
International Journal of Computer Applications (0975 – 8887)  

Volume 26– No.8, July 2011 

35 

Rigorous Design of Partition-Aware Total Order 
Broadcast System using Event-B 

 
Raghuraj Suryavanshi 
Institute of Engineering and 

Technology 
GBTU, Lucknow, India 

 

Divakar Yadav 

Institute of Engineering and 
Technology 

GBTU, Lucknow, India 

 

ABSTRACT 

In distributed system, the sites communicate with each other by 

exchange of messages. A total order broadcast is a reliable 

broadcast that ensures delivery of messages to the sites in the 

same order. For the fault tolerant applications, ordering 

algorithm must support the network partitions and site failure. In 

this paper, we present a formal model of total order broadcast 

system in the presence of network partition and site failures. We 

have used Event-B as a formal technique for the development of 

our model. In this technique system is built in several stages by 

gradually introducing the details in the refinement steps. We 

outline an abstract model specifying total order broadcast and 

introducing the details in the refinement level for considering 

the case of network partitioning and site failure.      

General Terms 

Group communication primitives, B method, network partition. 

Keywords 

Total order broadcast, Formal methods, Event-B, sequencer. 

1. INTRODUCTION 
A distributed system is a collection of autonomous computer 

systems that cooperate with each other for successful completion 

of a distributed computation. Due to absence of common global 

clock or shared memory these systems communicate each other 

by exchange of messages which are delivered to them after 

arbitrary time delays. In such systems up-to-date knowledge of 

the system is not known to any process or site. This problem can 

be solved by group communication primitives that provide 

ordering guarantees on the delivery of messages. The group 

communication primitives have been proposed as a mechanism 

for the development of reliable fault-tolerant distributed 

applications [1]. A total order [1, 2] broadcast is one such 

primitive that guarantees the delivery of messages to the sites in 

the same order. For the fault tolerant applications, ordering 

algorithm must support the network partitions and site failure. 

A considerable amount of effort is required to make distributed 

applications robust in the face of typical site and communication 

failure. In this paper, we present a formal model of partition 

aware total order broadcast system using Event-B. Event-B is a 

formal technique used for specifying and reasoning about 

complex systems. At the abstract level, we model the total order 

delivery of messages. In the refinement model we have 

considered, the case of network partitioning where the sites are 

continuously detach from the main group named as master 

group. 

2. BACKGROUND 
We have presented formal development of Byzantine immune 

total order broadcast system using Event-B in [3]. Our system 

model consist a set of sites. Any site can work as a sequencer 

and responsible for constructing total order. Total order 

broadcast is reliable broadcast that ensures that delivery order of 

the messages will be same at all the recipient sites.  

The verification of different broadcast primitives and algorithm 

plays important role in distributed environment. Formal 

Methods provide systematic approach for building and studying 

the model. The most effective means to avoid system failures 

during a system operation is to eliminate or reduce design errors 

during design and development of system not afterwards when 

system complexity becomes overwhelming. Advantages and 

disadvantages of formal methods in industrial practice may be 

found in [4,5,6].  

2.1 Event-B as a Formal Method 
The B Method [7,8,9,10,11] is a model oriented state based 

method developed by Abrial. It represent the complete 

mathematical development of a Discrete Transition System. It is 

made of several components of two kinds: machines and 

contexts. Machines represent the dynamic part of model. This 

part is used to provide behavioural properties of model. It 

contains the variables, invariants, theorems, and events of a 

project. Contexts contain the static part of model. It contains 

carrier sets, constants, axioms, theorems. 

 Event-B [12,13,14,15] is event driven approach used to develop 

formal models of distributed systems through a series of 

refinement steps. An event is made up of three elements its 

name, guards and actions. The guards are the necessary 

conditions for the event to occur. An event known as 

initialization event has no guard and it gives initial position of 

the model. New variables, invariant, event may also add in the 

refinement step. The main purpose of adding new invariant and 

event is to find out more concrete specification. 

2.2 Total Order Broadcast  
Due to absence of common global clock or shared memory, the 

up-to-date knowledge about the system is not known to any site 

or process. These systems communicate through message 

passing where these messages are delivered after arbitrary time 

delays. This problem can be solved by group communication or 

broadcast primitives that provide ordering guarantees on the 

delivery of messages. Various definitions of the ordering 

properties have been discussed in [16, 17, 18, 19]. Total order is 



International Journal of Computer Applications (0975 – 8887)  

Volume 26– No.8, July 2011 

36 

one such primitive that ensures that delivery order of messages 

at all the sites will be same. A total order broadcast  can be 

defined as a reliable broadcast which satisfies following 

requirement. 

If processes p and q both deliver messages m1 and m2, then q 

delivers m1before m2 if and only if p delivers m1 before m2. 

2.3 Partition aware Total order Broadcast 

system 
Our system model contains a set of sites named as master group. 

When any site enters into the system it adds into the master 

group. The variable groupid is used to assign the id to a 

particular group. There are two types of operations attachment 

and detachment. During detachment, a group of sites detached 

from the master group and adds into the partitioned group. In the 

attachment process a group of sites from the partitioned group 

rejoins the master group and update their status by total order 

delivery of messages through sequencer present in master group. 

When the partitioning occurs in master group, each group 

assigned a different group id. Partitioned group contains the 

disjoint set of sites having different group id’s which are 

detached from master group. In the partitioned group, the group 

having larger group id as comparison to the others group 

indicate that this group is detached after the others one. The new 

detached group may have some more messages which are not 

present at the others group which are partitioned before it. At 

some time new partitioned group (having larger group id) may 

be in contact with other partitioned group (having lower group 

id). The older partitioned group change its status from the newer 

ones by delivery of  those messages which are not present there. 

3. ABSTRACT MODEL 
In the abstract model, we have designed total order delivery of 

messages. Any site can be chosen as a sequencer and this 

sequencer is used to ensure total order delivery of messages to 

participating sites. The SITE and MESSAGE is defined as 

carrier set. The additional machine variables are sender, 

totalorder and tdeliver (see Fig. 1).The sender is defined as 

partial function from MESSAGE to SITE. The mapping (mms): 

sender indicates that message m has sent from the site s. The 

variable totalorder is defined as:  

totalorder: MESSAGE1MESSAGE 

Where MESSAGE1MESSAGE indicates set of relations 

between MESSAGE and MESSAGE. A mapping (m1mm2): 

totalorder indicate that message m1 is totally order before m2. 

The variable tdeliver show that the message is delivered 

following a total order. A mapping (smm): tdeliver represent 

that site s has delivered m following a total order. 

3.1 Site Admit Event 
This event (Fig. 2) adds a new site into the master group if it 

does not previously exist in the system. The site is not 

previously existed site is ensured by guard grd2. 

3.2 Message Broadcasting (Broadcast event) 
The specifications of the event Broadcast are given in Fig. 3. As 

outlined in the specification a site ss broadcast a message mm. 

The guard grd4 of this event ensures that a message has not been 

previously sent by the sender. 

3.3 Ordering of messages ( Order event) 
The Order event, given in Fig. 4. models the ordering of 

messages sent by the senders. The message has been sent is 

specified through grd 4. After receiving the messages the 

sequencer builds the total order and broadcast the messages to 

all sites. The guard grd6 specifies that this message has not been 

delivered to a sequencer. The actions of this event construct a 

total order on a message and it is delivered to a sequencer. 

3.4 Total Order delivery ( ToDeliver event) 

The event ToDeliver (see Fig. 5.) models the delivery of 

message mm to the site ss following the total order. The guard 

grd5 ensures that the message mm has been sent by the sender 

and grd6 ensures that it has been delivered to at least one site 

and it also implies that the total order on the message mm has 

been constructed. 

MACHINE      Total_M 

VARIABLES 

sender, totalorder, tdeliver, mastergroup 
INVARIANTS 

inv1   :    sender ∈ MESSAGE2SITE 

inv2   :    totalorder ∈ MESSAGE↔MESSAGE 

inv3   :    tdeliver ∈ SITE↔MESSAGE 

inv4   :    mastergroup ∈ ℙ(SITE) 

INITIALISATION   ≙    

BEGIN 

act1 :    sender ≔ ∅        act2 : totalorder ≔ ∅ 

act3 :    tdeliver ≔ ∅   act4:  mastergroup ≔ ∅  

END 
Fig 1: Machine variables, invariants and initialization of 

abstract model 

Site_Admit   ≙    

ANY  ss 
WHERE 

grd1   :    ss ∈ SITE     grd2:  ss∉ mastergroup 

THEN 

act1   :    mastergroup≔ mastergroup ∪ {ss} 

END 
Fig 2: specification of site_admit event 

Broadcast   ≙    

ANY  ss, mm 
WHERE 

grd1   :    ss ∈ SITE     grd2  : ss∈ mastergroup 

grd3   :    mm ∈ MESSAGE 

grd4   :    mm∉ dom(sender) 

THEN 

act1   :    sender≔sender∪{mm↦ss} 

END 
Fig 3: Specification of Broadcast event 

Order   ≙    

ANY 
ss, mm 



International Journal of Computer Applications (0975 – 8887)  

Volume 26– No.8, July 2011 

37 

WHERE 

grd1   :    ss ∈ SITE   grd2:  ss∈ mastergroup 

grd3   :    mm ∈ MESSAGE 

grd4   :    mm∈dom(sender) 

grd5   :    ss=sequencer 

grd6   :    (sequencer↦mm)∉tdeliver 

THEN 

act1   :    tdeliver≔tdeliver∪{ss↦mm} 

act2   :    
 totalorder≔totalorder ∪ 

(tdeliver[{sequencer}]×{m
m}) 

END 
Fig 4: specification of Order event 

ToDeliver   ≙    

     ANY ss, mm 
WHERE 

grd1   :    ss ∈ SITE 

grd2   :    ss∈ mastergroup 

grd3   :    mm ∈ MESSAGE 

grd4   :    ss≠sequencer 

grd5   :    mm ∈ dom(sender) 

grd6   :    mm ∈ ran(tdeliver) 

grd7   :    ss↦mm ∉tdeliver 

grd8   :    
∀m·(m∈  MESSAGE ∧(m↦mm) 

∈totalorder ⇒(ss↦m)∈tdeliver) 

THEN 

act1   :    tdeliver≔tdeliver∪{ss↦mm} 

END 
Fig 5: Specification of ToDeliver event 

4. REFINEMENT MODEL 
In the refinement model, we add the specification of partitioning 

of sites where a group of sites may be detached from 

mastergroup. The new variables (see Fig. 6) are groupid, 

partitionedgroup, connectionstatus, groupcounter, 

messagecounter, messageseqno. CONNECTIONSTATUS is 

enumerated set containing the value ENABLE and DISABLE. 

The description of other variables are as follows: 

 The variable groupid is used to assign unique id to a 

particular group. The variable groupcounter counts the 

id of a group. Each time when an id is assigned to a 

group its value is incremented by one. The variable 

groupcounter is initialized by 1 (see Fig. 7).  

 The variable partitionedgroup contains the set of sites 

which are detached from main group named as 

mastergroup. 

 The variable messageseqno is used to assign the 

sequence number of a message. 

 The variable connectionstatus gives the status of 

connection between two groups of sites and show 

whether the connection is enable or disable.  

4.1 Partitioning of sites ( SITE_PARTITION 

event) 

The specification of this event is given in Fig. 8. It models the 

partitioning of sites. During the detachment process a group of 

sites may be detached from the master group. The variable 

partitionedgroup contains those detached group. A unique group 

id is assigned to them. As a result it may form several disjoint 

groups having different group ids (act2 and act3). The group of 

sites which are detached before have smaller group id than those 

group which are detached after it. The connection status between 

the partitioned sites and master group is disabled by act5.  

4.2 (PARTITION_CREATE_VIEW event) 

The group of partitioned site may be in contact with different 

partitioned group. This event (see Fig. 9) sets the same group id 

if the partitioned group are in contact with each other (act1) and 

enable the connection status between those group (act2). 

4.3 Delivery of messages after view creation 

(PARTITIONED_MESSAGE_DELIVER 

event)  

The specification of this event is given in Fig. 10. After the 

creation of view the newly partitioned group may be in contact 

with those groups which are partitioned before it. So there is 

possibility that the sites in newly partitioned group may have 

some messages which are not in previously partitioned group ( 

see grd10 & grd11). This event makes the delivery of those 

messages to the sites which have not these messages (act1). 

4.4 Re-admission in master group                  

( ADD_TO_MASTER event) 

This event (see Fig. 11) models the re-admission of partitioned 

sites in to the master group. The group of sites from partitioned 

group may be re-join the master group. The connection status of 

this group and master group is enabled by act1.The act4 makes 

the group id as same as master group.  

After re-joining in the master group the total order delivery of 

messages is done by the sequencer present in master group 

through the ToDeliver event. 

MACHINE 
partition_m 

REFINES 
Total_m 

SEES 
partition_c 

 
VARIABLES 

sender, totalorder, tdeliver, 
mastergroup,groupcounter, groupid, 
partitionedgroup, messagecounter, messageseqno, 
connectionstatus  

 
INVARIANTS 

inv1   :    groupcounter ∈ ℕ  

inv2   :    groupid ∈ ℙ(SITE)→ℕ  

inv3   :    partitionedgroup ∈ ℙ(mastergroup) 

inv4   :    messagecounter ∈ ℕ  



International Journal of Computer Applications (0975 – 8887)  

Volume 26– No.8, July 2011 

38 

inv5 :    messageseqno ∈ MESSAGE2ℕ  

inv6 :    
 connectionstatus ∈ℙ(SITE)2 (ℙ(SITE)   

2CONNECTIONSTATUS) 
Fig 6: Machine variables and invariants of refinement model 

INITIALISATION   ≙    

BEGIN 

act1   :    sender ≔ ∅    act2: totalorder ≔ ∅ 

act3   :    tdeliver ≔ ∅   act4:mastergroup ≔ ∅  

act5   :    groupcounter ≔ 1    act6: groupid ≔ ∅ 

act7   :     partitionedgroup ≔ ∅ 

act8   :    messageseqno ≔ ∅ 

act9   :    messagecounter ≔0  

act10 :    connectionstatus≔∅ 

END 
Fig 7: Initialization of the machine variables 

SITE_PARTITION   ≙    

       ANY 
ss 

WHERE 

grd1   :    ss∈ ℙ(mastergroup) 

grd2   :    ss ∉ ℙ(partitionedgroup) 

THEN 

act1   :    mastergroup≔ mastergroup∖ss 

act2   :    groupid(ss)≔groupcounter 

act3   :    groupcounter≔groupcounter+1 

act4   :    
partitionedgroup≔ 
 partitionedgroup ∪ ss 

act5:    

connectionstatus(mastergroup)≔       

connectionstatus(mastergroup)+ 

{ss↦ DISABLE} 

END 
Fig 8: Specification of SITE_PARTITION event 

PARTITION_CREATE_VIEW   ≙    

       ANY 
ss,tt 

      WHERE 

grd1   :    ss∈ ℙ(partitionedgroup) 

grd2   :    tt∈ ℙ(partitionedgroup)       grd3:  ss≠tt  

      THEN 

act1   :    groupid(ss)≔groupid(tt) 

act2   :    
connectionstatus(ss) ≔ 

connectionstatus(ss)+{tt↦ ENABLE} 

      END 
Fig 9: Specification of PARTITION_CREATE_VIEW event 

PARTITIONED_MESSAGE_DELIVER   ≙    

ANY   
           ss, mm, tt 
WHERE 

grd1   :   ss∈ SITE   grd2: tt∈ SITE  grd3:  ss≠tt 

grd4   :    ss∈ partitionedgroup 

grd5   :    tt∈ partitionedgroup 

grd6   :    groupid({ss})=groupid({tt}) 

grd7   :    mm ∈ MESSAGE 

grd8   :    mm ∈ dom(sender) 

grd9   :    mm ∈ ran(tdeliver) 

grd10   :    ss↦mm ∈ tdeliver  

grd11   :    tt↦mm ∉ tdeliver 

grd12 
  :    

∀m·(m∈ MESSAGE ∧    

 (messageseqno(m)< messageseqno(mm))

⇒(tt↦m)∈ tdeliver) 

 
THEN 

act1   :    tdeliver≔ tdeliver ∪ {tt↦mm} 

END 
Fig 10: PARTITION_MESSAGE_DELIVER event 

ADD_TO_MASTER   ≙    

ANY 
ss 

WHERE 

grd1   :    ss ∈ ℙ(partitionedgroup) 

grd2   :    ss∉ ℙ(mastergroup) 

THEN 

act1   :    
connectionstatus(mastergroup)≔ connect

ionstatus(mastergroup)+{ss↦ ENABLE} 

act2   :    partitionedgroup≔ partitionedgroup∖ ss 

act3   :    mastergroup≔ mastergroup ∪ ss 

act4   :    groupid(ss)≔ groupid(mastergroup) 

END 
Fig 11: Specification of ADD_TO_MASTER event 

5. CONCLUSIONS 
In this paper, we have presented a rigorous design of partition 

aware total order broadcast system using Event-B on Rodin 

platform. In the abstract model we have designed total order 

delivery of messages. There is a sequencer site which takes the 

responsibility of ordering of messages. In the refinement model, 

the specification of site partition is considered where a group of 

sites may be detached from the main group named as 

mastergroup. For each detached group a unique groupid is 

assigned to it. After some times when the partitioned group of 

sites re-joins the master group the total ordered delivery is done 

by sequencer present in master group.  This work is carried out 

on Rodin platform which generates the proof obligations. These 

proofs are discharged automatically by the prover of the tool. 

6. REFERENCES 
[1] D´efago, X., Schiper, A., Urb´an, P. 2004 Total order 

broadcast and multicast algorithms: Taxonomy and survey. 

ACM Comput. Surv. 36(4), 372–421. 

[2] Hadzilacos, V., Toueg, S. 1994 A modular approach to 

fault-tolerant broadcasts and related problems. Technical 

Report TR 94 -1425. Cornell University. 



International Journal of Computer Applications (0975 – 8887)  

Volume 26– No.8, July 2011 

39 

[3] Suryavanshi, R., Yadav, D. 2010 Formal Development of 

Byzantine Immune Total Order Broadcast System using 

Event-B. In ICDEM 2010, F. Andres, R. Kannan, Eds. 

LNCS, Vol. 6411, Springer. 

[4] Hinchey, M., Bowen, J.P. and Glass, R. 1996 Formal 

methods: Point-counterpoint. Computer, 29(4):18–19. 

[5] Jones, C., Jackson, D. and Wing, J. 1996 Formal methods 

light. Computer, 29(4): 20–22. 

[6]  Saiedian, H. 1996 An invitation to formal methods, 

Computer, 29(4):16–17. 

[7] Butler, M. 1997 An Approach to Design of Distributed 

Systems with B. In Proceedings 1997 10th Int. Conf. of Z 

Users: The Z Formal Specification Notation (ZUM), 

vol.1212, LNCS, pp.223-241. 

[8] Butler, M., Walden, M. 1996 Distributed System 

Development in B. In Proceedings of Ist Conf. in B 

Method, Nantes, pp.155-168. 

[9] Rezazadeh, A., Butler, M. 2005 Some Guidelines for 

formal development of web based application in B Method. 

In Proceedings of 4th Intl. Conf. of B and Z users, 

Guildford, LNCS, Springer, pp 472-491. 

[10] Abrial, J.R. 1996 The B-Book: Assigning programs to 

meanings. Cambridge University Press. 

[11] Abrial, J.R. 1996 Extending B without changing it for 

developing distributed systems. In First B Conference. 

[12] Yadav, D., Butler, M. 2005 Application of Event B to 

Global Causal Ordering for Fault Tolerant Transactions. In 

Proceedings of REFT 2005, Newcastle upon Tyne, pp 93-

103. 

[13] Butler, M. and Yadav, D. An incremental development of 

the mondex system in Event-B. In Formal Aspects of 

Computing, 20(1):61–77, 2008. 

[14] Abrial, J.R. and Voison, L. 2005 Event-B language. 

Technical Report, Deliverables 3.2, EU Project IST-

511599-RODIN, 

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf. 

[15] Abrial, J.R. 2007 A system development process with 

Event-B and the Rodin platform. In proceedings of ICFEM 

2007, Butler, M., Hinchey, L. Petrie, Eds. vol.4789, LNCS, 

Springer, pp.1-3. 

[16] Stanoi, I., Agrawal, D., Abbadi, A., 1998 Using broadcast 

primitives in replicated databases. In Proc. of 18th IEEE 

Intl. Conf. on Distributed Computing System,ICDCS, 

pages 148–155. 

[17] Baldoni, R., Cimmino, S., Marchetti, C., 2005 Total order 

communications: A practical analysis. In EDCC 2005, 

Mario Dal Cin, Mohamed Kaˆaniche, and Andr´as 

Pataricza, Eds, LNCS Vol. 3463, pages 38–54. Springer. 

[18] Birman, K., Schiper, A.,Stephenson, P., 1991 Lightweigt 

causal and atomic group multicast. ACM Trans. Comput. 

Syst., 9(3):272–314,. 

[19] Marchetti, C., Cimmino, S., Baldoni, R., 2006 A 

classification of total order specifications and its 

application to fixed sequencer-based implementations. 

Journal of Parallel and Distributed Computing, 66(1):108–

127. 

 


