
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

40

Comparative Evaluation of Request-Partitioning-
based Processor Allocation Strategies in 2D

Mesh-based Multicomputers

Sulieman Bani-Ahmad

Dept. of Information Technology,
Al-Balqa Applied University

Salt, 19117
Jordan

ABSTRACT

Request-Partitioning-Based (RPB) allocation schemes remedy

the problem of fragmentation by allowing parallel requests to be

allocated non-contiguously in case contiguous allocation fails.

Two RPB allocation schemes are proposed in literature; the

Adaptive Non-Contiguous Allocation (ANCA) and the

Bounded-Gradual-Partitioning (BGP) allocation. In ANCA, the

frame requested by the parallel job is subdivided into two

subframes of equal sizes at the longest dimension of the request.

In BGP, requests are gradually partitioned into one large and

another small subframe of multicomputers. In this paper, ANCA

and BGP based allocation strategies are comparatively evaluated

through exhaustive simulation-based experiments. Our

experimental results also showed that the ANCA scheme can

sustain higher system and communication loads compared to

BGP in terms of major system performance metrics. We also

observed that, in the BGP approach, increasing the partitioning

bound value can slightly improve the performance of the parallel

system. Comparatively, increasing the partitioning bound in the

ANCA approach could significantly improve the performance of

the parallel system.

General Terms

Parallel Computing, Processor Allocation, Algorithms.

Keywords

Non-contiguous allocation; 2D-Mesh Multicomputers; Request-

Partitioning; ANCA; BGP.

1. INTRODUCTION
Multicomputer parallel computer systems are cost-effective

alternatives of the traditional supercomputers [8]. The

interconnection of multicomputers come in different styles

called topologies. The two-dimensional (2D) and three-

dimensional (3D) mesh-based topologies are probably the most

common topologies because they are simple, regular and

scalable [1; 6; 7]. Several recent commercial and experimental

parallel computers have been built based these two architectures

such as the IBM BlueGene/L and the Intel Paragon [1; 6; 7].

Contiguous allocation strategies of mesh-connected

multicomputers attempt to locate a contiguous portion of the

computing units for the execution of a parallel job [27; 9; 1; 2;

14; 10; 30]. Contiguity of multicomputers helps in minimizing

the distance of interprocessor communication path and in

avoiding the interprocess interference that creates

communication contention.

Another feature of contiguous processor allocation is that all the

multicomputers allocated to a parallel job retain the same exact

topology as the underlying multicomputer system. Further, the

number of multicomputers allocated to a particular parallel job

is determined according to the requirement of that parallel job

[8]. Thus, in a mesh-connected multicomputer, jobs are

allocated to submeshes [8; 9; 1; 2; 14; 10]. A parallel job retains

all the multicomputers of the submesh for the entire duration of

its life time. Once a parallel job is allocated, it runs till

completion (i.e., no time-sharing) [1; 6; 7].

The processor allocator module in a multicomputer system

applies allocation strategies or algorithms to identify and assign

unallocated multicomputers to parallel jobs [8]. Allocation

strategies with better recognition ability for available submeshes

of unallocated multicomputers can improve the chance of

assigning a parallel job into the system and, thus, reduce the job

waiting delay [8; 1; 6; 7].

Studies showed that a significant performance improvement

cannot be obtained by refining the contiguous allocation

strategies [12; 8; 1]. Because of fragmentation problem, the

average percent system utilization of a multicomputer system

can significantly degrade [8; 1]. Fragmentation occurs when

there are enough unallocated multicomputers in the parallel

multicomputer system but the allocator module fails to allocate

these multicomputers to the waiting parallel jobs as they are

non-contiguous or dispersed. This, in turn, limits the

performance of contemporary allocation schemes.

Consequently, contiguous allocation strategies fail to reduce the

effect of fragmentation and hence provide very limited

performance.

Request-Partitioning-Based (RPB) processor allocation

strategies remedy the problems of fragmentation and low system

utilization by allowing requests of parallel jobs to be partitioned

and allocated non-contiguously into smaller subframes in case

contiguous allocation fails [6; 7; 3; 4; 5]. Notice that small

subframes are usually easy to be successfully allocated; the

probability of successfully allocating a parallel job is increased.

Studies show that RPB allocation strategies can successfully

combine the advantages of both contiguous and non-contiguous

allocation strategies through preserving some level of contiguity

within allocated parallel job. Two RPB allocation schemes are

proposed and studied in literature; the Adaptive Non-Contiguous

Allocation (ANCA) [8; 5] and the Bounded-Gradual-

Partitioning (BGP) allocation [6; 7; 3; 4].

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

41

Both RPB schemes try to solve the problem of fragmentation by

allowing parallel jobs to be allocated non-contiguously. In

ANCA, allocation of jobs is done by splitting the frame

requested by the parallel job in hand into two subframes of equal

sizes. Splitting is done at the longest dimension of the request

[8; 5]. In BGP, however, allocation of jobs is achieved by

gradually partitioning the frame requested into one large and

another small subframe of multicomputers [6; 7; 3; 4]. Both

ANCA and BGP schemes prevent over-partitioning by placing a

limit to the maximum number of non-contiguous blocks of

multicomputers or subframes that can be assigned to any parallel

job. This maximum number is referred to as the partitioning-

bound [4; 5].

In this paper we comparatively evaluate both RPB schemes

using computer-based simulation. The ANCA allocation

strategy tested in this paper is the implementation proposed in

[5].

Our experimental results also showed that the ANCA scheme

could sustain higher system and communication loads compared

to BGP in terms of major system performance metrics. We also

observed that, in the BGP approach, increasing the partitioning

bound value could slightly improve the performance of the

parallel system. Comparatively, increasing the partitioning

bound in the ANCA approach could significantly improve the

performance of the parallel system.

2. PREVIOUS ALLOCATION

STRATEGIES
Contiguous processor allocation strategies focus on finding the

requested submesh according to the request of a job in terms of

shape (and in orientation in some strategies). Non-contiguous

allocation strategies alleviate the constraint of contiguity to

achieve higher system utilization [6; 7; 3; 4]. Next we outline

several contiguous allocation strategies for 2D-mesh

multicomputers proposed in the literature.

Two Dimensional Buddy (TDB): in the TDB strategy [14], the

system is assumed to be a square with side lengths equal to a

power of two. The size of a requested submesh is rounded up to

a square with side-lengths as the nearest power of two.

Obviously, a square submesh can form a larger square submesh

with its three neighboring buddies. Jobs are allocated to buddies

of submeshes. This allocation strategy suffers from internal

fragmentation because it only allocates square submeshes whose

side lengths are equal to a power of two. In other words, because

of rounding up the sides of requests, the allocated submesh can

be larger than the actually requested submesh.

Frame Sliding (FS): The FS method [10] was proposed to

reduce the fragmentation problem of the TDB allocation by

allowing meshes of any arbitrary size to be allocated. Viewing

the requested submesh of the job in hand as a frame, the FS

algorithm slides the frame across the system to examine for a

free submesh to execute the job [10].

The First-Fit (FF) and the Best-Fit (BF) schemes: The FF and

BF algorithms proposed in [30] guarantee the recognition of a

free submesh, provided it exists. The two algorithms work by

scanning the entire mesh for possible allocation.

Adaptive-Scan (AS) scheme: The adaptive-scan [11] changes

the orientation of the submesh being searched for if the required

submesh in the original orientation is not available. Thus, the AS

strategy has better recognition capabilities than that of the BS

and FF schemes.

All the above allocation strategies are referred to as contiguous

allocations because they consider only contiguous regions for

the execution of a parallel job. In contiguous allocation,

communication cost is minimal [5]. However, the requirement

that a parallel job has to be allocated to contiguous set

multicomputers reduces the chance of successfully allocating the

job due to the problem of fragmentation [5; 6].

Hardware advances such as wormhole routing and faster

switching techniques have made the communication latency less

sensitive to the distance between the communicating nodes [20;

15; 8, 1; 6; 7]. This makes allocating a parallel job to a non-

contiguous set of multicomputers plausible. By alleviating the

restriction of contiguity, parallel jobs can get allocated and

executed early. Several non-contiguous allocation algorithms are

proposed in literature. Examples are: the random, the Multiple

Buddy System (MBS) and the Paging algorithms.

In the Multiple Buddy System (MBS) strategy, the mesh of the

system in hand is divided into non-overlapping square-shaped

sub-meshes with side lengths that are powers of two. The

number of processors, p, requested by a scheduled job is

factorized into a base-4 block. If a required block is not

available, MBS recursively searches for a larger block and

repeatedly breaks it down into four buddies until it produces

blocks of the desired size. If that fails, the requested block is

further broken into four sub-requests until the job is successfully

allocated [17].

In the Paging allocation strategy [16], the entire 2D mesh is

virtually sub-divided into pages or sub-meshes of equal sides’

length of 2i where i is a positive integer number that represents

the index parameter of the paging approach. The pages are

indexed according to several indexing schemes, namely; row-

major, shuffled row-major, snake-like, or shuffled snake-like

indexing [21].

3. PARTIALLY NON-CONTIGUOUS

ALLOCATIONS
Non-contiguous allocation algorithms can be (i) totally non-

contiguous and (ii) partially non-contiguous [5; 7]. In a totally

non-contiguous allocation, a parallel job can be allocated as long

as the number of available processing units is sufficient for its

execution. In a partially non-contiguous allocation, the

processing units allocated to a job retain a certain degree of

contiguity.

Partially non-contiguous allocations can successfully provide

higher performance than the totally non-contiguous allocations

as they that reduce jobs dispersal [5; 16; 18]. In Paging

algorithm, there is some degree of contiguity because of the

indexing schemes used. Contiguity can also be increased by

increasing the index parameter. However, this may produce

internal processor fragmentation for large index sizes [16]. In

MBS, contiguous allocation is explicitly sought only for

requests with sizes of the form 22n, where n is a positive integer

[5].

Request-Partitioning-Based (RPB) processor allocation

strategies are partially non-contiguous allocation strategies that

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

42

remedy the problems of fragmentation and low system

utilization by allowing requests of parallel jobs to be partitioned

and allocated non-contiguously into smaller subframes in case

contiguous allocation fails [6; 7; 3; 4; 5]. Studies show that RPB

allocation strategies combine the advantages of both contiguous

and non-contiguous allocation strategies through preserving

some level of contiguity within allocated parallel job [5].

Two RPB allocation schemes are proposed and studied in

literature; the Adaptive Non-Contiguous Allocation (ANCA) [8;

5] and the Bounded-Gradual-Partitioning (BGP) allocation [6; 7;

3; 4]. In ANCA, allocation of jobs is done by splitting the frame

requested by the parallel job in hand into two subframes of equal

sizes. Splitting is done at the longest dimension of the request

[8; 5]. In BGP, however, allocation of jobs is achieved by

gradually partitioning the frame requested into one large

subframe and another small subframe [6; 7; 3; 4]. Both ANCA

and BGP schemes prevent over-partitioning by placing a limit to

the maximum number of non-contiguous blocks of

multicomputers or subframes that can be assigned to any parallel

job. This maximum number is referred to as the partitioning-

bound [4; 5]. Next we describe the RPB allocation schemes in

more detailed manner.

The ANCA algorithm first attempts to allocate the job at hand

contiguously. If the allocation attempt fails, it partitions the

request into two equi-sized sub-requests. These subframes are

then allocated to available locations, if possible; otherwise, each

of these sub-requests is recursively further partitioned into two

equi-sized sub-requests, and then ANCA tries to map these sub-

requests to available locations [5; 8].

In [5] a modified version of the ANCA approach is presented

and evaluated, the ANCA-based allocator tries to allocate the

parallel job in hand using some given contiguous allocation

strategy (e.g., the first-fit or best-fit). This contiguous method is

recommended to be selected to be of a good free-submesh

recognition capability. If the allocator module fails to allocate

the parallel job, it splits the job into two subframes that are as

equal as possible in terms of size and topology [5]. This is done

by splitting the request at its longest dimension. Given that the

request is of dimensions AxB. Assume that A>B. If the value of

the length of the longest dimension of the request is even, then

the two subframes will be of exactly-equal sizes (A/2 x B). If the

length is odd, the original implementation of the ANCA

algorithm [8) tries to allocate two submeshes each of size of

Ceiling(A/2) x B. This causes having internal fragmentation of

size 1 x B. The original implementation of the ANCA strategy

solves this problem of internal fragmentation by bookkeeping of

idle nodes [8). In the modified implementation of the ANCA

algorithm the request in hand divided into two with the

following dimensions: the first is Ceiling(A/2) x B and

floor(A/2) x B. As a result, no need for bookkeeping.

In [3; 4; 7], a family of adaptive non-contiguous allocation

algorithms for 2D-mesh multicomputers are proposed. These

algorithms are all utilizes a contiguous allocation strategy

implicitly. These algorithms try to find a contiguous set of

processing units of the same shape and size to the request in

hand using the contiguous allocation algorithm. If they fail, the

request in hand is divided into two sub-requests after removing

one from the longest dimension of the request. That is, for a

given request of size αxβ and assuming β>α, the two partition-

sizes are αx(β-1) and αx1 after removing one from the longest

dimension of the request. The two new sub-requests are then

allocated using the contiguous allocation algorithm again. This

procedure continues recursively until the request is fulfilled.

These algorithms are referred to as PALD-based approaches.

The abbreviation PALD stands for PArtitioning at the Longest

Dimension [3; 4].

In this paper we comparatively evaluate the two main RPB

allocation strategies. We use the modified ANCA scheme

implemented in [5] and the GRP-based allocation strategies

implemented in [3; 4]. Both schemes utilize the first-fit and best-

fit contiguous allocation strategies in an attempt to contiguously

allocate parallel jobs. We compare the two allocation schemes

using computer-based simulation. Next we describe the

simulated system that is used in this study.

4. SIMULATION RESULTS
In this section, the results from simulations that have been

carried out to comparatively evaluate the ANCA and BGP

allocation schemes are presented. Next we describe the

simulated system that is used in this study.

4.1. Simulation Environment

The BGP and ANCA allocation algorithms is implemented in

the C language, and later integrated with the ProcSimity

simulation tool [26; 22]. Each simulation run consists of 1000

completed jobs. Simulation results are averaged over enough

independent runs so that the confidence level is 95% and the

relative errors do not exceed 5%. Parallel jobs usually

communicate with each other using all-to-all communication

pattern [25; 13; 17]. We did our experiments using this

communication pattern as it produces high message collision is

known to be a weak point for non-contiguous allocation

algorithms [6; 1; 25]. The processor allocation strategies were

tested under the scheduling strategy First-Come-First-Serve. The

simulated parallel system is of size 20x20 computing units. The

size of the simulated parallel job follows the exponential

distribution with an average of 10 units for each dimension.

4.2 Simulation output interpretation

Mean Response Time (MRT): The response time is the time

from the submission of request until the first real response

produced for jobs.

Mean Job Service Time (JST): The service time of a parallel

job is the time from the allocation of the job’s request until the

moment the parallel job finishes execution.

Simulation Finish Time (FT): the time required by the

simulator to simulate serving 10,000 parallel jobs. Low FT

values indicates high throughput multicomputer system.

Percent system utilization (PSU): The average of keeping the

processors within a system as busy as possible, this value

between 0 and 1.

Mean Packet Blocking Time (MPBT): The average amount of

time the head of the message is blocked at each station while

routing the message over the path from source to destination.

Mean Packet Latency (MPL): The average of the time that all

packets within job will be sent between processors (From source

processor to distention processor).

Mean number of Blocks Per Job (MBPJ): the average number

of non-contiguous subframes assigned to the parallel job that

were served during simulation.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

43

4.3 Simulation results and observations

4.3.1. The impact of system load

Figure 1 and 2 show how increasing the load of the parallel

system affects the Finish Time (FT) of the ten runs of simulator

and the Mean Job Response Time (MJRT), respectively. Two

observations can be made of figure 1; the first is that increasing

the Partitioning Bound (PB) value allows the parallel system to

serve parallel jobs earlier and thus increase the system

throughput. Consequently, the simulator FT is expected to be

less for higher PB values (notice that non-contiguity of request

allocated processing nodes does not significantly affect the

service time of parallel jobs as they are not severely dispersed as

clearly noticed in figure 2).

The other observation that can be made of figure 1 is that,

considering the same PB values for the ANCA and BGP

schemes, the ANCA scheme showed lower FT values. This can

be explained as follows: ANCA splits parallel jobs in two

subframes of equal sizes. The BGP, however, splits jobs into

one relatively large subframe and another small subframe.

Notice that the probability of successfully allocating the large

subframe of the BGP scheme is less than that of allocating the

two smaller subframes produced by the ANCA scheme. Taking

into consideration that the allocation of a parallel job is

successful if and only if both subframes are allocated, it is

expected that the ANCA algorithm is expected to produce lower

FT (figure 1) and also lower MJRT values (figure 2) for the

same PB value enforced. For the same above reason, it is

expected that the ANCA scheme to be superior over the BGP

scheme in terms of Average System Utilization (ASU) as shown

in figure 3 that proves that ANCA can sustain higher system

loads and produce higher system utilization compared to BGP.

Fig. 1: Finish time vs. system load in ANCA-BF and BGP-

BF allocation strategies with partitioning bound of 8 and 4

BPJ under the FCFS scheduling mechanism and all-to-all

communication pattern.

Fig. 2: Mean job response time vs. system load in ANCA-BF

and BGP-BF allocation strategies with partitioning bound of

8 and BPJ under the FCFS scheduling mechanism and all-

to-all communication pattern.

Fig. 3: Percent system utilization vs. system load in ANCA-

BF and BGP-BF allocation strategies with partitioning

bound of 8 and 4 BPJ under the FCFS scheduling

mechanism and all-to-all communication pattern.

Both ANCA and BGP schemes can allocate parallel jobs in a

non-contiguous manner. Thus, it is expected that both will

disperse parallel jobs. Figure 4 shows how increasing the load of

the system affects the mean number of blocks per parallel job

(MBPJ). Figure 4 shows that, for the same partitioning bound

value, The ANCA scheme usually allocates parallel jobs to more

blocks than the BGP approach in average. More MBPJ values

imply longer jobs service time. Figure 5 shows that, when the

partitioning bound is small, the BGP approach produces lower

mean job service time value (MJST) than that produced by the

ANCA approach. However, for higher PB values, the

performance of the BGP approach degrades$ and the ANCA

approach produces less job service time in average.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

44

Fig. 4: Mean number of blocks per job vs. system load in

ANCA-BF and BGP-BF allocation strategies with

partitioning bound of 8 and 4 BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

Fig. 5: Mean job service time vs. system load in ANCA-BF

and BGP-BF allocation strategies with partitioning bound of

8 and 4 BPJ under the FCFS scheduling mechanism and all-

to-all communication pattern.

4.3.2 The effect of communication load

Figure 6 shows how increasing the communication load of the

parallel system affects its performance in terms of finish time. In

general, increasing the communication load increases FT

because the service times of parallel jobs increase. The increase

rate is higher for BGP approach as shown in figure 6.

Fig. 6: Finish time vs. mean number of messages per job in

ANCA-BF and BGP-BF allocation strategies with

partitioning bound of 8 and 4 BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

Figure 7 shows how the communication load affects MBPJ.

Similar to what we observed in figure 4, the ANCA approach is

expected to allocate jobs to more blocks compared to the BGP

approach. The ANCA approach can successfully allocate

parallel jobs earlier than the BGP approach. The reason is that

allocating the large subframe produced by the BGP allocator is

more difficult to allocate the two smaller subframes produced by

the ANCA approach. Consequently, the ANCA approach

produces lower MJRT (as proven by figure 8). Further, as

observed in figure 5, for low PB values, the BGP approach is

expected to be superior to the ANCA approach in terms of

MJST (as proven by figure 9). However, for higher PB values,

the ANCA approach is superior to the BGP approach.

Fig. 7: Mean number of blocks per job vs. mean number of

messages per job in ANCA-BF and BGP-BF allocation

strategies with partitioning bound of 8 and 4 BPJ under the

FCFS scheduling mechanism and all-to-all communication

pattern.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

45

Fig. 8: MJRT vs. mean number of messages per job in

ANCA-BF and BGP-BF allocation strategies with

partitioning bound of 8 and 4 BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

Fig. 9: MJST vs. mean number of messages per job in

ANCA-BF and BGP-BF allocation strategies with

partitioning bound of 8 and 4 BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

Figures 10 and 11 show how increasing the communication load

of the parallel system affects the performance of the

interconnection network linking the multicomputers in terms of

mean packet blocking time (MPBT) and mean packet latency

(MPL). It can be observed from the two figures that, in general,

the ANCA approach is superior to the BGP approach in terms of

MPBT and MPL at high communication loads (figures 10 and

11).

Fig. 10: MPBT vs. mean number of messages per job in

ANCA-BF and BGP-BF allocation strategies with

partitioning bound of 8 and 4BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

Fig. 11: MPL vs. mean number of messages per job in

ANCA-BF and BGP-BF allocation strategies with

partitioning bound of 8 and 4 BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

4.3.3 The effect of partitioning bound on the

performance of the RPB-based allocation strategies

Figure 12 shows how FT changes as the PB values increases.

Figure 12 shows that, as expected, FT decreases as PB value

increases for both ANCA and BGP schemes. However, FT

decays faster in the ANCA approach over increasing the PB

value. The reason is that the ANCA approach is more successful

in allocating parallel jobs early compared to the BGP approach

as we observed in figure 1. Figure 13 shows that, as the PB

value increases, the number of block allocated to any parallel

job is generally higher in BGP than ANCA. The ANCA

approach always produces significantly less MJRT values than

the BGP approach (figure 14). In terms of MJST, we have

experimentally observed that the BGP may significantly

increase service time of parallel jobs in average as the

partitioning bound is increased (figure 15). The ANCA approach

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

46

affects MJST less severely than BGP as the PB value increase

(figure 15).

Figure 16 shows how increasing the PB value affects the

performance of the parallel system in terms of PSU. Figure 16

shows that the ANCA approach is superior to the BGP approach

as it reaches semi-perfect PSU with low PB value. In BGP

approach, increasing the PB value slowly improves the PSU of

the parallel system as shown in figure 16.

Fig. 12: Finish Time vs. partitioning bound in ANCA-BF

and BGP-BF allocation strategies under the FCFS

scheduling mechanism and all-to-all communication pattern.

Fig. 13: Mean number of blocks per job vs. partitioning

bound in ANCA-BF and BGP-BF allocation strategies under

the FCFS scheduling mechanism and all-to-all

communication pattern.

Fig. 14: Mean job response time vs. partitioning bound in

MBS, Paging, ANCA-BF and ANCA-BF allocation strategies

under the FCFS scheduling mechanism and all-to-all

communication pattern.

Fig. 15: Mean job service time vs. partitioning bound in

MBS, Paging, ANCA-FF and ANCA-BF allocation strategies

with partitioning bound of 8 BPJ under the FCFS

scheduling mechanism and all-to-all communication pattern.

Fig. 16: Mean job service time vs. partitioning bound in

MBS, Paging, ANCA-FF and ANCA-BF allocation strategies

under the FCFS scheduling mechanism and all-to-all

communication pattern.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

47

5. CONCLUSION
Contiguous allocation strategies fail to reduce the effect of

fragmentation and hence provide very limited performance.

Request-Partitioning-Based (RPB) allocation strategies remedy

this problem by allowing requests to be partitioned and allocated

non-contiguously in case contiguous allocation fails. RPB

allocation strategies combine the advantages of both contiguous

and non-contiguous allocation strategies through preserving

some level of contiguity within allocated parallel job. Two RPB

allocation schemes are proposed in literature; the Adaptive Non-

Contiguous Allocation (ANCA) and the Bounded-Gradual-

Partitioning (BGP) allocation. Both schemes try to solve the

problem of fragmentation by allowing parallel jobs to be

allocated non-contiguously.

ANCA and BGP based allocation strategies are comparatively

evaluated through exhaustive simulation-based experiments. Our

experimental results shows that the ANCA and BGP allocation

schemes are both flexible and tunable as it allows the allocator

module to choose an optimal partitioning-bound value while

allowing parallel jobs to be allocated early without having them

over-partitioned. Our experimental results also showed that the

ANCA scheme could sustain higher system and communication

loads compared to BGP.

6. REFERENCES
[1] Ababneh, I. (2006), “An efficient free-list submesh

allocation scheme for two-dimensional mesh-connected

multicomputers”, Journal of Systems and Software, vol. 79,

no. 8, Elsevier Science Inc., New York, NY, USA, August

2006, pp. 1168-1179.

[2] Ababneh, I. and Davis, J. (1995), “Program-based static

allocation policies for highly parallel computers”, Proc.

IPCCC 95, IEEE Computer Society Press, Scottsdale, AZ,

USA, 28-31 Mar 1995, pp. 61-68.

[3] S. Bani-Ahmad. “Bounded Gradual-Request-Partitioning-

Based Allocation Strategies in 2D-Mesh Multicomputers”.

International Journal of Digital Content Technology and its

Applications (JDCTA). Volume 5, Number 1, January

2011.

[4] Bani-Ahmad, S. (2010b), “Submesh Allocation in 2D-

Mesh Multicomputer: Partitioning at the Longest

Dimension of Requests”. Proceedings of the Fourth

International Conference on Advanced Engineering

Computing and Applications in Sciences (ADVCOMP

2010). October 25-30, 2010, Florence, Italy.

[5] S. Bani-Ahmad. “Processor Allocation with Reduced

Internal and External Fragmentation in 2D Mesh-based

Multicomputers”. Journal of Applied Sciences. Volume 11,

Issue: 6, 2011, pp 943-952.

[6] Bani-Mohammad, S.; Ould-Khaoua , M.; Ababneh, I., and

Machenzie, L. (2006), “Non-contiguous Processor

Allocation Strategy for 2D Mesh Connected

Multicomputers Based on Sub-meshes Available for

Allocation”, Proceedings of the 12th International

Conference on Parallel and Distributed Systems

(ICPADS’06), vol. 2, IEEE Computer Society Press, USA,

2006, pp. 41-48.

[7] Bani-Mohammad, S.; Ould-Khaoua, M.; Ababneh, I.; and

Machenzie, L. (2007), “A Fast and Efficient Processor

Allocation Strategy which Combines a Contiguous and

Non-contiguous Processor Allocation Algorithms”,

Technical Report; TR-2007-229, DCS Technical Report

Series, Department of Computing Science, University of

Glasgow, January 2007.

[8] Chang, C. Y. and Mohapatra, P. (1998), “Performance

improvement of allocation schemes for mesh-connected

computers”, Journal of Parallel and Distributed Computing,

vol. 52, no. 1, Academic Press, Inc. Orlando, FL, USA,

July 1998, pp. 40-68.

[9] Chiu, G. M. and Chen, S.K. (1999), “An efficient submesh

allocation scheme for two-dimensional meshes with little

overhead”, IEEE Transactions on Parallel & Distributed

Systems, vol. 10, no. 5, IEEE Press, Piscataway, NJ, USA,

May 1999, pp. 471-486.

[10] Chuang, P. J. and Tzeng, N. F. (1994), Allocating precise

submesh in mesh-connected systems, IEEE Transactions

Parallel and Distributed Systems (Feb. 1994), 211217.

[11] Ding, J. and Bhuyan, L. N. (1993), An adaptive submesh

allocation strategy for two-dimensional mesh connected

systems, Proc. Int. Conf. Parallel Process. II (Aug. 1993),

193200.

[12] Krueger, P.; Lai, T.; and Radiya, V. A. (1994), “Job

scheduling is more important than processor allocation for

hypercube computers”, IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 5, IEEE Press, Piscataway,

NJ, USA, May 1994, pp. 488-497.

[13] Kumar, V.; Grama, A.; Gupta, A.; and Karypis, G. (2003),

Introduction To Parallel Computing, The

Benjamin/Cummings publishing Company, Inc., Redwood

City, California, 2003.

[14] Li, K. and Cheng, K. H. (1991), “A Two-Dimensional

Buddy System for Dynamic Resource Allocation in a

Partitionable Mesh Connected System”, Journal of Parallel

and Distributed Computing, vol. 12, no. 1, Elsevier

Science, CA, USA, May 1991, pp. 79-83.

[15] Lin, X.; Mckinly, P.; and Esfahanina, A. (1993). “Adaptive

Multicast wormhole Routing in 2D-mesh multicomputers”.

Proceeding of Parallel Architecture and Language

conference (PARLE), pp 228-241.

[16] Liu, T.; W. Huang, K.; Lombardi, F. and Bhuyan, L. N.

(1995), A submesh allocation scheme for mesh-connected

multiprocessor systems, Proc. Int. Conf. Parallel Process. II

(Aug. 1995), 159163.

[17] Lo, V.; Windisch, K.; Liu, W.; and Nitzberg, B. (1997),

“Non-contiguous processor allocation algorithms for mesh-

connected multicomputers”, IEEE Transactions on Parallel

and Distributed Systems, vol. 8, no. 7, IEEE Press,

Piscataway, NJ, USA, July 1997, pp. 712-726.

[18] Min, D. and Mutka, M. W. (1995), Effect of job

interactions due to scattered processor allocations in 2-D

wormhole networks, in ``Proc. of Int. Conf. on Parallel and

Distributed Computing Systems,'' (Sept. 1995), pp. 262267.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

48

[19] Moore, S. Q. and Ni, L. M. (1996), The effect of network

contention on processor allocation strategies, in ``Proc. of

the 1996 International Parallel Processing Symposium,''

(April 1996).

[20] Ni, L. M. and McKinley, P. K. (1993), “A Survey of

Wormhole Routing Techniques in Direct Networks”.

Computer 26, 2 (Feb. 1993), pp 62-76. DOI=

http://dx.doi.org/10.1109/2.191995.

[21] Niedermeier, R.; K. Reinhardt; and P. Sanders (1997).

Towards optimal locality in mesh indexings. In Proc. 11th

Intl Symp on Fund. Computation Theory, volume 1279 of

LNCS, pages 364-375, 1997.

[22] ProcSimity V4.3 User’s Manual, University of Oregon,

1997.

[23] Seo, K. H. (2005), “Fragmentation-Efficient Node

Allocation Algorithm in 2D Mesh-Connected Systems”,

Proceedings of the 8th International Symposium on Parallel

Architecture, Algorithms and Networks (ISPAN’05), IEEE

Computer Society Press, Washington, DC, USA, 7-9

December, 2005, pp. 318-323.

[24] Srinivasan, T.; Seshadri, J.; Chandrasekhar, A.; and

Jonathan, J. (2004), “A Minimal Fragmentation Algorithm

for Task Allocation in Mesh-Connected Multicomputers”,

Proceedings of IEEE International Conference on

Advances in Intelligent Systems – Theory and Applications

– AISTA 2004 in conjunction with IEEE Computer

Society, ISBN 2-9599-7768-8, IEEE Press, Luxembourg,

Western Europe, 15-18 Nov 2004.

[25] Suzaki, K.; Tanuma, H.; Hirano, S.; Ichisugi, Y.; Connelly,

C.; and Tsukamoto, M. (1996), “Multi-tasking Method on

Parallel Computers which Combines a Contiguous and

Non-contiguous Processor Partitioning Algorithm”,

Proceedings of the Third International Workshop on

Applied Parallel Computing, Industrial Computation and

Optimization, Springer-Verlag, UK, 1996, pp. 641-650.

[26] Windisch, K.; Miller, J. V.; and Lo, V. (1995),

“ProcSimity: an experimental tool for processor allocation

and scheduling in highly parallel systems”, Proceedings of

the Fifth Symposium on the Frontiers of Massively Parallel

Computation (Frontiers'95), IEEE Computer Society Press,

Washington, USA, 6-9 Feb 1995, pp. 414-421.

[27] Yoo , B. S. and Das, C. R. (2002), “A Fast and Efficient

Processor Allocation Scheme for Mesh-Connected

Multicomputers”, IEEE Transactions on Parallel &

Distributed Systems, vol. 51, no. 1, IEEE Computer

Society, Washington, USA, January 2002, pp. 46-60.

[28] Yoo, B. S.; Das, C. R.; and Yu, C (1995), Yu, Processor

management techniques for mesh-connected

multiprocessors, Proc. Int. Conf. Parallel Process. II (Aug.

1995), 105112.

[29] Yu, C.; Das, C. R. (1994), “Limit allocation: An efficient

processor management scheme for hypercubes”,

International Conference on Parallel Processing (1994),

DOI: 10.1109/ICPP.1994.124 .

[30] Zhu, Y. (1992), “Efficient processor allocation strategies

for mesh-connected parallel computers”, Journal of Parallel

and Distributed Computing, vol. 16, no. 4, Elsevier, San

Diego, CA, 1992, pp. 328-337.

