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ABSTRACT 

Request-Partitioning-Based (RPB) allocation schemes remedy 

the problem of fragmentation by allowing parallel requests to be 

allocated non-contiguously in case contiguous allocation fails. 

Two RPB allocation schemes are proposed in literature; the 

Adaptive Non-Contiguous Allocation (ANCA) and the 

Bounded-Gradual-Partitioning (BGP) allocation. In ANCA, the 

frame requested by the parallel job is subdivided into two 

subframes of equal sizes at the longest dimension of the request. 

In BGP, requests are gradually partitioned into one large and 

another small subframe of multicomputers. In this paper, ANCA 

and BGP based allocation strategies are comparatively evaluated 

through exhaustive simulation-based experiments. Our 

experimental results also showed that the ANCA scheme can 

sustain higher system and communication loads compared to 

BGP in terms of major system performance metrics. We also 

observed that, in the BGP approach, increasing the partitioning 

bound value can slightly improve the performance of the parallel 

system. Comparatively, increasing the partitioning bound in the 

ANCA approach could significantly improve the performance of 

the parallel system.   
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1. INTRODUCTION 
Multicomputer parallel computer systems are cost-effective 

alternatives of the traditional supercomputers [8]. The 

interconnection of multicomputers come in different styles 

called topologies. The two-dimensional (2D) and three-

dimensional (3D) mesh-based topologies are probably the most 

common topologies because they are simple, regular and 

scalable [1; 6; 7]. Several recent commercial and experimental 

parallel computers have been built based these two architectures 

such as the IBM BlueGene/L and the Intel Paragon [1; 6; 7]. 

Contiguous allocation strategies of mesh-connected 

multicomputers attempt to locate a contiguous portion of the 

computing units for the execution of a parallel job [27; 9; 1; 2; 

14; 10; 30]. Contiguity of multicomputers helps in minimizing 

the distance of interprocessor communication path and in 

avoiding the interprocess interference that creates 

communication contention.  

Another feature of contiguous processor allocation is that all the 

multicomputers allocated to a parallel job retain the same exact 

topology as the underlying multicomputer system. Further, the 

number of multicomputers allocated to a particular parallel job 

is determined according to the requirement of that parallel job 

[8]. Thus, in a mesh-connected multicomputer, jobs are 

allocated to submeshes [8; 9; 1; 2; 14; 10]. A parallel job retains 

all the multicomputers of the submesh for the entire duration of 

its life time. Once a parallel job is allocated, it runs till 

completion (i.e., no time-sharing) [1; 6; 7]. 

The processor allocator module in a multicomputer system 

applies allocation strategies or algorithms to identify and assign 

unallocated multicomputers to parallel jobs [8]. Allocation 

strategies with better recognition ability for available submeshes 

of unallocated multicomputers can improve the chance of 

assigning a parallel job into the system and, thus, reduce the job 

waiting delay [8; 1; 6; 7].  

Studies showed that a significant performance improvement 

cannot be obtained by refining the contiguous allocation 

strategies [12; 8; 1]. Because of fragmentation problem, the 

average percent system utilization of a multicomputer system 

can significantly degrade [8; 1]. Fragmentation occurs when 

there are enough unallocated multicomputers in the parallel 

multicomputer system but the allocator module fails to allocate 

these multicomputers to the waiting parallel jobs as they are 

non-contiguous or dispersed. This, in turn, limits the 

performance of contemporary allocation schemes. 

Consequently, contiguous allocation strategies fail to reduce the 

effect of fragmentation and hence provide very limited 

performance.  

Request-Partitioning-Based (RPB) processor allocation 

strategies remedy the problems of fragmentation and low system 

utilization by allowing requests of parallel jobs to be partitioned 

and allocated non-contiguously into smaller subframes in case 

contiguous allocation fails [6; 7; 3; 4; 5]. Notice that small 

subframes are usually easy to be successfully allocated; the 

probability of successfully allocating a parallel job is increased. 

Studies show that RPB allocation strategies can successfully 

combine the advantages of both contiguous and non-contiguous 

allocation strategies through preserving some level of contiguity 

within allocated parallel job. Two RPB allocation schemes are 

proposed and studied in literature; the Adaptive Non-Contiguous 

Allocation (ANCA) [8; 5] and the Bounded-Gradual-

Partitioning (BGP) allocation [6; 7; 3; 4].  
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Both RPB schemes try to solve the problem of fragmentation by 

allowing parallel jobs to be allocated non-contiguously. In 

ANCA, allocation of jobs is done by splitting the frame 

requested by the parallel job in hand into two subframes of equal 

sizes. Splitting is done at the longest dimension of the request 

[8; 5]. In BGP, however, allocation of jobs is achieved by 

gradually partitioning the frame requested into one large and 

another small subframe of multicomputers [6; 7; 3; 4]. Both 

ANCA and BGP schemes prevent over-partitioning by placing a 

limit to the maximum number of non-contiguous blocks of 

multicomputers or subframes that can be assigned to any parallel 

job. This maximum number is referred to as the partitioning-

bound [4; 5]. 

In this paper we comparatively evaluate both RPB schemes 

using computer-based simulation. The ANCA allocation 

strategy tested in this paper is the implementation proposed in 

[5].  

Our experimental results also showed that the ANCA scheme 

could sustain higher system and communication loads compared 

to BGP in terms of major system performance metrics. We also 

observed that, in the BGP approach, increasing the partitioning 

bound value could slightly improve the performance of the 

parallel system. Comparatively, increasing the partitioning 

bound in the ANCA approach could significantly improve the 

performance of the parallel system.  

2. PREVIOUS ALLOCATION 

STRATEGIES 
Contiguous processor allocation strategies focus on finding the 

requested submesh according to the request of a job in terms of 

shape (and in orientation in some strategies). Non-contiguous 

allocation strategies alleviate the constraint of contiguity to 

achieve higher system utilization [6; 7; 3; 4]. Next we outline 

several contiguous allocation strategies for 2D-mesh 

multicomputers proposed in the literature.  

Two Dimensional Buddy (TDB): in the TDB strategy [14], the 

system is assumed to be a square with side lengths equal to a 

power of two. The size of a requested submesh is rounded up to 

a square with side-lengths as the nearest power of two. 

Obviously, a square submesh can form a larger square submesh 

with its three neighboring buddies. Jobs are allocated to buddies 

of submeshes. This allocation strategy suffers from internal 

fragmentation because it only allocates square submeshes whose 

side lengths are equal to a power of two. In other words, because 

of rounding up the sides of requests, the allocated submesh can 

be larger than the actually requested submesh.  

Frame Sliding (FS): The FS method [10] was proposed to 

reduce the fragmentation problem of the TDB allocation by 

allowing meshes of any arbitrary size to be allocated. Viewing 

the requested submesh of the job in hand as a frame, the FS 

algorithm slides the frame across the system to examine for a 

free submesh to execute the job [10].  

The First-Fit (FF) and the Best-Fit (BF) schemes: The FF and 

BF algorithms proposed in [30] guarantee the recognition of a 

free submesh, provided it exists. The two algorithms work by 

scanning the entire mesh for possible allocation.  

Adaptive-Scan (AS) scheme: The adaptive-scan [11] changes 

the orientation of the submesh being searched for if the required 

submesh in the original orientation is not available. Thus, the AS 

strategy has better recognition capabilities than that of the BS 

and FF schemes.  

All the above allocation strategies are referred to as contiguous 

allocations because they consider only contiguous regions for 

the execution of a parallel job. In contiguous allocation, 

communication cost is minimal [5]. However, the requirement 

that a parallel job has to be allocated to contiguous set 

multicomputers reduces the chance of successfully allocating the 

job due to the problem of fragmentation [5; 6]. 

Hardware advances such as wormhole routing and faster 

switching techniques have made the communication latency less 

sensitive to the distance between the communicating nodes [20; 

15; 8, 1; 6; 7]. This makes allocating a parallel job to a non-

contiguous set of multicomputers plausible. By alleviating the 

restriction of contiguity, parallel jobs can get allocated and 

executed early. Several non-contiguous allocation algorithms are 

proposed in literature. Examples are: the random, the Multiple 

Buddy System (MBS) and the Paging algorithms.  

In the Multiple Buddy System (MBS) strategy, the mesh of the 

system in hand is divided into non-overlapping square-shaped 

sub-meshes with side lengths that are powers of two. The 

number of processors, p, requested by a scheduled job is 

factorized into a base-4 block. If a required block is not 

available, MBS recursively searches for a larger block and 

repeatedly breaks it down into four buddies until it produces 

blocks of the desired size. If that fails, the requested block is 

further broken into four sub-requests until the job is successfully 

allocated [17].  

In the Paging allocation strategy [16], the entire 2D mesh is 

virtually sub-divided into pages or sub-meshes of equal sides’ 

length of 2i where i is a positive integer number that represents 

the index parameter of the paging approach. The pages are 

indexed according to several indexing schemes, namely; row-

major, shuffled row-major, snake-like, or shuffled snake-like 

indexing [21].   

3. PARTIALLY NON-CONTIGUOUS 

ALLOCATIONS 
Non-contiguous allocation algorithms can be (i) totally non-

contiguous and (ii) partially non-contiguous [5; 7]. In a totally 

non-contiguous allocation, a parallel job can be allocated as long 

as the number of available processing units is sufficient for its 

execution. In a partially non-contiguous allocation, the 

processing units allocated to a job retain a certain degree of 

contiguity. 

Partially non-contiguous allocations can successfully provide 

higher performance than the totally non-contiguous allocations 

as they that reduce jobs dispersal [5; 16; 18]. In Paging 

algorithm, there is some degree of contiguity because of the 

indexing schemes used. Contiguity can also be increased by 

increasing the index parameter. However, this may produce 

internal processor fragmentation for large index sizes [16]. In 

MBS, contiguous allocation is explicitly sought only for 

requests with sizes of the form 22n, where n is a positive integer 

[5]. 

Request-Partitioning-Based (RPB) processor allocation 

strategies are partially non-contiguous allocation strategies that 
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remedy the problems of fragmentation and low system 

utilization by allowing requests of parallel jobs to be partitioned 

and allocated non-contiguously into smaller subframes in case 

contiguous allocation fails [6; 7; 3; 4; 5]. Studies show that RPB 

allocation strategies combine the advantages of both contiguous 

and non-contiguous allocation strategies through preserving 

some level of contiguity within allocated parallel job [5]. 

Two RPB allocation schemes are proposed and studied in 

literature; the Adaptive Non-Contiguous Allocation (ANCA) [8; 

5] and the Bounded-Gradual-Partitioning (BGP) allocation [6; 7; 

3; 4]. In ANCA, allocation of jobs is done by splitting the frame 

requested by the parallel job in hand into two subframes of equal 

sizes. Splitting is done at the longest dimension of the request 

[8; 5]. In BGP, however, allocation of jobs is achieved by 

gradually partitioning the frame requested into one large 

subframe and another small subframe [6; 7; 3; 4]. Both ANCA 

and BGP schemes prevent over-partitioning by placing a limit to 

the maximum number of non-contiguous blocks of 

multicomputers or subframes that can be assigned to any parallel 

job. This maximum number is referred to as the partitioning-

bound [4; 5]. Next we describe the RPB allocation schemes in 

more detailed manner. 

The ANCA algorithm first attempts to allocate the job at hand 

contiguously. If the allocation attempt fails, it partitions the 

request into two equi-sized sub-requests. These subframes are 

then allocated to available locations, if possible; otherwise, each 

of these sub-requests is recursively further partitioned into two 

equi-sized sub-requests, and then ANCA tries to map these sub-

requests to available locations [5; 8]. 

In [5] a modified version of the ANCA approach is presented 

and evaluated, the ANCA-based allocator tries to allocate the 

parallel job in hand using some given contiguous allocation 

strategy (e.g., the first-fit or best-fit). This contiguous method is 

recommended to be selected to be of a good free-submesh 

recognition capability. If the allocator module fails to allocate 

the parallel job, it splits the job into two subframes that are as 

equal as possible in terms of size and topology [5]. This is done 

by splitting the request at its longest dimension. Given that the 

request is of dimensions AxB. Assume that A>B. If the value of 

the length of the longest dimension of the request is even, then 

the two subframes will be of exactly-equal sizes (A/2 x B). If the 

length is odd, the original implementation of the ANCA 

algorithm [8) tries to allocate two submeshes each of size of 

Ceiling(A/2) x B. This causes having internal fragmentation of 

size 1 x B. The original implementation of the ANCA strategy 

solves this problem of internal fragmentation by bookkeeping of 

idle nodes [8). In the modified implementation of the ANCA 

algorithm the request in hand divided into two with the 

following dimensions: the first is Ceiling(A/2) x B and 

floor(A/2) x B. As a result, no need for bookkeeping. 

In [3; 4; 7], a family of adaptive non-contiguous allocation 

algorithms for 2D-mesh multicomputers are proposed. These 

algorithms are all utilizes a contiguous allocation strategy 

implicitly. These algorithms try to find a contiguous set of 

processing units of the same shape and size to the request in 

hand using the contiguous allocation algorithm. If they fail, the 

request in hand is divided into two sub-requests after removing 

one from the longest dimension of the request. That is, for a 

given request of size αxβ and assuming β>α, the two partition-

sizes are αx(β-1) and αx1 after removing one from the longest 

dimension of the request. The two new sub-requests are then 

allocated using the contiguous allocation algorithm again. This 

procedure continues recursively until the request is fulfilled. 

These algorithms are referred to as PALD-based approaches. 

The abbreviation PALD stands for PArtitioning at the Longest 

Dimension [3; 4].  

In this paper we comparatively evaluate the two main RPB 

allocation strategies. We use the modified ANCA scheme 

implemented in [5] and the GRP-based allocation strategies 

implemented in [3; 4]. Both schemes utilize the first-fit and best-

fit contiguous allocation strategies in an attempt to contiguously 

allocate parallel jobs. We compare the two allocation schemes 

using computer-based simulation. Next we describe the 

simulated system that is used in this study. 

4. SIMULATION RESULTS 
In this section, the results from simulations that have been 

carried out to comparatively evaluate the ANCA and BGP 

allocation schemes are presented. Next we describe the 

simulated system that is used in this study. 

4.1. Simulation Environment 

The BGP and ANCA allocation algorithms is implemented in 

the C language, and later integrated with the ProcSimity 

simulation tool [26; 22]. Each simulation run consists of 1000 

completed jobs. Simulation results are averaged over enough 

independent runs so that the confidence level is 95% and the 

relative errors do not exceed 5%. Parallel jobs usually 

communicate with each other using all-to-all communication 

pattern [25; 13; 17]. We did our experiments using this 

communication pattern as it produces high message collision is 

known to be a weak point for non-contiguous allocation 

algorithms [6; 1; 25]. The processor allocation strategies were 

tested under the scheduling strategy First-Come-First-Serve. The 

simulated parallel system is of size 20x20 computing units. The 

size of the simulated parallel job follows the exponential 

distribution with an average of 10 units for each dimension.  

4.2 Simulation output interpretation  

Mean Response Time (MRT): The response time is the time 

from the submission of request until the first real response 

produced for jobs. 

Mean Job Service Time (JST): The service time of a parallel 

job is the time from the allocation of the job’s request until the 

moment the parallel job finishes execution. 

Simulation Finish Time (FT): the time required by the 

simulator to simulate serving 10,000 parallel jobs. Low FT 

values indicates high throughput multicomputer system.  

Percent system utilization (PSU): The average of keeping the 

processors within a system as busy as possible, this value 

between 0 and 1. 

Mean Packet Blocking Time (MPBT): The average amount of 

time the head of the message is blocked at each station while 

routing the message over the path from source to destination. 

Mean Packet Latency (MPL): The average of the time that all 

packets within job will be sent between processors (From source 

processor to distention processor). 

Mean number of Blocks Per Job (MBPJ): the average number 

of non-contiguous subframes assigned to the parallel job that 

were served during simulation.  
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4.3 Simulation results and observations 

4.3.1. The impact of system load 

Figure 1 and 2 show how increasing the load of the parallel 

system affects the Finish Time (FT) of the ten runs of simulator 

and the Mean Job Response Time (MJRT), respectively. Two 

observations can be made of figure 1; the first is that increasing 

the Partitioning Bound (PB) value allows the parallel system to 

serve parallel jobs earlier and thus increase the system 

throughput. Consequently, the simulator FT is expected to be 

less for higher PB values (notice that non-contiguity of request 

allocated processing nodes does not significantly affect the 

service time of parallel jobs as they are not severely dispersed as 

clearly noticed in figure 2). 

The other observation that can be made of figure 1 is that, 

considering the same PB values for the ANCA and BGP 

schemes, the ANCA scheme showed lower FT values. This can 

be explained as follows: ANCA splits parallel jobs in two 

subframes of equal sizes. The BGP, however, splits jobs into 

one relatively large subframe and another small subframe. 

Notice that the probability of successfully allocating the large 

subframe of the BGP scheme is less than that of allocating the 

two smaller subframes produced by the ANCA scheme. Taking 

into consideration that the allocation of a parallel job is 

successful if and only if both subframes are allocated, it is 

expected that the ANCA algorithm is expected to produce lower 

FT (figure 1) and also lower MJRT values (figure 2) for the 

same PB value enforced. For the same above reason, it is 

expected that the ANCA scheme to be superior over the BGP 

scheme in terms of Average System Utilization (ASU) as shown 

in figure 3 that proves that ANCA can sustain higher system 

loads and produce higher system utilization compared to BGP. 

 

Fig. 1: Finish time vs. system load in ANCA-BF and BGP-

BF allocation strategies with partitioning bound of 8 and 4 

BPJ under the FCFS scheduling mechanism and all-to-all 

communication pattern. 

 

Fig. 2: Mean job response time vs. system load in ANCA-BF 

and BGP-BF allocation strategies with partitioning bound of 

8 and BPJ under the FCFS scheduling mechanism and all-

to-all communication pattern. 

 

Fig. 3: Percent system utilization vs. system load in ANCA-

BF and BGP-BF allocation strategies with partitioning 

bound of 8 and 4 BPJ under the FCFS scheduling 

mechanism and all-to-all communication pattern. 

Both ANCA and BGP schemes can allocate parallel jobs in a 

non-contiguous manner. Thus, it is expected that both will 

disperse parallel jobs. Figure 4 shows how increasing the load of 

the system affects the mean number of blocks per parallel job 

(MBPJ). Figure 4 shows that, for the same partitioning bound 

value, The ANCA scheme usually allocates parallel jobs to more 

blocks than the BGP approach in average. More MBPJ values 

imply longer jobs service time. Figure 5 shows that, when the 

partitioning bound is small, the BGP approach produces lower 

mean job service time value (MJST) than that produced by the 

ANCA approach. However, for higher PB values, the 

performance of the BGP approach degrades$ and the ANCA 

approach produces less job service time in average. 
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Fig. 4: Mean number of blocks per job vs. system load in 

ANCA-BF and BGP-BF allocation strategies with 

partitioning bound of 8 and 4 BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

 

Fig. 5: Mean job service time vs. system load in ANCA-BF 

and BGP-BF allocation strategies with partitioning bound of 

8 and 4 BPJ under the FCFS scheduling mechanism and all-

to-all communication pattern. 

4.3.2 The effect of communication load  

Figure 6 shows how increasing the communication load of the 

parallel system affects its performance in terms of finish time. In 

general, increasing the communication load increases FT 

because the service times of parallel jobs increase. The increase 

rate is higher for BGP approach as shown in figure 6.   

 

Fig. 6: Finish time vs. mean number of messages per job in 

ANCA-BF and BGP-BF allocation strategies with 

partitioning bound of 8 and 4 BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

Figure 7 shows how the communication load affects MBPJ. 

Similar to what we observed in figure 4, the ANCA approach is 

expected to allocate jobs to more blocks compared to the BGP 

approach. The ANCA approach can successfully allocate 

parallel jobs earlier than the BGP approach. The reason is that 

allocating the large subframe produced by the BGP allocator is 

more difficult to allocate the two smaller subframes produced by 

the ANCA approach. Consequently, the ANCA approach 

produces lower MJRT (as proven by figure 8). Further, as 

observed in figure 5, for low PB values, the BGP approach is 

expected to be superior to the ANCA approach in terms of 

MJST (as proven by figure 9). However, for higher PB values, 

the ANCA approach is superior to the BGP approach. 

 

Fig. 7: Mean number of blocks per job vs. mean number of 

messages per job in ANCA-BF and BGP-BF allocation 

strategies with partitioning bound of 8 and 4 BPJ under the 

FCFS scheduling mechanism and all-to-all communication 

pattern. 
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Fig. 8: MJRT vs. mean number of messages per job in 

ANCA-BF and BGP-BF allocation strategies with 

partitioning bound of 8 and 4 BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

 

Fig. 9: MJST vs. mean number of messages per job in 

ANCA-BF and BGP-BF allocation strategies with 

partitioning bound of 8 and 4 BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

Figures 10 and 11 show how increasing the communication load 

of the parallel system affects the performance of the 

interconnection network linking the multicomputers in terms of 

mean packet blocking time (MPBT) and mean packet latency 

(MPL). It can be observed from the two figures that, in general, 

the ANCA approach is superior to the BGP approach in terms of 

MPBT and MPL at high communication loads (figures 10 and 

11).  

 

Fig. 10: MPBT vs. mean number of messages per job in 

ANCA-BF and BGP-BF allocation strategies with 

partitioning bound of 8 and 4BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

 

Fig. 11: MPL vs. mean number of messages per job in 

ANCA-BF and BGP-BF allocation strategies with 

partitioning bound of 8 and 4 BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

4.3.3 The effect of partitioning bound on the 

performance of the RPB-based allocation strategies 

Figure 12 shows how FT changes as the PB values increases. 

Figure 12 shows that, as expected, FT decreases as PB value 

increases for both ANCA and BGP schemes. However, FT 

decays faster in the ANCA approach over increasing the PB 

value. The reason is that the ANCA approach is more successful 

in allocating parallel jobs early compared to the BGP approach 

as we observed in figure 1. Figure 13 shows that, as the PB 

value increases, the number of block allocated to any parallel 

job is generally higher in BGP than ANCA. The ANCA 

approach always produces significantly less MJRT values than 

the BGP approach (figure 14). In terms of MJST, we have 

experimentally observed that the BGP may significantly 

increase service time of parallel jobs in average as the 

partitioning bound is increased (figure 15). The ANCA approach 
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affects MJST less severely than BGP as the PB value increase 

(figure 15). 

Figure 16 shows how increasing the PB value affects the 

performance of the parallel system in terms of PSU. Figure 16 

shows that the ANCA approach is superior to the BGP approach 

as it reaches semi-perfect PSU with low PB value. In BGP 

approach, increasing the PB value slowly improves the PSU of 

the parallel system as shown in figure 16. 

 

Fig. 12: Finish Time vs. partitioning bound in ANCA-BF 

and BGP-BF allocation strategies under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

 

Fig. 13: Mean number of blocks per job vs. partitioning 

bound in ANCA-BF and BGP-BF allocation strategies under 

the FCFS scheduling mechanism and all-to-all 

communication pattern. 

 

Fig. 14: Mean job response time vs. partitioning bound in 

MBS, Paging, ANCA-BF and ANCA-BF allocation strategies 

under the FCFS scheduling mechanism and all-to-all 

communication pattern. 

 

Fig. 15: Mean job service time vs. partitioning bound in 

MBS, Paging, ANCA-FF and ANCA-BF allocation strategies 

with partitioning bound of 8 BPJ under the FCFS 

scheduling mechanism and all-to-all communication pattern. 

 

Fig. 16: Mean job service time vs. partitioning bound in 

MBS, Paging, ANCA-FF and ANCA-BF allocation strategies 

under the FCFS scheduling mechanism and all-to-all 

communication pattern. 
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5. CONCLUSION 
Contiguous allocation strategies fail to reduce the effect of 

fragmentation and hence provide very limited performance. 

Request-Partitioning-Based (RPB) allocation strategies remedy 

this problem by allowing requests to be partitioned and allocated 

non-contiguously in case contiguous allocation fails. RPB 

allocation strategies combine the advantages of both contiguous 

and non-contiguous allocation strategies through preserving 

some level of contiguity within allocated parallel job. Two RPB 

allocation schemes are proposed in literature; the Adaptive Non-

Contiguous Allocation (ANCA) and the Bounded-Gradual-

Partitioning (BGP) allocation. Both schemes try to solve the 

problem of fragmentation by allowing parallel jobs to be 

allocated non-contiguously. 

ANCA and BGP based allocation strategies are comparatively 

evaluated through exhaustive simulation-based experiments. Our 

experimental results shows that the ANCA and BGP allocation 

schemes are both flexible and tunable as it allows the allocator 

module to choose an optimal partitioning-bound value while 

allowing parallel jobs to be allocated early without having them 

over-partitioned. Our experimental results also showed that the 

ANCA scheme could sustain higher system and communication 

loads compared to BGP. 
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