
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

30

Architectural Analysis of RSA Cryptosystem on FPGA

Vibhor Garg
School of Electronics Engineering

VIT University
Vellore, India

V. Arunachalam
School of Electronics Engineering

VIT University
Vellore, India

ABSTRACT

This paper presents different architectures in FPGA based

implementations of a public key crypto algorithm - RSA

algorithm. A hardware-based cryptographic system is preferred

as it provides - better security, integrity and is resistant to power

analysis attacks [1]. After the complete cryptosystem is

simulated in VERILOG [8] and synthesized for specific XILINX

FPGAs, the architecture of the cryptosystem is evolved by

performing scheduling in the Data Flow Graph. This way there

are two types of architectures realized: – one with high

concurrency (which takes lesser number of clock cycles) and the

other with maximum sequential operations. Subsequently the

size of the key is extended and its effects on the architecture,

with respect to area and power consumed, are observed. Finally

trade-off analysis of the various implementations is done.

KEYWORDS

RSA Encryption, Public Key Cryptography, FPGA, security,

Verilog, Data Flow Graph.

1. INTRODUCTION

With the ever increasing popularity of Electronic Communication
and the Internet, data security has become of more concern now
days. In 1978, Rivest, Shamir and Adleman proposed the RSA
public-key cryptosystem which has become the most widely used
public-key cryptosystem due to the fact that it can be used for
both data encryption and authentication [9]. In RSA cryptosystem
we require two keys, the public and private key. The public key is
advertised to the world and the private key is kept secret.
Therefore an anonymous person will not be able do decrypt the
encrypted message if he does not have the private key. The safety
depends upon the length of the key, longer the key-length much
safer is the data.

The RSA cryptosystem is briefly described as follows [9]:

 Select two random prime numbers p and q

 Calculate n = p x q

 Calculate ø(n) = (p – 1) x (q – 1)

 Select integer e such that
gcd (ø(n),e) = 1; 1<e< ø(n); where e & ø(n) are
relatively prime [11], [12]

 Calculate d = e-1 mod ø(n)

 Encryption is done as C = Me mod n

 Decryption is done as M = Cd mod n

The encryption and decryption contain the modular
exponentiation operation which is the most critical in RSA. The
implementation of various architectures would provide for
flexibility in the end users design. This would help him design an
architecture based solely upon his requirements and the
application he would be using. For example, the application used
for online transactions would require higher security and faster
execution and hence the user may opt for a higher bit security
system that operates concurrently.

This paper is organized as follows. Section 2 of this paper
describes the previous work done in this field. In section 3 the
DFG synthesis is described. The DFG scheduling is described in
section 4. The simulation results are described in section 5
followed by the conclusion in section 6.

2. PREVIOUS WORK

During the past years, numerous papers dealing with RSA public

key cryptography have been published [2], [3], [4], [10].

However, the design presented in this paper differs from

previous work in two important aspects: (1) We pay special

attention not only to any individual module but to the system as

a whole. (2) We work on both the arithmetic and the functional

level with which we provide flexible design specifications to the

user making his cryptosystem suitable for a large range of

applications.

Firstly, the various papers that have been published focus on any

particular module of the RSA cryptosystem and to be more

specific majorly on the modular exponentiation

(encryption/decryption) as it is the core operation of RSA. Our

design in this paper focuses on the complete cryptosystem and

also the scheduling of functional units at the arithmetic level of

particular modules, which provides different architectures with

flexibility in the performance specifications of the system.

A second point in which our design differs from previous work

is scalability, i.e. the ability given to the user to select his

required modules and integrate them together to target

efficiently his application and the availability of resources. This

provides for the user to have a very flexible design based upon

his requirements.

3. DATA FLOW GRAPH SYNTHESIS

A Data Flow Graph (DFG) is a graphical representation of the

"flow" of data through an information system and can also be

used for the visualization of data processing [6]. After the

identification of all the various modules required in the different

processes of the RSA algorithm, data flow graphs of individual

modules were first constructed and then connected together.

The identified modules which have been implemented in the

RSA algorithm are described as below:

 Public Key Generation

 Encryption

 Private Key Generation

 Decryption

3.1 Public Key Generation

Initially „p‟ and „q‟ are randomly generated prime numbers.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

31

Fig 1: DFG for Public Key Generation using Euclid’s

Algorithm

3.2 Encryption

For Encryption we have to calculate „ nmc e mod ‟

qpn and (i

m

i

i ee
1

0
2).

Fig 2: DFG for Encryption using Square and Multiply

Algorithm

3.3 Private Key Generation

Fig 3: DFG for Private Key Generation using Extended

Euclid’s Algorithm

3.4 Decryption

For Decryption we have to calculate „ ncM d mod ‟

qpn and (i

n

i

i dd
1

0
2)

Fig 4: DFG for Decryption using Square and Multiply

Algorithm

A1 A2 A3

B1 B2 B3
Q = A3/B3

DIV

MUL MUL MUL

SUB SUB SUB

A1 <- B1 B1 <- T1
A2 <- B2 B2 <- T2

A3 <- B3 B3 <- T3

A1 =1

1

A2=0

A3=ø(n)

B1=0 B2=1

B3=e

B3!=1

Yes

d = B2

d (Private Key)

Zi M

i

Decrypted message

Yes

mod

Mi+1 = Mi

i=n-1

MUL

n

Mi*Zi

No

Mi+1

i = i + 1

Zi+1 = Zi
2 mod n

Z = c ; M0 = 1 ; d = private key ; n = p x q

i = 0

n

di=1
No

Zi

mod

Zi
2

Yes

MUL

Ci+1 = Ci

Encrypted message

Z = m ; C0 = 1 ; e = public key ; n = p

x q

i = 0

MUL

Zi

mod

Zi
2

n

Zi+1 = Zi
2 mod n

ei=1

Yes No

Ci Zi

MUL

mod
n

Ci*Zi

i = i + 1

i=n-1

yes

no

A‟ = B

e is the required key for Bn‟=1

An

mod

mod

mod

B‟ =A mod B

MUL

MUL

p q

SUB SUB

p -1 q -1

n

mod

ø(n) [A]

mod
A‟‟ = B‟

A‟‟‟ = B‟‟
B‟‟=A‟ mod B‟

B‟‟‟=A‟‟ mod B‟‟

B‟‟‟‟=A‟‟‟ mod B‟‟‟
Continues till Bn =0
Bn‟=An mod Bn

If Bn‟
not

equals 1

e (1<e< ø(n) [B]

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

32

4. DFG SCHEDULING

Scheduling is done on any process due to limited resources or to

meet performance standards. After the formation of the Data

Flow Graph (DFG), certain scheduling has to be done in order to

perform a trade off analysis between Time, Area and Power.

DFG scheduling is done on two levels:

 Arithmetic Level

 Functional Level

At the arithmetic level we work on the arithmetic operators

within a module. We make necessary changes in order to

optimize the performance (in regards to time, area and power).

In arithmetic level scheduling we design various modules of the

RSA system in two different modes namely: sequential and

parallel. In this regard we make changes in the Extended

Euclid‟s algorithm by changing the three parallel multipliers

being used in to a sequential logic thus reducing the number of

multipliers but increasing the critical path length.

In the functional level scheduling we deal with the

implementation of different algorithms for the modules forming

the cryptosystem and executing entire modules in parallel if they

are not data dependent on each other. We choose algorithms

based on the criterion of efficiency with respect to critical path,

area and power consumed. At the functional level scheduling we

perform the modification of the encryption and decryption

modules with different algorithms. This is done as modular

exponentiation, which is used in both encryption and decryption,

is hugely responsible for the efficiency of the entire

cryptosystem. The algorithms applied in relation to the

aforementioned are namely: Square and Multiply algorithm [3]

and Montgomery algorithm [7], [5].

Fig 5: Arithmetic level scheduling in Private Key Generation

(Extended Euclid’s Algorithm)

Another area where functional level scheduling is applied is the

parallel execution of the private key generation and encryption

modules. This is possible due to the non-existence of data

dependency between them.

The following figures explain the scheduling done in the Data

Flow Graphs.

This is where the three parallel multipliers in the Extended

Euclid algorithm are replaced by only one sequential multiplier.

The next scheduling is done at the functional level where the

entire module of Square and Multiply algorithm is replaced by

Montgomery algorithm.

To calculate nBA mod where BB
n

i

i1

0
2

Fig 6: Montgomery multiplication, a pre-requirement for

Montgomery exponentiation

To calculate nCe mod where qpn

i=0

MUL

ADD

mod

MUL

ADD

DIV

i = n-1 i = i+1

2

2

S-1 = 0

N

A bi

A x bi

qi

qi x N

Sn-1 O/P

No

Yes

A[i+3] = B[i]

B[i+3] = T[i]
i = i + 1

3 i

SUB
mod

R = i % 3

B[k+2] != 1

DIV

No

Private Key

d = B2

Yes

MUL

Bi
Q=A[i+2]/B[i+2]

Ai

R = 0

k = k + 1

Yes

No

Ai =1

A[i+1]=0 A[i+2]=ø(n) Bi=0 B[i+1]=1

B[i+2]=e

i = 0 , k = 0

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

33

Fig 6: Functional level scheduling in Encryption/Decryption

(using Montgomery Exponentiation)

5. RESULTS

We now compare the results for a transceiver of different

feasible key sizes.

Fig 7: Transceiver

The various key sizes applied are of: 8-bit, 16-bit and 32-bit key

lengths. The FPGA board used is Virtex-5 -- xc5vlx50t-2ff1136.

The various cases applied for the FPGA implementation of the

cryptosystem are as shown below:

 Euclid‟s Algorithm is used in all the cases for

calculation of GCD which is used for the generation of

the Public-Key [9].

 The prime numbers p and q are randomly generated

using the principle of Linear Feedback Shift Register

(LFSR) [9].

 Extended Euclid‟s Algorithm with two variations as

below is used for the generation of the Private-Key

[9].

 „Square and Multiply‟ and „Montgomery‟ are the two

algorithms used for either encryption or decryption

[3].

TABLE 1

 VARIOUS CASES IMPLEMENTED BY SCHEDULING

Encrypt /

Decrypt

(Functional

Scheduling) E
x
te

n
d

e
d

E
u

c
li

d

(A
r
it

h
m

e
ti

c

S
c
h

e
d

u
li

n
g
)

P
a

ra
ll

el

u
se

 o
f

M
u

lt
ip

li
e
r
s

S
e
q

u
e
n

ti
a
l

u
se

 o
f

M
u

lt
ip

li
e
r
s

Square and Multiply Case 1 Case 2

Montgomery Case 3 Case 4

The following results are for a 8-bit key Cryptosystem (Results

are generated on Virtex-5 -- xc5vlx50t-2ff1136):

TABLE 2

8-BIT CRYPTOSYSTEM ON VIRTEX5 – XC5VLX50T-

2FF1136

Data

Compared
Case1 Case2 Case3 Case4

Multipliers 7 5 5 3

Adders/

Subtractors
225 251 605 631

Area (No. of

Slice LUTs)

1882

6%

2779

9%

6584

22%

7597

26%

Power(mW) 455 457 449 454

Maximum

Frequency

(MHz)

46.512 46.511 261.7 88.046

Period(ns) 21.500 21.500 3.821 11.358

The following results are for a 16-bit key Cryptosystem (Results

are generated on Virtex-5 -- xc5vlx50t-2ff1136):

TABLE 3

16-BIT CRYPTOSYSTEM ON VIRTEX5 – XC5VLX50T-

2FF1136

Data Compared Case1 Case2 Case3 Case4

Multipliers 7 5 5 3

Adders/

Subtractors
593 635 2125 2167

Area (No. of

Slice LUTs)

7195

24%

6991

24%

42733

148%

42448

147%

Power(mW) 462 461 * *

Maximum

Frequency(MHz)
24.271 24.271 247.838

247.8

38

Period(ns) 41.201 41.201 4.5 4.035

The following results are for a 32-bit key Cryptosystem (Results

are generated on Virtex-5 -- xc5vlx50t-2ff1136):

i = n - 1

MontProd (1 , Cn , n)

Yes

No

O/P

ei = 1

Pi+1

Ci+1 = Ci Ci+1 = MontProd (Ci , Pi , n)

No Yes

1

mod

n 22n

MontProd MontProd

M Nr

i = 0

C0 P0

MontProd

Pi n

i = i + 1

Clk

Rst M

d

M

Top

Private

Key

Generatio

n

Encryptio

n
Public

Key

Generatio

n

C / M

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

34

TABLE 4

32-BIT CRYPTOSYSTEM ON VIRTEX5 – XC5VLX50T-

2FF1136

Data

Compared
Case1 Case2 Case3 Case4

Multipliers 7 5 ** **

Adders/

Subtractors
729 803 ** **

Area (No. of

Slice LUTs)

28045

97%

33760

117%
** **

Power(mW) * * ** **

Maximum

Frequency

(MHz)

8.947 8.947 ** **

Period(ns) 111.76 111.76 ** **

* The power report could not be generated in this case due to

insufficient LUTs in the FPGA.

** The synthesis report have not been generated for this case as

it is evident from the lesser key size that the area would surely

be insufficient and hence the power will not be calculated.

6. CONCLUSION

We have successfully synthesized the different FPGA

implementations of RSA cryptographic system in software. The

various architectures evolved from the DFG scheduling were

implemented on the FPGA platform and a comparative study is

performed between them. Virtex-5 -- xc5vlx50t-2ff1136 FPGA

board is chosen as the number of LUTs is very large. As the key

size was increased in all the cases we observed an increase in the

number of LUTs used in each case. The number of LUTs used

showed a tremendous increase in both the cases where

Montgomery algorithm was used for encryption as compared to

the cases where Square and Multiply algorithm was used. In

cases 1, 2 and 3 the increase in maximum frequency is observed

to be proportional to the increase in key size. While in case 4 the

increase in maximum frequency was inversely proportional to

the increase in key size. We encountered limitation of LUTs on

the FPGA boards used in the 32-bit case for Square and Multiply

encryption algorithm and for 16-bit and 32-bit cases of

Montgomery encryption algorithm (inferred from tables – 2, 3

and 4). In future, the work done so far can be extended to even

higher bit sizes by modification of the encryption/decryption

algorithm namely Montgomery algorithm. A new architecture

can further be implemented by using the subtraction algorithm to

find out the public key. An actual scheduling algorithm can be

applied to further improve the performance constraints of the

RSA cryptosystem. After an analysis of all the systems a final

architecture can then be implemented on a physical FPGA

board.

This work is part of project “FPGA Implementation of RSA
Cryptographic System” by Vibhor Garg under guidance of

Prof.V.Arunachalam for the award of BACHLOR OF TECHNOLOGY

DEGREE at VIT University, Vellore.

7. REFERENCES

[1] Hagai Bar-El (Hagai.Bar-El@Discretix.com), “Security

implications of Hardware vs. Software cryptographic

modules,” Advanced Embedded Security, Discretix

Technologies Ltd., White Paper, October 2002.

[2] S.S. Ghoreishi, M.A. Pormina, H. Bozorgi, and M. Dousti,

“High Speed RSA Implementation Based on Modified

Booth‟s Technique and Montgomery‟s Multiplication for

FPGA Platform,” in Second International Conference on

Advances in Circuits, 2009.

[3] T. Blum and C. Paar, “High-Radix Montgomery Modular

Exponentiation on Reconfigurable Hardware,” in IEEE

Transactions on Computer, Vol. 50, no. 7, pp. 759-764,

July 2001, ISSN: 0018-9340.

[4] Yachao Zhou and Xiaojun Wang, “An improved

implementation of Montgomery Algorithm using efficient

pipelining and structured parallelism techniques,” in IET

Irish Signals and Systems Conference (ISSC 2010), pp. 7 –

11, June 2010.

[5] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.

Vanstone, “Efficient Algorithms,” Handbook of Applied

Cryptography, pp. 606-609,613-620, June 1996.

[6] Gang Quan, “Data Flow Graph Intro,” Maseeh College of

Engineering and Computer Science, Portland State

University,

http://web.cecs.pdx.edu/~mperkows/temp/JULY/data-flow-

graph.pdf .

[7] John Fry and Martin Langhammer, “RSA and Public Key

Cryptography in FPGAs,” Altera Corporation, Tech. Rep.,

2005, pp.1-3.

[8] Samir Palnitkar, Verilog HDL: A Guide to Digital Design

and Synthesis, SunSoft Press, 1996.

[9] William Stallings, Cryptography and Network Security

Principals and Practices, 4th edition, Pearson Education,

Inc., 2006, ISBN 81-7758-774-9.

[10] Omar Nibouche, Mokhtar Nibouche, Ahmed Bouridane,

and Ammar Belatreche, “Fast architectures for FPGA-based

implementation of RSA encryption algorithm,” in IEEE

International Conference on Field-Programmable

Technology, 2004.

[11] T. Jebelean, “Comparing several GCD algorithms,” in 11th

Symposium on Computer Arithmetic, 1993, Proceedings,

pp. 180 – 185, 1993, ISBN: 0-8186-3862-1.

[12] John D. Carpinelli, Computer Systems Organization and

Architecture, Pearson Education, Inc., 2001, pp. 353-357,

ISBN 81-7808-268-3.

