
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

24

A Comparison of Several Greatest Common Divisor

(GCD) Algorithms

 Haroon Altarawneh
Albalqa Applied University

Salt, Jordan

ABSTRACT

This paper about Greater Common Divisor GCD, the paper

shows that there is a lot of algorithms, some of these algorithm

is good in timing and make low number of iteration, the other

make a lot of iteration with a lot of time! But as we see in the

analysis of the algorithms that some of the algorithms is faster

than the others in small numbers (like Brute force is faster than

Bishop Algorithm in the small numbers, but in the large

numbers the Bishop Algorithm is too fast with comparison with

the brute force) so the researchers recommend to develop the

Bishop algorithm the make it more efficient in computing the

GCD for small numbers. In the other hand the Dijkstra

algorithm is too close in timing and number of iteration with the

Bishop algorithm. But as we see in the analysis the best

algorithm to use in computing the GCD in all type of integers is

the Extended Euclidean algorithm which makes few loops with

small or large numbers.

Keywords

Brute Force Algorithm, Dijkstras Algorithm., Extended

Euclidean Algorithm, Lehmers GCD Algorithm, Bishops

Method for GCD , Fibonacci GCD's.

1. INTRODUCTION
In this paper the researchers will present and analysis the next

algorithms of the Greatest Common Divisor (GCD):

1- Brute Force Algorithm.

2- Dijkstras Algorithm.

3- Extended Euclidean Algorithm.

4- Lehmers GCD Algorithm.

5- Bishops Method for GCD.

6- Fibonacci GCD's.

The research will start about history of GCD algorithms, the

definition of the GCD, Some Properties of GCD; discuss the

selected algorithms for computing GCD, and analysis of these

algorithmsIN 300 B.C, the Euclids method for finding GCD for

two integers was described. This simple algorithm is often

regarded as the grandfather of all algorithms in number theory

today. This algorithm will not be discussed in this paper, but we

will discuss the mentioned algorithms in the introduction [1].

The Greatest Common Divisor (GCD) of two integers A and

B, not both zero, is the largest integer that divides both of them.

It is convenient to set GCD(0,0) = 0.We assume that A and B

are nonnegative integers.

For example: GCD(3,5) = 1 , but GCD(3,6) = 3 , that means 3

and 5 divide on the common integer 1 which is the greatest

integer that divides the two numbers, so with 3 and 6 , 1 divide 3

and 6 but 3 divide 3 and 6 and 3 is greater than 1 then the

GCD(3,6) is 3 not 1. you can analysis the number to make sure

of the GCD, as example 6 and 12:

 6 : 1 3 6

 12 : 1 2 3 4 6 12

So the GCD (5, 12) is 6 as shown above. The GCD(A,B,C,….)

can be also defined for more than two integers as the largest

divisor positive integer shared by all of the number A,B,C…. [2]

And here are Some Properties of GCD:

1- Every common divisor of A and B

divides GCD of A and B.

2- If m is ant integer, the

GCD(mA,mB) = m GCD(A,B).

EX: GCD(2,3) = 1 , GCD(2*2,3*2) = 2*

GCD(2,3) = 1*2 = 2 where GCD(4,6) = 2.

3- If m is a nonzero common divisor

of A and B then GCD(A/m,B/m) =

GCD(A,B)/m.

EX: GCD(6,12) =6 , 6 and 12 divide on 2,

GCD(6/2,12/2) = GCD(3,6) = 3 equal to

GCD(6,12) = 6/2 = 3.

4- GCD of three numbers

GCD(A,B,C) can be computed as

GCD(GCD(A,B),C) =

GCD(A,GCD(B,C)).

EX: GCD(2,4,6) = 2 = GCD(GCD(2,4) ,6) =

GCD(2,6) = 2 = GCD(2,GCD(4,6))= GCD(2,2) =

2.

5- GCD(A,B) = GCD(B,A).

EX:GCD(6,12)= 6 = GCD(12,6).

6- The GCD of A and B is closely

related to their least common

multiplier LCM(A,B): where

GCD(A,B) * LCM(A,B) = AB.

EX: GCD(18,12) =6 , LCM(18,12) = 36 , 6 * 36

= 216 = 18*12.

7- GCD(A,B) = GCD(A,B+An) for

all integers n.

EX: GCD(2,4) = 2 , GCD(2,4+2*2) = GCD(2,8)

= 2 , GCD(2,4+2*3) = GCD(2,10) = 2[3].

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

25

2. Discussion of Selected Algorithms for

Computing GCD

2.1 Brute Force Algorithm:

Definition:

The idea of this algorithm is to try all integers from n down until

finding one that divides m and n evenly[4].

Algorithm:

1- Take two positive integers m,n , where m<n.

2- Initialize i=m.

3- While (m mod i <> 0 or n mod i <> 0) do

i=i-1;

GCD=i;

Example:

1- m=6 , n = 12.

2- I=6.

3- 6 mod 6 = 0 and 12 mod 6 = 0 then GCD=6.

Code:

 var n,m,i : integer;

 begin

 m=4; n=11;

While (m mod i <> 0 and n mod i <> 0) do

 i=i-1;

 GCD =i;

 End.

Tracing:

m N i

4 11 4

 3

 2

 1

GCD = 1

Program:

 DIM m, n, i AS INTEGER

INPUT m

INPUT n

i = m

WHILE ((n MOD i <> 0) OR (m MOD i <> 0))

i = i - 1

WEND

PRINT "GCD="; i

2.2 Dijkstra’s Algorithm:

Definition:

This algorithm is developed by Dijkstra who is a Dutch

mathematician and a computer scientist.

The idea of this algorithm is : if m>n, GCD(m,n) is the same as

GCD(m-n,n). why ? if m/d both leave no remainder, then (m-

n)/d leaves no remainder).

The best thing in this algorithm is that it uses the data structure

recursion algorithm[5].

Algorithm:

For m,n >0 , GCD(m,n) =

Example:

1- m=4 , n=4 : GCD(4,4)=4

2- m=6 , n=4 : GCD(6,4) = GCD(6-4,4) =

GCD(2,4) = GCD(2,4-2) = GCD(2,2) = 2

3- m=4 , n=8 : GCD(4,8) = GCD(4,8-4) =

GCD(4,4) = 4

Code:

 var n,m : integer;

m=6; n=4;

 Begin

{ m if m=n

GCD(m-n,n) if m>n

 GCD(m,n-m)

 if m<n

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

26

 int GCD(int m , int n)

{

 if (m=n) return m;

 if (m>n)

return GCD(m-n,n);

Else

return GCD(m,n-m);

 }

 End.

Tracing:

m n GCD

6 4 GCD(6,4)

2 4 GCD(2,4)

2 2 GCD(2,2)

 2

GCD = 2

Program:

DECLARE FUNCTION GCD (n1 AS INTEGER, n2 AS

INTEGER)

DIM m,n AS INTEGER

INPUT n

INPUT m

PRINT GCD(n, m)

 „------------------------- end of main program

FUNCTION GCD (n1 AS INTEGER, n2 AS

INTEGER)

IF n1 = n2 THEN GCD = n1

IF n1 > n2 THEN

GCD = GCD((n1 - n2), n2)

ELSE

GCD = GCD(n1, n2 - n1)

END IF

END FUNCTION

2.3 Extended Euclidean Algorithm:

Definition:

It is a version of the Euclidean algorithm, input of this algorithm

is two positive integers m ,n , the algorithm computer the GCD

as well as integers A and B such that Am + Bn = GCD(m,n)[6].

Algorithm:

1- input two positive integers m,n

2- initialize: A0=1 , A1=0 , B0=0 , B1=1 ,

R0=m , R1=n

3- While R1 <>0 do

{

q= [R0/R1]

temp=A0-A1*q , A0=A1 , A1=temp

temp=B0-B1*q , B0=B1 , B1=temp

temp=R0-R1*q , R0=R1 , R1=temp

}

Return A=A0 , B=B0 , g=R0 (the GCD)

Example:

1- m=5 , n=15

2- A0=1 , A1=0 , B0=0 , B1=1 , R0=5 , R1=15

3- R1<>0

q= [5/15] = 0

temp=1-0*0=1 , A0=0 , A1=1

temp=0-1*0=0 , B0=1 , B1=0

temp=5-15*0 = 5 , R0=15 , R1=5

R1<>0

Q=[15/5]=3

temp=0-1*3=-3 , A0=1 , A1=-3

temp=1-0*3 = 1 , B0=0 , B1=1

temp=15-5*3=0 , R0=5 , R1=0

R1=0 exit loop

A=A0=1 , B=B0=0 ,

g=R0= 5 (GCD)

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

27

 Am + Bn = GCD(m,n)

 1*5 + 0*15 = 5 is true

Code:

 var n,m,A0,A1,B0,B1,R0,R1,temp : integer;

m=5; n=15;

 Begin

A0=1 ; A1=0 ; B0=0 ; B1=1 ; R0=m ; R1=n;

While R1 <>0 do

{

q= [R0/R1];

temp=A0-A1*q ;

A0=A1;

A1=temp;

temp=B0-B1*q;

B0=B1;

B1=temp;

temp=R0-R1*q;

R0=R1;

R1=temp;

}

Return “A=”,A0,”B=”,B0,”GCD=”,R0;

Tracing:

M n A0 A1 B0 B1 R0 R1 q

5 15 1 0 0 1 5 15 0

- - 0 1 1 0 15 5 3

- - 1 -3 0 1 5 0 -

Program:

DIM m, n, a0, a1, b0, b1, r0, r1, temp AS INTEGER

INPUT m

INPUT n

a0 = 1 : a1 = 0 : b0 = 0 : b1 = 1 : r0 = m : r1 = n

DO WHILE r1 <> 0

q = INT(r0 / r1)

temp = a0 - a1 * q: a0 = a1: a1 = temp

temp = b0 - b1 * q: b0 = b1: b1 = temp

temp = r0 - r1 * q: r0 = r1: r1 = temp

LOOP

a = a0 : b = b0 : g = r0

PRINT "GCD=", r0

2.4 Lehmers GCD Algorithm:

Definition: An alternate approach to speeding up euclids

algorithm is due to lehmer. One notices that when a and b have

the same size, the integer part w of the a/b is often single digit.

Assume that a,b are very big numbers, ^a,^b are small numbers

such that: a/b = ^a/^b

then the sequence of quotients produced by EA(a,b) and by

EA(^a,^b) will be the same in the beginning , as long as this

holds one may compute EA(^a,b) instead of EA(a,b) which is

much more economical[7].

Algorithm:

1- INPUT: two positive integers x and y in

radix b representation, with x >= y.

2- OUTPUT: gcd(x; y).

1. While y >= b do the following:

1.1 Set x^, y^ to be the high-order digit of x, y,

respectively (y^ could be 0).

1.2 A=1, B=0, C=0,=D=1.

1.3 While (y^ + C) <> 0 and (y^ + D) <> 0 do the

following:

 q=floor((x^ + A)=(y^ + C)), q^=(x^ + B)=(y^ +

D)

 If q <> q^ then go to step 1.4.

 t=A - qC, A=C, C=t, t=B - qD, B=D, D=t.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

28

 t=x^ - qy^, x^=y^, y^=t.

1.4 If B = 0, then t=x mod y, x=y, y=t ;

 otherwise, t= Ax + By, u=Cx + Dy, x=t , y=u.

2. Compute v = gcd(x; y) using Euclids Algorithm:

input x,y where x > y

while b <> 0 do the following:

r = a mod b , a=b , b=r

3. Return(v).

Example & Tracing :

x = 768454923 , y = 542167814 , b=103

X Y q q^ Precision

768 454 923 542 167 814 1 1 Single (T1)

89 593 596 47 099 917 1 1 Single (T2)

42 493 679 4 606 238 10 8 Multiple

4 606 238 1 037 537 5 2 Multiple

1 037 537 456 090 - - Multiple

456 090 125 357 3 3 Single (T3)

34 681 10 657 3 3 Single (T4)

10 657 2 710 5 3 Multiple

2 710 2 527 1 0 Multiple

2 527 183 (Euclids)

183 148 (Euclids)

148 35 (Euclids)

35 8 (Euclids)

8 3 (Euclids)

3 2 (Euclids)

2 1 (Euclids)

1 0 (Euclids)

(T1)

X Y A B C D q1 q2

768 542 1 0 0 1 1 1

542 226 0 1 1 -1 2 2

226 90 1 -1 -2 3 2 2

90 46 -2 3 5 -7 1 2

(T2)

X Y A B C D q1 q2

89 47 1 0 0 1 1 1

47 42 0 1 1 -1 1 1

42 5 1 -1 -1 2 10 5

(T3)

X Y A B C D q1 q2

456 125 1 0 0 1 3 3

125 81 0 1 1 -3 1 1

81 44 1 -3 -1 4 1 1

44 37 -1 4 2 -7 1 1

37 7 2 -7 -3 11 9 1

 (T4)

X Y A B C D q1 q2

34 10 1 0 0 1 3 3

10 4 0 1 1 -3 2 11

Code:

Var b,x,y,xh,yh,q,qh,A,B,C,D : integer;

Begin

X = 768454923 , y = 542167814 , b=103 ;

While (y >= b) do

{

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

29

xh= HOD(x,b);

yh= HOD(y,b);

A=1; B=0; C=0;=D=1;

While ((yh+C) <> 0 and (yh + D) <> 0) do

{

q=floor((xh + A)=(yh + C));

qh=(xh + B)=(yh + D);

If q = qh then

{

t=A – q*C; A=C; C=t; t=B – q*D; B=D;

D=t;

t=xh - q*yh; xh=yh; yh=t;

 }

else

If B = 0 then

t= x mod y; x=y; y=t ;

Else

 t= A*x + B*y; u=C*x + D*y; x=t ; y=u;

}

while b <> 0 do

{

r = a mod b ;

a=b; b=r;

}

2.5 Bishop’s Method for GCD:
Definition:

If a large and small numbers are both multiples of K , them large

– small is a multiple of K. note that large-small is smaller than

large, so we have reduced the problem to one easier to solve. So

we need greatest multiple of large-small and small … and so on

[8].

Algorithm:

1- input two positive integers X,Y

2- while (x <> y) do

if (x>y) then

 x=x-y

else

{

 temp = y

 y=x

 x=temp

}

return(x)

Example:

1- X=30 , Y= 45

2- X <> Y

Is X > Y no

Temp = 45

Y=30

X=45

X <> Y

Is X > Y yes

X=45-30 = 15

X <> Y 15 <> 30

Is X>Y no

Temp = 30

Y=15

X=30

X<>Y 30 <> 15

Is X>Y yes

X=15-30 = 15

X = Y exit loop GCD=X=Y=15

Code:

 var x,y, temp : integer;

 Begin

 X=30 ; y = 45 ; temp=0;

 While X <> Y do

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

30

{

if X > Y then

X=X-Y;

Else

Temp=Y;

Y=X;

X=Temp;

End if

 }

 cout<<”GCD=”,X;

 End.

Tracing:

X Y

30 45

45 30

15 30

30 15

15 15

Program:

DIM X, Y, TEMP AS INTEGER

INPUT X

INPUT Y

DO WHILE X <> Y

IF X > Y THEN

X = X - Y

ELSE

TEMP = Y

Y = X

X = TEMP

END IF

LOOP

PRINT "GCD="; X

2.6 Fibonacci GCD's:
Definition:

Fibonacci numbers are then numbers in the series: n1, n2,

n3=n1+n2,n4=n2+n3,n5=n3+n4,… so that the numbers are 0, 1,

1, 2, 3, 5, 8, 13, 21, 34, 55, … the Fibonacci GCDs are the GCD

of two Fibonacci numbers and the result is also a Fibonacci

number[8].

Algorithm and Example:

You can use ant of the GCDs algorithm to calculate the GCD,

this algorithm is only to denote that the result is a Fibonacci

number. As example we use the euclids GCD algorithm:

F1= 34 , f2 = 8

GCD(34,8)

34 mod 8 = 2

8 mod 2 = 0

So GCD(34,8) = 2 which is a Fibonacci number.

3. Analysis of algorithms:

3.1 Time Consume:
The next table and graph show the timing in MS for the

algorithms for several integer numbers length:

Algorithm 2 Digits 4 digits 6 digits 8 digis

Brute Force

Algorithm

0 ms 9 ms 178 ms Too

long

Dijkstra's

Algorithm

5 ms 2 ms 0 ms 1 ms

Extended Euclidean

Algorithm

1 ms 1 ms 0 ms 2 ms

Bishop's Method for

GCD

3 ms 8 ms 1 ms 5 ms

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.5, July 2011

31

0

50

100

150

200

250

1 2 3 4

Time in ms for GCD Algorithms

Brute Force Algorithm

Dijkstra's Algorithm

Extended Euclidean

Algorithm

Bishop's Method for

GCD

As seen in the above graph that the brute force algorithm in

number that are 6 and more digits it toke a lot of time to get the

result, in the other hand the Extended Euclidean algorithm takes

less time when the numbers are more than 6 digits.

3.1 Number of loops:
The next table and graph show the number of loops for the

algorithms for several integer numbers length:

Algorithm 2

Digits

4 digits 6 digits 8 digis

Brute Force

Algorithm

11 1232 125472 1236548

Dijkstra's

Algorithm

9 44 55 54

Extended

Euclidean

Algorithm

6 7 12 18

Bishop's Method

for GCD

14 50 66 71

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4

GCD Algorithms Loops

Brute Force Algorithm

Dijkstra's Algorithm

Extended Euclidean

Algorithm

Bishop's Method for

GCD

The graph above shows the number of loops that the algorithms

take to find the answer. The Brute force algorithm make a lot of

loops to get the answer in the numbers that more than 2 digits, in

the other hand the Extended Euclidean algorithm make few

loops to get the answer.

4. CONCLUSIONS:
As seen in this paper about Greater Common Divisor GCD that

there is a lot of algorithms, some of these algorithm is good in

timing and make low number of iteration, the other make a lot of

iteration with a lot of time! But as we see in the analysis of the

algorithms that some of the algorithms is faster than the others

in small numbers (like Brute force is faster than Bishop

Algorithm in the small numbers, but in the large numbers the

Bishop Algorithm is too fast with comparison with the brute

force) so the researchers recommend to develop the Bishop

algorithm the make it more efficient in computing the GCD for

small numbers.

5. REFERENCES
[1] Handbook of Applied Cryptography, by A. Menezes, P. van

Oorschot, and S. Vanstone, CRC Press, 1996.

 [2] eLiteral The Moving Constant available at:

http://services.eliteral.com/digital-certificate-

mumbai/chap14.php

[3] Washington University, St. Louis available a:

http://www.cs.wustl.edu/~kjg/cs101/Notes/Recursion/recur

sion.html

 [4] Centre for Information Security and Cryptography available

at:

http://cisac.math.ucalgary.ca/news_events/hugh/talks/soren

son.pdf

[5] National Institute of Standards and Technology available at:

http://www.nist.gov/dads/

[6] Computer Science Ben Gurion University of the Negev available at:

http://www.cs.bgu.ac.il/~berend/teaching/Intro2CS/examples/main.h

tml

