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ABSTRACT 

This paper presents different architectures in FPGA based 

implementations of a public key crypto algorithm - RSA 

algorithm. A hardware-based cryptographic system is preferred 

as it provides - better security, integrity and is resistant to power 

analysis attacks [1]. After the complete cryptosystem is 

simulated in VERILOG [8] and synthesized for specific XILINX 

FPGAs, the architecture of the cryptosystem is evolved by 

performing scheduling in the Data Flow Graph. This way there 

are two types of architectures realized: – one with high 

concurrency (which takes lesser number of clock cycles) and the 

other with maximum sequential operations. Subsequently the 

size of the key is extended and its effects on the architecture, 

with respect to area and power consumed, are observed. Finally 

trade-off analysis of the various implementations is done. 
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1. INTRODUCTION 

With the ever increasing popularity of Electronic Communication 
and the Internet, data security has become of more concern now 
days. In 1978, Rivest, Shamir and Adleman proposed the RSA 
public-key cryptosystem which has become the most widely used 
public-key cryptosystem due to the fact that it can be used for 
both data encryption and authentication [9]. In RSA cryptosystem 
we require two keys, the public and private key. The public key is 
advertised to the world and the private key is kept secret. 
Therefore an anonymous person will not be able do decrypt the 
encrypted message if he does not have the private key. The safety 
depends upon the length of the key, longer the key-length much 
safer is the data. 

The RSA cryptosystem is briefly described as follows [9]: 

 Select two random prime numbers p and q 

 Calculate n = p x q 

 Calculate ø(n) = (p – 1) x (q – 1) 

 Select integer e such that  
gcd (ø(n),e) = 1; 1<e< ø(n);  where e & ø(n) are 
relatively prime [11], [12] 

 Calculate d = e-1 mod ø(n) 

 Encryption is done as C = Me mod n 

 Decryption is done as M = Cd mod n 

The encryption and decryption contain the modular 
exponentiation operation which is the most critical in RSA. The 
implementation of various architectures would provide for 
flexibility in the end users design. This would help him design an 
architecture based solely upon his requirements and the 
application he would be using. For example, the application used 
for online transactions would require higher security and faster 
execution and hence the user may opt for a higher bit security 
system that operates concurrently. 

This paper is organized as follows. Section 2 of this paper 
describes the previous work done in this field. In section 3 the 
DFG synthesis is described. The DFG scheduling is described in 
section 4. The simulation results are described in section 5 
followed by the conclusion in section 6. 

2. PREVIOUS WORK 

During the past years, numerous papers dealing with RSA public 

key cryptography have been published [2], [3], [4], [10]. 

However, the design presented in this paper differs from 

previous work in two important aspects: (1) We pay special 

attention not only to any individual module but to the system as 

a whole. (2) We work on both the arithmetic and the functional 

level with which we provide flexible design specifications to the 

user making his cryptosystem suitable for a large range of 

applications. 

Firstly, the various papers that have been published focus on any 

particular module of the RSA cryptosystem and to be more 

specific majorly on the modular exponentiation 

(encryption/decryption) as it is the core operation of RSA. Our 

design in this paper focuses on the complete cryptosystem and 

also the scheduling of functional units at the arithmetic level of 

particular modules, which provides different architectures with 

flexibility in the performance specifications of the system. 

A second point in which our design differs from previous work 

is scalability, i.e. the ability given to the user to select his 

required modules and integrate them together to target 

efficiently his application and the availability of resources. This 

provides for the user to have a very flexible design based upon 

his requirements. 

3. DATA FLOW GRAPH SYNTHESIS  

A Data Flow Graph (DFG) is a graphical representation of the 

"flow" of data through an information system and can also be 

used for the visualization of data processing [6]. After the 

identification of all the various modules required in the different 

processes of the RSA algorithm, data flow graphs of individual 

modules were first constructed and then connected together.  

The identified modules which have been implemented in the 

RSA algorithm are described as below: 

 Public Key Generation 

 Encryption 

 Private Key Generation 

 Decryption 

3.1 Public Key Generation 

Initially „p‟ and „q‟ are randomly generated prime numbers. 
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Fig 1: DFG for Public Key Generation using Euclid’s 

Algorithm 

3.2 Encryption 

For Encryption we have to calculate „ nmc e mod ‟ 
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Fig 2: DFG for Encryption using Square and Multiply 

Algorithm 

3.3 Private Key Generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3: DFG for Private Key Generation using Extended 

Euclid’s Algorithm 

3.4 Decryption 

For Decryption we have to calculate „ ncM d mod ‟ 
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Fig 4: DFG for Decryption using Square and Multiply 

Algorithm 
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4. DFG SCHEDULING 

Scheduling is done on any process due to limited resources or to 

meet performance standards. After the formation of the Data 

Flow Graph (DFG), certain scheduling has to be done in order to 

perform a trade off analysis between Time, Area and Power. 

DFG scheduling is done on two levels: 
 

 Arithmetic Level  
 

 Functional Level 
 

At the arithmetic level we work on the arithmetic operators 

within a module. We make necessary changes in order to 

optimize the performance (in regards to time, area and power). 

In arithmetic level scheduling we design various modules of the 

RSA system in two different modes namely: sequential and 

parallel. In this regard we make changes in the Extended 

Euclid‟s algorithm by changing the three parallel multipliers 

being used in to a sequential logic thus reducing the number of 

multipliers but increasing the critical path length. 
 

In the functional level scheduling we deal with the 

implementation of different algorithms for the modules forming 

the cryptosystem and executing entire modules in parallel if they 

are not data dependent on each other. We choose algorithms 

based on the criterion of efficiency with respect to critical path, 

area and power consumed. At the functional level scheduling we 

perform the modification of the encryption and decryption 

modules with different algorithms. This is done as modular 

exponentiation, which is used in both encryption and decryption, 

is hugely responsible for the efficiency of the entire 

cryptosystem. The algorithms applied in relation to the 

aforementioned are namely: Square and Multiply algorithm [3] 

and Montgomery algorithm [7], [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 5: Arithmetic level scheduling in Private Key Generation 

(Extended Euclid’s Algorithm)  
 

Another area where functional level scheduling is applied is the 

parallel execution of the private key generation and encryption 

modules. This is possible due to the non-existence of data 

dependency between them. 

 

The following figures explain the scheduling done in the Data 

Flow Graphs. 

 

This is where the three parallel multipliers in the Extended 

Euclid algorithm are replaced by only one sequential multiplier. 

 

The next scheduling is done at the functional level where the 

entire module of Square and Multiply algorithm is replaced by 

Montgomery algorithm. 
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Fig 6: Montgomery multiplication, a pre-requirement for 

Montgomery exponentiation 
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Fig 6: Functional level scheduling in Encryption/Decryption 

(using Montgomery Exponentiation) 

5. RESULTS 

We now compare the results for a transceiver of different 

feasible key sizes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7: Transceiver 

 
The various key sizes applied are of: 8-bit, 16-bit and 32-bit key 

lengths. The FPGA board used is Virtex-5 -- xc5vlx50t-2ff1136. 

The various cases applied for the FPGA implementation of the 

cryptosystem are as shown below: 
 

 Euclid‟s Algorithm is used in all the cases for 

calculation of GCD which is used for the generation of 

the Public-Key [9]. 

 The prime numbers p and q are randomly generated 

using the principle of Linear Feedback Shift Register 

(LFSR) [9]. 

 Extended Euclid‟s Algorithm with two variations as 

below is used for the generation of the Private-Key 

[9]. 

 „Square and Multiply‟ and „Montgomery‟ are the two 

algorithms used for either encryption or decryption 

[3]. 
 

 

TABLE 1 

 VARIOUS CASES IMPLEMENTED BY SCHEDULING 
 

Encrypt / 

Decrypt 

(Functional 

Scheduling) E
x
te

n
d

e
d

 

E
u

c
li

d
 

(A
r
it

h
m

e
ti

c 

S
c
h

e
d

u
li

n
g
) 

P
a

ra
ll

el
 

u
se

 o
f 

M
u

lt
ip

li
e
r
s 

S
e
q

u
e
n

ti
a
l 

u
se

 o
f 

M
u

lt
ip

li
e
r
s 

Square and Multiply Case 1 Case 2 

Montgomery Case 3 Case 4 

 

The following results are for a 8-bit key Cryptosystem (Results 

are generated on Virtex-5 -- xc5vlx50t-2ff1136): 

TABLE 2 

8-BIT CRYPTOSYSTEM ON VIRTEX5 – XC5VLX50T-

2FF1136 

Data 

Compared 
Case1 Case2 Case3 Case4 

Multipliers  7 5 5 3 

Adders/ 

Subtractors 
225 251 605 631 

Area (No. of 

Slice LUTs) 

1882 

6% 

2779 

9% 

6584 

22% 

7597 

26% 

Power(mW) 455 457 449 454 

Maximum 

Frequency 

(MHz) 

46.512 46.511 261.7 88.046 

Period(ns) 21.500 21.500 3.821 11.358 

 

The following results are for a 16-bit key Cryptosystem (Results 

are generated on Virtex-5 -- xc5vlx50t-2ff1136): 

TABLE 3 

16-BIT CRYPTOSYSTEM ON VIRTEX5 – XC5VLX50T-

2FF1136 

Data Compared Case1 Case2 Case3 Case4 

Multipliers  7 5 5 3 

Adders/ 

Subtractors 
593 635 2125 2167 

Area (No. of 

Slice LUTs) 

7195 

24% 

6991 

24% 

42733 

148% 

42448 

147% 

Power(mW) 462 461 * * 

Maximum 

Frequency(MHz) 
24.271 24.271 247.838 

247.8

38 

Period(ns) 41.201 41.201 4.5 4.035 

 
The following results are for a 32-bit key Cryptosystem (Results 

are generated on Virtex-5 -- xc5vlx50t-2ff1136): 
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TABLE 4  

32-BIT CRYPTOSYSTEM ON VIRTEX5 – XC5VLX50T-

2FF1136 

Data 

Compared 
Case1 Case2 Case3 Case4 

Multipliers 7 5 ** ** 

Adders/ 

Subtractors 
729 803 ** ** 

Area (No. of 

Slice LUTs) 

28045 

97% 

33760 

117% 
** ** 

Power(mW) * * ** ** 

Maximum 

Frequency 

(MHz) 

8.947 8.947 ** ** 

Period(ns) 111.76 111.76 ** ** 

 
* The power report could not be generated in this case due to 

insufficient LUTs in the FPGA. 

** The synthesis report have not been generated for this case as 

it is evident from the lesser key size that the area would surely 

be insufficient and hence the power will not be calculated. 

6. CONCLUSION 

We have successfully synthesized the different FPGA 

implementations of RSA cryptographic system in software. The 

various architectures evolved from the DFG scheduling were 

implemented on the FPGA platform and a comparative study is 

performed between them. Virtex-5 -- xc5vlx50t-2ff1136 FPGA 

board is chosen as the number of LUTs is very large. As the key 

size was increased in all the cases we observed an increase in the 

number of LUTs used in each case. The number of LUTs used 

showed a tremendous increase in both the cases where 

Montgomery algorithm was used for encryption as compared to 

the cases where Square and Multiply algorithm was used. In 

cases 1, 2 and 3 the increase in maximum frequency is observed 

to be proportional to the increase in key size. While in case 4 the 

increase in maximum frequency was inversely proportional to 

the increase in key size. We encountered limitation of LUTs on 

the FPGA boards used in the 32-bit case for Square and Multiply 

encryption algorithm and for 16-bit and 32-bit cases of 

Montgomery encryption algorithm (inferred from tables – 2, 3 

and 4). In future, the work done so far can be extended to even 

higher bit sizes by modification of the encryption/decryption 

algorithm namely Montgomery algorithm. A new architecture 

can further be implemented by using the subtraction algorithm to 

find out the public key. An actual scheduling algorithm can be 

applied to further improve the performance constraints of the 

RSA cryptosystem. After an analysis of all the systems a final 

architecture can then be implemented on a physical FPGA 

board.  
------------------------------------ 

This work is part of project “FPGA Implementation of RSA 
Cryptographic System” by Vibhor Garg under guidance of 
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