try all integers from n down until 

finding one that divides m and n evenly[4]. 

Algorithm: 

1- Take two positive integers m,n , where m<n. 

2- Initialize i=m. 

3- While (m mod i <> 0 or n mod i <> 0)  do 

i=i-1; 

GCD=i; 

Example: 

1- m=6 , n = 12. 

2- I=6. 

3- 6 mod 6 = 0 and 12 mod 6 = 0 then GCD=6. 

 

Code: 

 

 var n,m,i : integer; 

 begin 

  m=4; n=11; 

While (m mod i <> 0 and n mod i    <> 0)  do 

   i=i-1; 

  GCD =i; 

 End. 

Tracing: 

m N i 

4 11 4 

  3 

  2 

  1 

GCD = 1 

 

 

Program: 

 DIM m, n, i AS INTEGER 

INPUT m 

INPUT n 

i = m 

WHILE ((n MOD i <> 0) OR (m MOD i <> 0)) 

i = i - 1 

WEND 

PRINT "GCD="; i  

2.2 Dijkstra’s Algorithm: 

Definition: 

This algorithm is developed by Dijkstra who is a Dutch 

mathematician and a computer scientist. 

The idea of this algorithm is : if m>n, GCD(m,n) is the same as 

GCD(m-n,n). why ? if m/d both leave no remainder, then  (m-

n)/d leaves no remainder).  

The best thing in this algorithm is that it uses the data structure 

recursion algorithm[5]. 

Algorithm: 

  

 

For m,n >0 , GCD(m,n) =   

 

 

 

Example: 

1- m=4 , n=4 : GCD(4,4)=4 

2- m=6 , n=4 : GCD(6,4) = GCD(6-4,4) = 

GCD(2,4) = GCD(2,4-2) = GCD(2,2) = 2 

3- m=4 , n=8 : GCD(4,8) = GCD(4,8-4) = 

GCD(4,4) = 4  

Code: 

 

 var n,m : integer; 

m=6; n=4; 

 Begin 

{ m  if m=n  

GCD(m-n,n) if m>n 

   

  

 GCD(m,n-m)

 if m<n 
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  int GCD(int m , int n)  

{ 

  if (m=n) return m; 

  if (m>n)  

return GCD(m-n,n); 

Else 

return GCD(m,n-m); 

  } 

 End. 

Tracing: 

m n GCD 

6 4 GCD(6,4) 

2 4 GCD(2,4) 

2 2 GCD(2,2) 

  2 

GCD = 2  

 

Program: 

 

DECLARE FUNCTION GCD (n1 AS INTEGER, n2 AS 

INTEGER) 

DIM m,n AS INTEGER 

INPUT n 

INPUT m 

PRINT GCD(n, m) 

 „------------------------- end of main program 

FUNCTION GCD (n1 AS INTEGER, n2 AS 

INTEGER) 

IF n1 = n2 THEN GCD = n1 

IF n1 > n2 THEN 

GCD = GCD((n1 - n2), n2) 

ELSE 

GCD = GCD(n1, n2 - n1) 

END IF 

END FUNCTION 

 

2.3 Extended Euclidean Algorithm: 

Definition: 

It is a version of the Euclidean algorithm, input of this algorithm 

is two positive integers m ,n , the algorithm computer the GCD 

as well as integers A and B such that Am + Bn = GCD(m,n)[6]. 

Algorithm: 

1- input two positive integers m,n 

2- initialize: A0=1 , A1=0 , B0=0 , B1=1 , 

R0=m , R1=n 

3- While R1 <>0 do  

{ 

q= [R0/R1] 

temp=A0-A1*q   ,   A0=A1   ,   A1=temp 

temp=B0-B1*q    ,   B0=B1   ,   B1=temp 

temp=R0-R1*q    ,   R0=R1   ,   R1=temp 

} 

Return A=A0   ,   B=B0   ,   g=R0 (the GCD) 

 

Example: 

1- m=5 , n=15 

2- A0=1 , A1=0 , B0=0 , B1=1 , R0=5 , R1=15 

3- R1<>0  

q= [5/15] = 0 

temp=1-0*0=1       , A0=0     , A1=1 

temp=0-1*0=0       , B0=1      , B1=0 

temp=5-15*0 = 5   , R0=15    , R1=5 

R1<>0  

Q=[15/5]=3 

temp=0-1*3=-3  , A0=1 , A1=-3 

temp=1-0*3 = 1  , B0=0 , B1=1 

temp=15-5*3=0  , R0=5 , R1=0 

R1=0 exit loop 

A=A0=1   , B=B0=0  , 

g=R0= 5 (GCD) 
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 Am + Bn = GCD(m,n) 

 1*5 + 0*15 = 5        is true 

 

Code: 

 var n,m,A0,A1,B0,B1,R0,R1,temp : integer; 

m=5; n=15; 

 Begin 

A0=1 ; A1=0 ; B0=0 ; B1=1 ; R0=m ; R1=n; 

While R1 <>0 do  

{ 

q= [R0/R1]; 

temp=A0-A1*q ; 

A0=A1; 

A1=temp; 

temp=B0-B1*q; 

B0=B1; 

B1=temp; 

temp=R0-R1*q; 

R0=R1; 

R1=temp; 

} 

Return “A=”,A0,”B=”,B0,”GCD=”,R0; 

  

Tracing: 

 

M n A0 A1 B0 B1 R0 R1 q 

5 15 1 0 0 1 5 15 0 

- - 0 1 1 0 15 5 3 

- - 1 -3 0 1 5 0 - 

 

Program: 

DIM m, n, a0, a1, b0, b1, r0, r1, temp AS INTEGER 

INPUT m 

INPUT n 

a0 = 1 : a1 = 0 : b0 = 0 : b1 = 1 : r0 = m : r1 = n 

 

DO WHILE r1 <> 0 

q = INT(r0 / r1) 

temp = a0 - a1 * q: a0 = a1: a1 = temp 

temp = b0 - b1 * q: b0 = b1: b1 = temp 

temp = r0 - r1 * q: r0 = r1: r1 = temp 

LOOP 

 

a = a0 : b = b0 : g = r0 

PRINT "GCD=", r0 

2.4 Lehmers GCD Algorithm: 

Definition: An alternate approach to speeding up euclids 

algorithm is due to lehmer. One notices that when a and b have 

the same size, the integer part w of the a/b is often single digit. 

Assume that a,b are very big numbers, ^a,^b are small numbers 

such that: a/b = ^a/^b 

then the sequence of quotients produced by EA(a,b) and by 

EA(^a,^b) will be the same in the beginning , as long as this 

holds one may compute EA(^a,b) instead of EA(a,b) which is 

much more economical[7]. 

Algorithm: 

1- INPUT: two positive integers x and y in 

radix b representation, with x >= y. 

2- OUTPUT: gcd(x; y). 

1. While y >= b do the following: 

1.1 Set x^, y^ to be the high-order digit of x, y, 

respectively (y^ could be 0). 

1.2 A=1, B=0, C=0,=D=1. 

1.3 While (y^ + C) <> 0 and (y^ + D) <> 0 do the 

following: 

  q=floor((x^ + A)=(y^ + C)), q^=(x^ + B)=(y^ + 

D) 

  If q <> q^ then go to step 1.4.  

  t=A - qC, A=C, C=t, t=B - qD, B=D, D=t. 



International Journal of Computer Applications (0975 – 8887)  

Volume 26– No.5, July 2011 

28 

  t=x^ - qy^, x^=y^, y^=t.   

1.4 If B = 0, then t=x mod y, x=y, y=t ;  

      otherwise, t= Ax + By, u=Cx + Dy, x=t , y=u. 

 

2. Compute v = gcd(x; y) using Euclids Algorithm: 

input x,y where x > y 

while b <> 0 do the following: 

r = a mod b , a=b , b=r 

3. Return(v). 

Example & Tracing : 

x = 768454923 , y = 542167814 , b=103 

X Y q q^ Precision 

768 454 923 542 167 814 1 1 Single (T1) 

89 593 596 47 099 917 1 1 Single (T2) 

42 493 679 4 606 238 10 8 Multiple 

4 606 238 1 037 537 5 2 Multiple 

1 037 537 456 090 - - Multiple 

456 090 125 357 3 3 Single (T3) 

34 681 10 657 3 3 Single (T4) 

10 657 2 710 5 3 Multiple 

2 710 2 527 1 0 Multiple 

2 527 183   (Euclids) 

183 148   (Euclids) 

148 35   (Euclids) 

35 8   (Euclids) 

8 3   (Euclids) 

3 2   (Euclids) 

2 1   (Euclids) 

1 0   (Euclids) 

 

(T1) 

X Y A B C D q1 q2 

768 542 1 0 0 1 1 1 

542 226 0 1 1 -1 2 2 

226 90 1 -1 -2 3 2 2 

90 46 -2 3 5 -7 1 2 

 

(T2) 

X Y A B C D q1 q2 

89 47 1 0 0 1 1 1 

47 42 0 1 1 -1 1 1 

42 5 1 -1 -1 2 10 5 

 

(T3) 

X Y A B C D q1 q2 

456 125 1 0 0 1 3 3 

125 81 0 1 1 -3 1 1 

81 44 1 -3 -1 4 1 1 

44 37 -1 4 2 -7 1 1 

37 7 2 -7 -3 11 9 1 

 

 (T4) 

X Y A B C D q1 q2 

34 10 1 0 0 1 3 3 

10 4 0 1 1 -3 2 11 

 

Code: 

Var b,x,y,xh,yh,q,qh,A,B,C,D : integer; 

Begin 

X = 768454923 , y = 542167814 , b=103 ; 

While (y >= b) do  

{ 
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xh= HOD(x,b);  

yh= HOD(y,b); 

A=1; B=0; C=0;=D=1; 

While ((yh+C) <> 0 and (yh + D) <> 0) do 

{ 

q=floor((xh + A)=(yh + C));  

qh=(xh + B)=(yh + D); 

If q = qh then  

{ 

t=A – q*C; A=C; C=t; t=B – q*D; B=D; 

D=t; 

t=xh - q*yh; xh=yh; yh=t;   

              } 

else 

If B = 0 then  

t= x mod y; x=y; y=t ;  

Else 

      t= A*x + B*y; u=C*x + D*y; x=t ; y=u; 

} 

while b <> 0 do 

{ 

r = a mod b ;  

a=b; b=r; 

} 

2.5  Bishop’s Method for GCD: 
Definition: 

If a large and small numbers are both multiples of K , them large 

– small is a multiple of K. note that large-small is smaller than 

large, so we have reduced the problem to one easier to solve. So 

we need greatest multiple of large-small and small … and so on 

[8]. 

Algorithm: 

1- input two positive integers X,Y 

2- while (x <> y) do  

if (x>y) then  

 x=x-y 

else 

{ 

 temp = y 

 y=x 

 x=temp 

} 

return(x) 

Example: 

1- X=30 , Y= 45 

2- X <> Y 

Is X > Y   no 

Temp = 45 

Y=30 

X=45 

X <> Y 

Is X > Y     yes 

X=45-30 = 15  

X <> Y  15 <> 30 

Is X>Y  no 

Temp = 30 

Y=15 

X=30 

X<>Y  30 <> 15 

Is X>Y  yes 

X=15-30 = 15 

X = Y  exit loop GCD=X=Y=15 

Code: 

 var x,y, temp : integer; 

 Begin 

  X=30 ; y = 45 ; temp=0; 

 While X <> Y do  
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{  

if X > Y then  

X=X-Y; 

Else 

Temp=Y; 

Y=X; 

X=Temp; 

End if  

  } 

  cout<<”GCD=”,X; 

 End. 

Tracing: 

X Y 

30 45 

45 30 

15 30 

30 15 

15 15 

Program: 

DIM X, Y, TEMP AS INTEGER 

INPUT X 

INPUT Y 

DO WHILE X <> Y 

IF X > Y THEN 

X = X - Y 

ELSE 

TEMP = Y 

Y = X 

X = TEMP 

END IF 

LOOP 

PRINT "GCD="; X 

2.6  Fibonacci GCD's: 
Definition: 

Fibonacci numbers are then numbers in the series: n1, n2, 

n3=n1+n2,n4=n2+n3,n5=n3+n4,… so that the numbers are 0, 1, 

1, 2, 3, 5, 8, 13, 21, 34, 55, … the Fibonacci GCDs are the GCD 

of two Fibonacci numbers and the result is also a Fibonacci 

number[8]. 

Algorithm and Example: 

You can use ant of the GCDs algorithm to calculate the GCD, 

this algorithm is only to denote that the result is a Fibonacci 

number. As example we use the euclids GCD algorithm: 

F1= 34 , f2 = 8 

GCD(34,8) 

34 mod 8 = 2 

8 mod 2 = 0 

So GCD(34,8) = 2 which is a Fibonacci number. 

3. Analysis of algorithms: 

3.1 Time Consume: 
The next table and graph show the timing in MS for the 

algorithms for several integer numbers length: 

Algorithm 2 Digits 4 digits 6 digits 8 digis 

Brute Force 

Algorithm 

0 ms 9 ms 178 ms Too 

long 

Dijkstra's  

Algorithm 

5 ms 2 ms 0 ms 1 ms 

Extended Euclidean 

Algorithm 

1 ms 1 ms 0 ms  2 ms 

Bishop's Method for 

GCD 

3 ms 8 ms 1 ms 5 ms 
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As seen in the above graph that the brute force algorithm in 

number that are 6 and more digits it toke a lot of time to get the 

result, in the other hand the Extended Euclidean algorithm takes 

less time when the numbers are more than 6 digits.  

3.1 Number of loops: 
The next table and graph show the number of loops for the 

algorithms for several integer numbers length: 

Algorithm 2 

Digits 

4 digits 6 digits 8 digis 

Brute Force 

Algorithm 

11 1232 125472 1236548 

Dijkstra's  

Algorithm 

9 44 55 54 

Extended 

Euclidean 

Algorithm 

6 7 12 18 

Bishop's Method 

for GCD 

14 50 66 71 
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The graph above shows the number of loops that the algorithms 

take to find the answer. The Brute force algorithm make a lot of 

loops to get the answer in the numbers that more than 2 digits, in 

the other hand the Extended Euclidean algorithm make few 

loops to get the answer. 

4. CONCLUSIONS: 
As seen in this paper about Greater Common Divisor GCD that 

there is a lot of algorithms, some of these algorithm is good in 

timing and make low number of iteration, the other make a lot of 

iteration with a lot of time! But as we see in the analysis of the 

algorithms that some of the algorithms is faster than the others 

in small numbers (like Brute force is faster than Bishop 

Algorithm in the small numbers, but in the large numbers the 

Bishop Algorithm is too fast with comparison with the brute 

force) so the researchers recommend to develop the Bishop 

algorithm the make it more efficient in computing the GCD for 

small numbers. 
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