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ABSTRACT
In the process monitoring procedure, Data-driven (statistical)
methods usually rely on the process measurements. In most
industrial process this measurements has a multi-scale substance
in time and frequency. Therefore the statistical methods which
are proper for one scale may not be able to detect events at
several scales. A Multi-Scale Partial Least Squares (MSPLS)
algorithm consists of Wavelet Transforms for extracting multi-
scale nature of measurements and Partial Least Squares (PLS) as
a popular technique of statistical monitoring methods. In this
paper the MSPLS algorithm is applied for monitoring of the
Tennessee Eastman Process as a benchmark. To show the
advantages of MSPLS, its process monitoring performance is
compared with the standard PLS and is proved that MSPLS can
be a more efficient technique than standard PLS for fault
detection in industrial processes.
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1. INTRODUCTION
The primary aim of process monitoring is to ensure the

success of planned operation by detecting the abnormal events
during the operation. In process control subject these abnormal
events usually called fault. Identification and diagnosis of these
faults and recovery of the process are the further steps of process
monitoring loop [1].

There are a lot of methods for process monitoring such as
analytical methods, artificial intelligence and statistical
approaches. Among these various methods, there are methods
that do not assume the form of model a-priori and rely only on
historical process data. These methods are called data-driven or
statistical methods. Although the model-based methods have
been usually used in process monitoring, modeling and
simulation are very difficult and sometimes impossible tasks in
many real industrial processes. Therefore, the data-driven
techniques can be a useful and practical tool for process
monitoring.

Partial Least Squares (PLS) is one of the most common and
widely used methods for statistical process monitoring. PLS
usually used where the process data can be grouped into two
sub-blocks as predictor and predicted (or response) blocks which
contain process variables and quality variables respectively [1,
2]. For monitoring task, when the PLS model is constructed, the
abnormal process conditions can be easily detected and
diagnosed based on the statistic monitoring indices.

PLS similar to the other advanced statistical methods, such as
PCA, FDA and CVA have been successfully applied in many
process control applications. However, the problem is that the

data blocks described above contain the process measurements
which have a multi-scale nature in time and frequency, and in
the other side, most statistical methods are proper for detecting
events at only one scale [3]. To overcome this problem, a multi-
scale process monitoring method called MSPCA (multi-scale
principal component analysis) was suggested for extracting
relationship between the measurements by wavelet analysis [4].
After that, many researchers studied on multi-scale techniques
for process monitoring and suggested new further multi-scale
techniques. Multi-scale PLS (MSPLS) is one of these process
monitoring techniques that can adapt to the scale of relevant
signal using Wavelet analysis [3].

In this paper, a multi-scale PLS model is constructed using the
proper Wavelet Transform and Standard PLS model. The
monitoring ability of the MSPLS is tested by monitoring of
Tennessee Eastman Process (TEP) as a benchmark and the
results are compared with the standard PLS method.

2. PLS MODEL
Partial Least Squares (PLS) Analysis works on the assumption
that the focus of analysis is on which aspects of the signal in one
matrix are related directly to signals in another matrix. The
construction of a PLS model involves the decomposition of both
the input or predictor X (n samples of m variables) and the
output or predicted Y (n samples of p variables) data blocks in
such a way as to maximize the covariance between them. A
linear relationship can then be developed between the two sets
of latent variables [5].

Mathematically, the outer model, describing the projection stage
of the algorithm, is given by:
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The inner relationship, for estimating the Y block scores, for the
linear case can then be described by:
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The goal of partial least squares is to predict Y from X and to
describe the common structure underlying the two variables [6].
For monitoring aim, PLS use the training data sets to construct
the relevant model which can be able to predict the new
depended variables from new independent variables. Any
abnormal behavior of system then could be detected by
comparing the new variables with the corresponding variable
predicted in the PLS model or using the monitoring indices such

as Hotelling’s
2T and squared prediction error (SPE).

3. MSPLS MODEL DESCRIPTION
3.1 Wavelet Transform
Multi-scale process monitoring algorithms usually use wavelet
Transform to decompose the original process measurements into
their multi-scale components according to time and frequency
characteristics [2]. A wavelet Transform involves the
decomposition of a signal function or vector into simpler, fixed
building blocks at different scales and positions [7].

A family of wavelet basis functions may be represented as
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Where s and u represent the dilation and translation parameters,

respectively, and )(t is the mother wavelet. For most

practical applications to measured data, the wavelet dilation and
translation parameters are discretized  dyadically, and the family
of wavelets is represented as

 ktm
m

mk  


22 2 
(6)

Where )(t is the mother wavelet, m and k are the dilation

and translation parameters, respectively.

Any signal can be decomposed into its contributions from
multiple scales as a weighted sum of dyadically discretized
orthonormal basis functions:
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Where y is a time signal, mkd represents the wavelet or detail

signal coefficient at scale m and location k, and Lka
represents

the scaled signal or scaling function coefficient of Lk (t) at

the coarsest scale L and location k [3]. The scaling function 
(t) is responsible for capturing the coarse (low frequency)
contents of the signal. mong the efficient methods for
decomposing a signal on a family of wavelet basis functions
based on convolution with the corresponding  filters, Mallat
developed an efficient way to implement the DWT (Discretized
Wavelet Transform) iteratively using the scaling (low-pass)
filter H and the wavelet (high-pass)filter G as follows [8]:

1 ss Gdd
(8)

1 ss Haa
(9)

Where sa
is the approximation coefficient vector at scale s

representing the lower frequency information contained in the

upper level approximation coefficient vector 1sa
while sd

is
the detail coefficient vector representing the higher frequency
content. Once the wavelet type and the decomposition level S
are specified, the original signal f can be efficiently decomposed
into its multi-scale components which consist of one
approximation coefficient vector at the coarsest scale S, and S
detail coefficient vectors at all the scales from the finest one to
the coarsest one [2].

3.2 MSPLS Algorithm
Please For on-line process monitoring, the wavelet
decomposition described previously, should be performed
concerning each process variable in on-line mode. To implement
the on-line DWT the scheme of moving window is used [3, 4, 7]
where a dyadic length of the window corresponding to the

selected decomposition level S (length=
S2 ) is always

maintained by including the most recent measurements while
discarding the oldest ones. It must be considered that the
translation invariance characteristic of the on-line DWT, which
is not usually guaranteed in the off-line DWT, is necessary in
multi-scale statistical analysis [9].

To actualize an on-line multi-scale version of PLS that could
fully use the functional  properties of the wavelet analysis

mentioned above, the predictor data matrix
mnRX  and the

response data matrix
pnRY  are first decomposed into the

following multi-scale matrix
)1(  smnRX and

)1(  spnRY using the on-line DWT [2]:

 121 ...  ssW XXXXX
(10)
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Where each sub-block
mn

S RX 
or

pn
S RY 

(s=1,
2… S) Contains the detail coefficients at scale s and the last sub-

blocks 1SX
and 1SY

contain the approximation coefficients
at the coarsest scale S. In this study the same decomposition
level is employed for both X and Y.
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Figure 1 shows the schemes of the MSPLS applied in this study.
As shown in this figure, the PLS model is formed once,

separately on each corresponding pair of sub blocks SX
and

SY
to describe the localized features in the given scale, and

another time on WX
and WY

to describe the global
relationship between X and Y which is common in the entire
scale blocks.
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Figure 1. a) The scheme of MSPLS at scale-level. b) The scheme of MSPLS at global level.

So, for online process monitoring via MSPLS, the predictor and
predicted data blocks (X and Y) should be decomposed using
online DWT into their relevant scales and then, the monitoring
procedure using PLS should be implemented for overall data

blocks WX
and WY

containing all scales and also for each
scale separately.

4. TENNESSEE EASTMAN PROCESS
The Tennessee Eastman Process (TEP) was created by the
Eastman Chemical Company to provide a realistic industrial
process for evaluating process control and monitoring methods
[10]. The test process is based on a simulation of an actual
industrial process where the components, kinetics, and operating
conditions have been adjusted for specific aims. The process
consists of five major units: a reactor, condenser, compressor,
separator, and stripper; and, it contains eight components: A, B,
C, D, E, F, G, and H [1].
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Figure 2 the processes flow sheet for the Tennessee Eastman Process [11].

As shown in Figure 2, the gaseous reactants A, C, D, and E and
the inert B are fed to the reactor where the liquid products G and
H are formed and the species F is a by-product of the reactions.
The reactions in the reactor are:

)()()()( liqGgDgCgA 

)()()()( liqHgEgCgA 

)()()( liqFgEgA 

)(2)(3 liqFgD 

The labels in Figure 2 represent flow meters (FI), thermometers
(TI), pressure gauges (PI), level detectors  (LI), agitator speed
control (SC), steam supply (Stm), and cooling water
supply/recycle (CWS/CWR) (Wilson et al., 2000). The reactions
are exothermic, irreversible, and nearly first-order with respect
to the reactant concentrations. The reaction rates are Arrhenius
functions of temperature where the reaction for G has higher
activation energy than the reaction for H, resulting in a higher
sensitivity to temperature [1]. Here is the sufficient description
was need to this study and the further description of TEP exists
in the other literatures [3, 12, 13].

The process contains 53 variables containing 41 measured and
12 manipulated variables. In this study, the measurements of
components F, G and H have been selected as product variables
to forming a matrix as response block, Y. The other variables
formed the predictor block, X. It should be noted that the
process measurements has not identical sampling interval and
time delay and all of them include Gaussian noise which should
be considered in data preparing process.

Among various preprogrammed faults in the Tennessee Eastman
Process simulation we selected three known faults to compare
the monitoring ability of MSPLS algorithm with the standard
PLS algorithm. The training set applied in this study is
consisting of 500 observations for each variable which was
generated with no fault. Three sets of data have been used for
testing, each containing a separable known fault. Fault 1 is
connected to the step change in the cooling water. Fault 2 is a
low drift in the reaction kinetics, and Fault 3 is associated with
one of the sticking valves.

5. MONITORING OF TENNEESSE
EASTMAN PROCESS USING MSPLS
Although the MSPLS algorithm described earlier [2] has been
used in this study because of its ability to use in online
application, simplicity and realizable structure, but there are
some other algorithms for multi-scale extension of statistical
methods proposed by other researchers. In order to build a
MSPLS algorithm for online monitoring application, some prior
conditions should be first specified. The type of mother wavelet
for DWT and the optimum decomposition level are the most
important of these prior conditions. In this study the ‘Haar’
wavelet was used because of its simplicity and usual use in multi
scale statistical process control. Maulud et al. [14] obtained the
optimum decomposition level of wavelet for multi-scale PCA
based on the variance explained by the first principle component
of PCA model which was constructed using the approximation
block generated at every decomposition level. Based on this
systematic approach, but using PLS model instead PCA, the
optimum decomposition level for this study was obtained
(three). Therefore each data block was decomposed into one
approximation block and three detail blocks.
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The number of latent variables in PLS model is an important
factor that should be selected correctly. Many researchers use
cross validation or other efficient statistical approaches to
estimate the optimum number of latent variables [15]. In this
study, using the cross validation technique, the number of latent
variables for standard PLS and MSPLS were obtained three and
nine, respectively.

Process monitoring abilities of the standard PLS model and the
MSPLS model has been compared using the simulated
Tennessee Eastman Process data sets containing three different
faults which described earlier in this study. The same sampling
interval, three minutes, was used to collect the all simulated data
to allow fast monitoring and good comparison between
techniques that either consider or ignore serial correlations.

As mentioned earlier, three faulty data blocks have been used
each containing 980 observations as testing data. In order to
execute the MSPLS model, each process measurement vector
were first decomposed using the on-line DWT, and then the

monitoring indices, Hotelling’s
2T and squared prediction

error XSPE and YSPE were calculated and the chart for
each of them was drawn versus time. The control limits
associated with all the monitoring indices mentioned above was
calculated from their characteristic distributions. The detailed
equations for the control limits are given elsewhere [16]. When
calculating the overall fault detection rate, it was assumed that
the given fault was successfully detected whenever the violation
of a control limit occurred in any of the global level monitoring

diagrams (
2T , XSPE and YSPE ) [2]. It was assumed that

these calculations were done without any time delay.

6. RESULTS AND DISCUSSION
All fault detection rates that were calculated for each test are
presented in table 1. As it is shown in this table, the fault
detection precision of the MSPLS is clearly better than the
standard PLS. Also, to compare the monitoring abilities of
MSPLS with the standard PLS, the monitoring charts of
standard PLS, MSPLS at global level and MSPLS at scale level
are presented together for each above mentioned fault,
separately.

Figure 3. Monitoring abilities of the standard PLS and MSPLS for fault 1. Red solid and dashed lines represent the 99% and 95%
confidence limits, respectively

The monitoring charts for Fault 1 (connected to the step change
in the cooling water) are presented in Figure 3. It is obvious
form this Figure that the MSPLS at global level could clearly
detect the fault while the standard PLS was not able to do it as
well as the MSPLS. This prominence of MSPLS can also be
seen in Table 1 where the fault detection rate of MSPLS at
global level (0.92) is more than this corresponding value for
standard PLS (0.79). From the monitoring charts of MSPLS at
scale level it is obvious that the fault is mostly detected in
approximation block A3. The sources of detected fault can be

further identified by exploring the contributions profiles of this
approximation block.

Table 1: Fault detection rates of MSPLS and standard PLS for
the simulated faults (calculated using 95% control limits). A3:
approximation block at level 3, D3: detail block at level 3, D2:
detail block at level 2, D1: detail block at level 1.

International Journal of Computer Applications (0975 – 8887)
Volume 26– No.6, July 2011

30

The number of latent variables in PLS model is an important
factor that should be selected correctly. Many researchers use
cross validation or other efficient statistical approaches to
estimate the optimum number of latent variables [15]. In this
study, using the cross validation technique, the number of latent
variables for standard PLS and MSPLS were obtained three and
nine, respectively.

Process monitoring abilities of the standard PLS model and the
MSPLS model has been compared using the simulated
Tennessee Eastman Process data sets containing three different
faults which described earlier in this study. The same sampling
interval, three minutes, was used to collect the all simulated data
to allow fast monitoring and good comparison between
techniques that either consider or ignore serial correlations.

As mentioned earlier, three faulty data blocks have been used
each containing 980 observations as testing data. In order to
execute the MSPLS model, each process measurement vector
were first decomposed using the on-line DWT, and then the

monitoring indices, Hotelling’s
2T and squared prediction

error XSPE and YSPE were calculated and the chart for
each of them was drawn versus time. The control limits
associated with all the monitoring indices mentioned above was
calculated from their characteristic distributions. The detailed
equations for the control limits are given elsewhere [16]. When
calculating the overall fault detection rate, it was assumed that
the given fault was successfully detected whenever the violation
of a control limit occurred in any of the global level monitoring

diagrams (
2T , XSPE and YSPE ) [2]. It was assumed that

these calculations were done without any time delay.

6. RESULTS AND DISCUSSION
All fault detection rates that were calculated for each test are
presented in table 1. As it is shown in this table, the fault
detection precision of the MSPLS is clearly better than the
standard PLS. Also, to compare the monitoring abilities of
MSPLS with the standard PLS, the monitoring charts of
standard PLS, MSPLS at global level and MSPLS at scale level
are presented together for each above mentioned fault,
separately.

Figure 3. Monitoring abilities of the standard PLS and MSPLS for fault 1. Red solid and dashed lines represent the 99% and 95%
confidence limits, respectively

The monitoring charts for Fault 1 (connected to the step change
in the cooling water) are presented in Figure 3. It is obvious
form this Figure that the MSPLS at global level could clearly
detect the fault while the standard PLS was not able to do it as
well as the MSPLS. This prominence of MSPLS can also be
seen in Table 1 where the fault detection rate of MSPLS at
global level (0.92) is more than this corresponding value for
standard PLS (0.79). From the monitoring charts of MSPLS at
scale level it is obvious that the fault is mostly detected in
approximation block A3. The sources of detected fault can be

further identified by exploring the contributions profiles of this
approximation block.

Table 1: Fault detection rates of MSPLS and standard PLS for
the simulated faults (calculated using 95% control limits). A3:
approximation block at level 3, D3: detail block at level 3, D2:
detail block at level 2, D1: detail block at level 1.

International Journal of Computer Applications (0975 – 8887)
Volume 26– No.6, July 2011

30

The number of latent variables in PLS model is an important
factor that should be selected correctly. Many researchers use
cross validation or other efficient statistical approaches to
estimate the optimum number of latent variables [15]. In this
study, using the cross validation technique, the number of latent
variables for standard PLS and MSPLS were obtained three and
nine, respectively.

Process monitoring abilities of the standard PLS model and the
MSPLS model has been compared using the simulated
Tennessee Eastman Process data sets containing three different
faults which described earlier in this study. The same sampling
interval, three minutes, was used to collect the all simulated data
to allow fast monitoring and good comparison between
techniques that either consider or ignore serial correlations.

As mentioned earlier, three faulty data blocks have been used
each containing 980 observations as testing data. In order to
execute the MSPLS model, each process measurement vector
were first decomposed using the on-line DWT, and then the

monitoring indices, Hotelling’s
2T and squared prediction

error XSPE and YSPE were calculated and the chart for
each of them was drawn versus time. The control limits
associated with all the monitoring indices mentioned above was
calculated from their characteristic distributions. The detailed
equations for the control limits are given elsewhere [16]. When
calculating the overall fault detection rate, it was assumed that
the given fault was successfully detected whenever the violation
of a control limit occurred in any of the global level monitoring

diagrams (
2T , XSPE and YSPE ) [2]. It was assumed that

these calculations were done without any time delay.

6. RESULTS AND DISCUSSION
All fault detection rates that were calculated for each test are
presented in table 1. As it is shown in this table, the fault
detection precision of the MSPLS is clearly better than the
standard PLS. Also, to compare the monitoring abilities of
MSPLS with the standard PLS, the monitoring charts of
standard PLS, MSPLS at global level and MSPLS at scale level
are presented together for each above mentioned fault,
separately.

Figure 3. Monitoring abilities of the standard PLS and MSPLS for fault 1. Red solid and dashed lines represent the 99% and 95%
confidence limits, respectively

The monitoring charts for Fault 1 (connected to the step change
in the cooling water) are presented in Figure 3. It is obvious
form this Figure that the MSPLS at global level could clearly
detect the fault while the standard PLS was not able to do it as
well as the MSPLS. This prominence of MSPLS can also be
seen in Table 1 where the fault detection rate of MSPLS at
global level (0.92) is more than this corresponding value for
standard PLS (0.79). From the monitoring charts of MSPLS at
scale level it is obvious that the fault is mostly detected in
approximation block A3. The sources of detected fault can be

further identified by exploring the contributions profiles of this
approximation block.

Table 1: Fault detection rates of MSPLS and standard PLS for
the simulated faults (calculated using 95% control limits). A3:
approximation block at level 3, D3: detail block at level 3, D2:
detail block at level 2, D1: detail block at level 1.



International Journal of Computer Applications (0975 – 8887)
Volume 26– No.6, July 2011

31

MSPLS

PLS Global
level A3 D3 D2 D1

Fault1 0.79 0.92 0.88 0.04 0.06 0.09

Fault2 0.72 0.89 0.93 0.08 0.20 0.20

Fault3 0.45 0.73 0.52 0.56 0.41 0.70

Figure 4 represents the monitoring charts for Fault 2 (a low drift
in the reaction kinetics). Similar to the previous charts, it can be
seen that the MSPLS at global level could detect the fault better
than standard PLS method. It is confirmed at table 1 where the
fault detection rate of the global level MSPLS (0.89) is more
than standard PLS (0.72). Again, the monitoring charts of the
MSPLS at scale level give this point that the fault is mostly
detected at approximation block A5, which can be helpful for
further monitoring steps.

The most superiority of MSPLS technique can be seen in Figure
5 where the standard PLS is not able to detect Fault 3(associated
with one of the sticking valves) adequately, but the MSPLS at
global level can finely do it. As it can be seen in table 1, the
fault detection rate of the standard PLS (0.45) is not acceptable
for a reliable monitoring while the MSPLS detects this fault with

a satisfactory detection rate (0.73). the monitoring charts of
MSPLS at scale level in Figureure.5 also specifies that for the
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detail block D1 should be explored.
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Figure 5. Monitoring abilities of the standard PLS and MSPLS methods for fault 3. Red solid and dashed lines represent the 99% and
95% confidence limits, respectively.

7. CONCLUSIONS
In most industrial processes, the process measurements have a
multi-scale nature in time and frequency. Therefore, it is
required to apply an optimum way for monitoring of these
processes to take into consideration this multi-scale and
multivariate nature of process dynamics. Unlike the most of
MSPLS algorithms proposed heretofore, which had not very
superiority than the standard PLS, the MSPLS algorithm used in
this study proved that can be a more efficient technique than the
standard PLS for monitoring of industrial processes. A suitable
MSPLS algorithm which takes advantage of useful properties of
wavelet analysis, in addition to improving the performance of
PLS technique to fault detection, can be an advantageous
method to further identifying the fault sources.
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