
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

1

Unified Design Quality Metric Tool for Object-Oriented

Approach including other Principles

Poornima U S

Assistant Professor

Acharya Institute of
Management and Sciences,
Peenya, Bangalore-INDIA

ABSTRACT

Object Oriented methodology is an emerging trend in software

development for scientific and business applications. Design of

the solution domain has an impact on the overall quality of the

software. Merging of all individual design quality metric tools as

a package along with other design principles like abstraction and

stability could serve the developer better as plug-ins for IDEs.

General Terms
Object Oriented Design, Metrics and Tools.

Keywords
Programming_in_the_large, solution domain, metrics, tools.

1. INTRODUCTION
Programming_in_the_large is the current development scenario

where the problem domain is data-centric rather than services.

The solution domain is populated with data and classified as

classes based on commonality. The class attributes represent the

overall behavior of the software. Different classes in the solution

domain does not offer rich set of services, whereas, allowing

them to either share or importing the services makes the solution

domain complete. The quality of the software depends on the

design of a class. Much effort goes in repairing the bad design if

identified in later stages of development process. Object

Oriented Design metrics are helpful in identifying faulty design

at early stage of software development. Many tools are available

individually to measure a Java program before and after

implementation. This paper presents the concept of merging

design metric tools as a package along with other design

principles like abstractness and stability.

2. DIRECT AND INDIRECT METRICS
Software metric measures the quality of either the process or

product under development ([1] [2] [3]). Process metrics checks

the software development planning and scheduling so that

process should not exceed the calendar. Product metrics are

either direct or indirect measures of developed software. The

direct measure checks LOC, Execution time, Memory usage,

cost and effort on development, and number of defects. The

indirect measures are on the software environment includes

security, reliability, scalability, portability and maintainability.

3. OBJECT-ORIENTED DESIGN

QUALITY METRICS
Success of the software is mainly dependent on its design. A

significant number of Object Oriented design quality metrics are

defined among which CK metrics (Chidamber and Kemerer) [4]

are popular in the literature.

3.1 Weighted Methods per Class (WMC)
It measures the complexity of a class- operational attribute,

methods, in terms of effort and time for development and

maintenance. Complexity of a class is a cumulative sum of

complexity of all its methods. The objective is to keep it low to

uphold design quality.

 n

WMC(C) =∑ci(Mi)

 i=1

Where C is a class and M is a class method.

3.2 Depth of Inheritance Tree (DIT)
It measures the vertical growth of a class. Inheritance supports

reusability; however the complexity is directly proportional to

the distance between leaf and parent class. Deeper tree structure

is prone to higher complexity as it is difficult to access end class

behavior.

3.3 Number Of Children (NOC)
It is a metric to measure the horizontal growth of a class. The

immediate subclasses in a hierarchy show the greater reusability.

System functional quality is highly dependable on abstractness

of the parent class. Much effort is required in testing if tree

grows in both directions.

3.4 Coupling Between Object classes (CBO)
It measures the interdependency between the classes. An object

of a class can use the service or object of another class. The

objective is to reduce the much interdependency (cross

coupling) to increase the clarity of the solution.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

2

3.5 Response For a Class (RFC)
It measures response set of a class. When an object of a class

sends a message, the methods executed inside and outside of a

class are counted. The amount of effort in debugging, testing

and maintenance is depending on response count.

|RS|= { M }U all i { Ri }

where {Ri} = set of methods called by method i and {M}=set of

all methods in the class.

3.6 Lack of Cohesion in Methods (LCOM)
It measures the quality of a class in a solution domain. Cohesion

refers the degree of interconnectivity between attributes of a

class. A class is cohesive if it can not be further divided in to

subclasses. It measures the method behavior and its relevance

where it is defined. Pair of methods using data object proves the

cohesiveness where as the methods not participating in data

access makes it less cohesive. Consider C is a class and M1,

M2...Mn are its methods using set of class instances.

I1={a,b,c,d}, I2={a,b,c} and I3={x,y,z} are set of instances used

by the methods M1,M2 and M3 respectively. If intersection of

object set is non-empty then the method using them is cohesive

and their relevance in the class is proved. i.e. I1 ∩ I2 = {a, b, c}

means M1 and M2 are cohesive. But intersection of I1, I3 and

I2, I3 is empty set. High count in LCOM shows less

cohesiveness and class need to be divided to subclasses.

Apart from CK and MOOD, other metrics [5] based

on Object Oriented principles are also assess the design quality.

1 Stability measures a class or class category in terms of

changes they incorporate if it is done within. Highly

interdependent class or category is risky to manage as changes

have ripple effect on other classes. System is more stable when

its dependency on outside classes is less than the others using it.

The aim is to minimize the dependency to make system more

scalable and maintainable.

2 Abstractness is a metric for measuring flexibility of a

software. It provides a basement on which variety of services are

implemented, all belongs to the same category. Software

architecture can be made flexible by including more abstract

classes.

4. EXISTING TOOLS
Development of a software begins from data collection and

analysis through design to implementation. Quality of work is

measured by using tools based on defined metrics ([6] [7] [8]).

4.1 Design quality metric tools

4.1.1 JDepend
This tool checks the dependency among the packages in the

solution framework. It generates the count of number of package

classes used by the current package (Ce) and being used (Ca) by

other packages. The design parameters like number of Classes

and Interfaces, Abstractness, Instability and Dependency cycle

are also shown. It also reports the cyclic dependency between

the packages. It is a plug-in with Eclipse IDE. Limitation of this

tool is poor report format. It displays the afferent and efferent

couplings of each analyzed Java package in a plain format which

need to be more expressive using graphical tools. Moreover it

fails in analyzing the metrics in full extent for which it is

designed.

4.1.2 Classycle
This tool is helpful in identifying static cyclic dependency

between classes or packages. Unlike JDepend, it works at class

level and analyses the compiled Java code not the source file.

Directed graph of classes or package dependency is generated

and is further analyzed to find the cyclic dependency. The

output in the XML can be better visualized with other graphical

tools available.

4.1.3 Chidamber & Kemmerer Java Metrics

It is an open source tool to access CK Object Oriented Design

quality metrics. It analyses compiled Java file and generates

output in text format.

4.1.4 CCCC tool analyses and generates the report on general

code metrics like LOC along with design metrics by Chidamber

& Kemerer.

4.1.5 ES2 collects metrics like size, coupling and inheritance.

It inspects “.java” files and collects the information from

interface specifications. It fails in analyzing other quality

metrics.

4.1.6 SDMetric tool is a design metric tool for measuring all

types of UML diagrams. It collects the information from system

level to sub system level, packages and in detail towards classes

and objects. It reports the information in user-friendly tables and

charts.

4.2 Code analyzers

4.2.1 PMD is an open source tools helpful for identifying

bugs, unused variables and codes. It also checks code

redundancy to improve overall quality of the software.

4.2.2 QJ-Pro is Java source code review tool targets the

developer for not using language standards. It checks the code

for no error when the code modified. It ensures the indirect

measure of software quality like reliability, portability and

maintainability. It is used during software development and

testing phase of Software Development Life Cycle.

4.2.3 LOC counts number of lines in a source code including

blank lines and comment lines. It is a basic code analyzer to

assess size and complexity of software.

4.2.4 SLOC counts only physical lines of code in a module in

a verity of languages. It works on both Unix and windows

environment can be easily installed and used. It will

automatically estimate effort, time and cost of the project

development. The basic cost estimation model, COCOMO, is

used based on LOC.

4.2.5 Resource Standard Metrics (RSM) is a source

code analyzer checks both quantity and quality of a software. It

reports design information of package, classes, methods and size

of each module. The output is in text, HTML and CSV format.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

3

5. COMPARETIVE STUDY
It is known from the study that very few commercial and open

source tools are available for quality evaluation of object

oriented software design. Each tool is performing well with

defined metrics individually but failed to cover all proposed in

the literature. Output format of the report generated by few tools

are not having friendly features which will have an impact on

assessing the result.

Table 1. Tools v/s metrics evaluation

Tools Metrics Formatted

O/P

W

M

C

DI

T

N

O

C

C

B

O

L

C

O

M

JDepend √ √ √

Classycle √ √

ckjm √ √ √ √ √

CCCC √ √ √

RSM √ √ √ √

ES2 √ √ √ √ √

6. LITERATURE SURVEY
Since metrics are quantitative measure of a software design and

implementation, a number of individual tools have been

developed and made accessible as open source tools. A few

commercial tools are also available for measuring process and

product metrics.

A paper by P. Edith Linda et al. (2011) focused on different

tools available and proposed a web page so that all the tools are

accessible at the same place.

Dr. Rakesh Kumar and Gurvider Kaur (2011) have done a

comparative study on the complexity of Object Oriented Design

metrics proposed by Shyam R. Chidamber , Chris F. Kemerer

and Li.

Dr. M.P Thapaliyal and Garima Verma (2010) have done an

empirical analysis on few metric data and their relationship with

software defects.

Rudiger Lincke et al. (2008) have done analysis and comparison

of the output of different tools on different projects. It is shown

that the output of product metrics is tool dependent.

Linda Westfall, The Westfall Team (2005) defines 12 steps to

useful software metrics suitable for organization. It focuses on

refining the metrics for organization so that better product can

be developed.

Sandeep Purao and Vijay Vaishnavi (2003) present a rigorous

survey on product metrics. It focuses on understanding and

classification of ongoing research in Object Oriented metrics.

Stojanovic M and El Eman K (2001) developed a tool, ES2, for

collecting the design quality metrics for C++ and JAVA source

code. This analyzer is basically implemented on top of Source

Navigator IDE for analyzing large amount of code with cross-

references and links amongst classes.

Dr. Linda H. Rosenberg focuses on Traditional and Object

Oriented Metrics adapted for Object Oriented environment to

evaluate the principle object oriented structures and concepts.

7. CONCLUSION AND FUTURE SCOPE
Automation of complex business application with accuracy and

customer friendly is becoming a big challenge for the

developers. The objective of this paper is to create a common

platform for all design quality metrics as plug-ins for IDE to

make the application software more scalable and maintainable.

The tools available as a commercial product or open source are

limited in functionality or including both code and architecture

analysis.

Fig.1 Solution Domain of an Object Oriented System

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.7, July 2011

4

8. ACKNOWLEDGMENTS
I would like to thank Mr. Nandakumar V Purohit, a Technical

Team Leader for his guidance on practical approach and

Mr. Mallikarjuna Shastri P M (Phd.) for the suggestions on

improving the quality of this paper.

9. REFERENCES
[1] Sandeep Purao and Vijay Vaishnavi “Software Metrics for

Object-Oriented systems”, ACM Computing Surveys,

Vol 35, No2, JUNE 2003, pp 191-221.

[2] Seyyed Mohsen Jamali, ”Object Oriented Metrics –A

Survey Approach”, January 2006.

[3] Dr. Rakesh Kumar and Gurvinder Kaur, “Comparing

Complexity in Accordance with Object Oriented Metrics”,

International Journal of Computer Applications

(0975 – 8887) Volume 15– No.8, February 2011.

[4] Shyam R. Chidamber and Chris F. Kemerer “A Metrics

Suite for Object Oriented Design”, IEEE TRANSACTION

ON SOFTWARE ENGINEERING, VOL 20,No 6, JUNE

1994.

[5] Robert Martin, “OO Design Quality metrics”, October 28,

1994

[6] Rüdiger Lincke, Jonas Lundberg and Welf Löwe,

“Comparing Software Metric Tools”, 2008 ACM 978-1-

59593-904-3/08/07.

[7] P. Edith Linda, V. Manju Bashini, S. Gomathi, “Metrics for

Component Based Measurement Tools”, International

Journal of Scientific & Engineering Research Volume 2,

Issue 5, May-2011.

[8] Stojanovic M and El Eman K, “ES2: A Tool for Collecting

Object-Oriented Design Metrics from C++ and Java Source

code”, National Research Council of Canada, June 2001.

[9] Dr. M.P Thapaliyal and Garima Verma, “Software Defects

and Object Oriented Metrics–An Empirical Analysis”

International Journal of Computer Applications

(0975 – 8887) Volume 9– No.5, November 2010.

[10] Linda Westfall, The Westfall Team, “12 Steps to Useful

Software Metrics”, The Westfall Team, 2005

[11] Dr. Linda H. Rosenberg, “Applying and Interpreting Object

Oriented Metrics”, Track 7 - Measures/Metrics.

AUTHOURS PROFILE
Ms. Poornima U. S has done B.E. and MTech. in Computer

Science and Engineering, presently working as Assistant

Professor in the Department of Master of Computer

Applications at AIMS, Peenya Bangalore. She has got 13

years teaching experience and guiding post graduate

students on live projects for department automation and

NGOs.

