
International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

5

Shared Cryptography with Embedded

Session Key for Secret Audio

Prabir Kr. Naskar, Hari Narayan Khan, Ujjal Roy, Ayan Chaudhuri , Atal Chaudhuri

Department of Computer Science & Engineering
Jadavpur University

Kolkata 700032, West Bengal, India

ABSTRACT
In today’s scenario many audio/voice files are needed to be

transmitted over internet for various important purposes. So

protection of these files is an important issue. Efficient

cryptographic methods are there to protect data but every thing

depends on the protection of encryption key. That leads to single

point failure. To overcome this drawback shared cryptography

becomes more popular. Here we are suggesting a novel secret

sharing scheme which employs simple graphical masking

method, performed by simple ANDing for share generation and

reconstruction can be done by performing simple ORing the

qualified set of legitimate shares. Not only that, the generated

shares are compressed and each share contains partial secret

information, that leads to added protection to the secret and

reduced bandwidth requirement for transmission.

General Terms
Shared cryptography, security.

Keywords
Threshold Cryptography, Audio sharing, Compression, Perfect

Secret Sharing (PSS).

1. INTRODUCTION
The effective and secure protections of sensitive information are

primary concern in commercial, research and military systems.

Today secret audio is transferred over internet for various

commercial purposes. So it is also important to ensure data is

not being tampered.

Imagine that a group of scientists came up with important

information which is recorded in an audio file, which must be

kept secret. Therefore this file is encrypted and the key is stored

in some place which is hopefully safe. The file is so important

for the scientists that they can not stand loosing it. For this

reason they make several copies of the encryption key and store

them in different locations. But this would increase the risk of

the key being stolen or compromised. The better solution would

be to split the key into multiple pieces and store them in

different locations and be able to reconstruct the key from

association of all or part of those pieces i.e. if some of the pieces

even be lost or stolen, then also the key can be recovered but

individual piece cannot do any help to get the idea of the key.

Again there lies the possibility of the original encrypted secret

audio be corrupted. So we propose the ciphered audio be also

split into pieces. Thus we propose a scheme where both the key

and the ciphered audio together are split into pieces and the

original is recovered from a subset of legitimate pieces.

Obviously this allows additional security for both the secret as

well as the session key.

This is basically a variant of threshold cryptography, which

deals with sharing sensitive secret among a group of n users so

that only when a sufficient number k (k ≤ n) of them come

together, the secret can be reconstructed. Well known secret

sharing schemes (SSS) in the literature include Shamir[1] based

on polynomial interpolation, Blakley[2] based on hyper plane

geometry and Asmuth-Bloom[3] based on Chinese Remainder

theorem.

Shamir’s[1] scheme based on a polynomial of degree (k-1) to

any set of k points that lie on the polynomial. The method is to

create a polynomial of degree (k-1) as follows-

)(mod...)(1

1

2

2

1

10 pxdxdxddxf k

k

Where d0 is the secret and p is a prime number and the

remaining coefficients picked at random. Next find n points on

the curve and give one to each of the participants. When at least

k out of the n participants revel their points, there is sufficient

information to fit an (k-1)th degree polynomial and then the

secret value d0 can be easily obtained by using Lagrange

Interpolation.

Blakley[2] used geometry to solve the secret sharing problem.

The secret message is a point in a k-dimensional space and n

shares are affine hyperplanes that intersect in this point.

The set solution
),...,,,(321 kxxxxx

to an equation

bxaxaxa kk...2211 forms an affine hyperplane.

The secret, the intersection point, is obtained by finding the

intersection of any k of these planes.

Asmuth-Bloom’s[3] scheme in which reduction modulo

operation is used for share generation and the secret is recovered

by essentially solving the system of congruence using Chinese

Remainder Theorem (CRT).

Above all secret sharing schemes are regarded as a Perfect

Secret Sharing (PSS) scheme because coalition of (k-1) shares

doesn’t expose any information about the secret. A shortcoming

of above secret sharing schemes is the need to reveal the secret

shares during the reconstruction phase. The system would be

more secure if the subject function can be computed without

revealing the secret shares or reconstructing the secret back.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

6

This is known as function sharing problem where the function’s

computation is distributed according to underlying SSS such that

distributed parts of computation are carried out by individual

user and then the partial results can be combined to yield the

final result without disclosing the individual secrets. Various

function sharing protocols are been proposed [4], [5], [6], [7],

[8], [9], [10] mostly based on Shamir’s secret sharing as the

underlying scheme. Some work [11] is also available on

Blakley’s secret sharing scheme, and Asmuth-Bloom

scheme[12] as well.

In all of above secret sharing schemes, each share hold the

complete secret information in encrypted or ciphered form. We

have suggested a different concept, where simple graphical

masking (ANDing) technique is used for shared generation and

all the shares contain partial secret information and

reconstruction is done by simply ORing the predefined minimal

set of shares.

The success of the scheme depends upon the mask generation, a

step wise algorithm is suggested for such mask design for any

(k, n) scheme where n numbers of masks are designed to

generate n different shares and any k shares on ORing

reconstruct the original secret. Here we have further proposed an

unique compression technique on the shares as a solution

towards bandwidth requirement.

2. SECRET SHARING ALGORITHM
The proposed work is based upon a novel secret sharing scheme

which employs simple graphical masking method using simple

ANDing for share generation and reconstruction can be done by

simple ORing the predefined minimal number of shares.

2.1 Concept
For better understanding let us consider any secret as a binary bit

file (i.e. bit is the smallest unit to work upon, in actual

implementation one can consider a byte or group of bytes or

group of pixels as the working unit). The secret could be an

image, an audio or text etc. We shall decompose the bit file of

any size onto n shares in such a way that the original bit file can

be reconstructed only ORing any k number of shares where k≤ n

≥ 2 but in practice we should consider 2≤k<n≥3.

Our basic idea is based on the fact that every share should have

some bits missing and those missing bits will be replenished by

exactly (k-1) other shares but not less than that. So every

individual bit will be missed from exactly (k-1) shares and must

be present in all remaining (n-k+1) shares, thus the bit under

consideration is available in any set of k shares but not

guaranteed in less than k shares. Now for a group of bits, for a

particular bit position, (k-1) number of shares should have the

bit missed and (n-k+1) number of shares should have the bit

present and similarly for different positions there should be

different combinations of (k-1) shares having the bits missed and

(n-k+1) number of shares having the bits present. Clearly for

every bit position there should be nCk-1 such combinations and in

our scheme thus forms the mask of size nCk-1, which will be

repeatedly ANDed over the secret in any regular order. Different

masks will produce different shares from the secret. Thus 0 on

the mask will eliminate the bit from the secret and 1 in the mask

will retain the bit forming one share. Different masks having

different 1 and 0 distributions will thus generate different shares.

Next just ORing any k number of shares we get the secret back

but individual share having random numbers of 1’s & 0’s reflect

no idea about the secret. As an example a possible set of masks

for 5 shares with threshold of 3 shares is shown below:

Share 1: 1 1 1 1 1 1 0 0 0 0

Share 2: 1 1 1 0 0 0 1 1 1 0

Share 3: 1 0 0 1 1 0 1 1 0 1

Share 4: 0 1 0 1 0 1 1 0 1 1

Share 5: 0 0 1 0 1 1 0 1 1 1

One can easily check that ORing any three or more shares we

get all 1’s but with less than three shares some positions still

have 0’s i.e. remain missing.

2.2 Algorithm
Here we are presenting the algorithm for designing the masks

for n shares with threshold k.

Step-1: List all row vectors of size n having the combination

of (k-1) numbers of 0’s and (n-k+1) numbers of 1’s and

arrange them in the form of a matrix. Obvious dimension of the

matrix will be nCk-1 × n.

Step-2: Transpose the matrix generated in Step-1. Obvious

dimension of the transposed matrix will be n × nCk-1. Each row

of this matrix will be the individual mask for n different shares.

The size of each mask is nCk-1 bits, i.e. the size of the mask

varies with the value of n and k.

Pseudo Code for mask generation:

Input: n, k

Output: mask[n][] and length of mask pattern (say len)

int mask_generator(n, k, mask[n][])

{

 bin[][n] : integer array

 len = 0; //initialization

 max_val = 2n – 1; //calculate decimal value of

 //n numbers of 1’s

 for i=max_val-1 to 0

 decimal_to_binary(i, bin[len][n]);

 //calculate binary equivalent of decimal i and

 //store in bin[][] array

if(zero_check(bin[len][n], k))

 len++;

 //check whether (k-1) nos. of zero exist or

 //not, if true then increment len by 1

 end for

 transpose(mask, bin);

 //take transpose matrix of bin[][n] and store in

 //mask[n][]

 return len;

}

Let us consider the previous example where n=5 and k=3.

Step-1: List of row vectors of size 5 bits with 2 numbers of 0’s

and 3 numbers of 1’s.

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

7

Dimension of the matrix is 5C2 × 5

i.e. 10 × 5

Step-2: Take the transpose of the above matrix and we get the

desired masks for five shares as listed above in the form of

matrix of dimension 5 × 5C2 i.e. 5 × 10. There are five masks

each of size 10 bits.

3. AUDIO SHARING PROTOCOL
Here we are presenting stepwise protocol for our audio secret

sharing scheme. In our scheme we share both secret data and

key. Therefore every share has two parts, secret share and

header share.

3.1 Sharing Phase:

Step-1: First construct Header Structure of five fields and put

share number (S) in 1st field, total number (n) of shares in 2nd

filed, threshold number (k) in 3rd filed, key (K) in 4th filed, and

the size of secret audio in bytes (B) in 5th filed.

Figure-1. Header Structure

Step-2: Generates n masks for n individual shares using the

proposed mask generation algorithm for n and k.

Step-3: Generate 16-byte digest from the session key (K) defined

for encrypting the secret audio.

[Share Generation]

Step-4: Now select a mask and apply logical AND (byte in the

secret audio corresponding to bit one of the mask will be

retained and that corresponding to bit zero of the mask will be

set to zero) repeatedly with the secret audio and the zero byte in

the generated share corresponding to zero bit of the mask be

discarded, this generates one compressed secret share.

Step-5: Then the 1st retained byte (P1) will be ciphered by the 1st

digest byte (Q1) by the following operation:

)(....................251mod)(111 iQPR

And 2nd retained byte will be ciphered by the 2nd digest byte Q2.

[Header Share]

Step-6: Now the header [Figure-1] excluding the leftmost field

is also shared by applying logical bit wise ANDing with

individual mask.

Step-7: Next each header share is appended with the share

number (S) in the first field and concatenated with the

corresponding secret share, which forms one complete share for

transmission.

3.2.Reconstruction Phase:

[Header Reconstruction]

Step-1: First collect k or more number of shares and for each

share separate the header share and secret share parts.

Step-2: Next from k or more header shares separate out the

share number (S) and OR the remaining portions of all headers

which reconstructs total number of shares n, threshold k,

encryption key K and original size of secret file B.

[Secret Reconstruction]

Step-3: Once the original Header is reconstructed, we extract

the Key (K), and using K we generate same 16-byte digest

string.

Step-4: Now using n and k, extracted from reconstructed

Header structure, generate n masks (the masks used in sharing

phase) using our mask generation algorithm.

Step-5: According to the share number of the share holder

appropriate mask is used to expand the secret share part by

inserting zero bytes corresponding to zero bit in the

corresponding mask.

Step-6: Ciphered bytes (R1) corresponding to 1-bit position in

the mask, have generated by the equation-(i). So here we apply

following operation to get original byte (P1).

).......(..........251mod)(
1

111 iiMRP

Where M1
-1 is the multiplicative inverse of Q1.

Step-7: Next k numbers of expanded secret shares are ORed to

reconstruct the original secret. Here we extract the original size

of the secret file (B) from Header structure, by which we can

easily reconstruct the lossless original secret.

4. ANALYSIS OF COMPRESSION
All masking pattern has equal number of zeros with different

distribution only. In every share we collapse all zero bytes

corresponding to zero bit in the corresponding mask. It may be

noted that as k is closer to n, more is compression i.e. maximum

for k = n.

Next for lossless expanding, knowing n and k we can redesign

all n masks using our original mask generation algorithm.

According to the share number of the share holder appropriate

mask is used to expand the secret share by inserting zero bytes

corresponding to zero bit in the corresponding mask.

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

1 0 0 1 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

8

In our example of (3, 5) the mask size is of 10 bits and every

mask has 4 zeroes, thus every secret can be compressed by

approximately 40%, obviously the compression varies with (k,

n). (In case of an example of (5, 6) the mask size is 15 bits and

every mask has 10 zeroes, thus compression will be 66.6%).

Total number of Shares (n) = 5

Threshold

(k)

Length of

Masking

Pattern

Number of

zero in

masking

pattern

Approximate

Compression

Rate (%)

2 5 1 20

3 10 4 40

4 10 6 60

5 5 4 80

Total number of Shares (n) = 6

2 6 1 16

3 15 5 33

4 20 10 50

5 15 10 66

6 6 5 83

Table-1. Shows compression rate for different (k, n)

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6

Threshold

C
o

m
p

re
ss

io
n

 R
at

e
(%

)

Total Shares

(5)

Total Shares

(6)

Graph-1. Threshold vs. compression

5. STRENGTH OF THE PROTOCOL
Here we use an audio file as a secret. But our proposed scheme

is equally applicable for any binary file such as Image (.bmp),

Text etc.

In our scheme if and only if numbers of collating shares are

equal to k or more, then only the original secret audio is

reconstructed; otherwise reconstructed audio will be completely

noisy. Because fewer shares can not reconstruct the original

header, thus we can not have either right key (K) or the

information to construct the correct masking pattern. So our

proposed scheme can claim to be a Perfect Secret Sharing (PSS)

Scheme.

Here all generated shares are compressed and contain partial

secret information in encrypted form. That not only provides

additional protection to the secret file but also reduces the

bandwidth requirement for transmission. Only when legitimate

group of shares come together, then only the original secret is

reconstructed.

Original Secret Audio (.wav), size= 2.42 MB

Share-1, Size=1.45MB

Share-2, Size=1.45MB

Share-3, Size=1.45MB

Share-4, Size=1.45MB

Share-5, Size=1.45MB

International Journal of Computer Applications (0975 – 8887)

Volume 26– No.8, July 2011

9

Reconstructed Secret Audio using any 3 or more

shares, size= 2.42 MB

Reconstructed completely noisy Audio using

share-1 and share-4. size= 2.04 MB

Figure-2. Secret audio, five shared audios,

reconstructed secret audio and reconstructed noisy

audio (courtesy Sound Forge).

6. CONCLUSION
We present a novel secret sharing approach which is PSS and

generates compressed noisy shares. Like other group of

researchers the shares can be sent in some cover medium. The

cover medium may be Image, Audio, and Video. Therefore

noisy shares become meaningful shares that protect from

attackers eyes. However, all of these methods need cover file

(i.e. the meaningful shares) size bigger than the secret but in our

case cover image of same size as the secret is good enough. Our

future effort will try to reduce the size of the cover image further

i.e. cover image size may be lesser than the secret.

7. ACKNOWLEDGMENTS
We are thankful to the department of Computer Science &

Engineering of Jadavpur University, Kolkata, for giving us the

platform for planning and developing this work in departmental

laboratories.

8. REFERENCES
[1] A. Shamir: “How to share a secret ?” Comm ACM,

22(11):612-613, 1979.

[2] G. Blakley : “Safeguarding cryptographic keys “ Proc. of

AFIPS National Computer Conference, 1979.

[3] C. Asmuth and J. Bloom :”A modular approach to key

safeguarding” IEEE transaction on Information Theory,

29(2):208-210, 1983.

[4] Y. Desmedt “Some recent research aspects of threshold

cryptography” Proc of ISW’97 1st International

Information Security Workshop vol.1196 of LNCS paper

158-173 Springer-Verlag 1997.

[5] Y. Desmedt and Y. Frankel “Threshold cryptosystems”

Proc of CRYPTO’89 volume 435 of LNCS, paper 307-315

Springer Verlag 1990.

[6] Y. Desmedt and Y. Frankel “Shared generation of

authenticators and signatures” Proc. of CRYPTO’91

volume 576 of LNCS pages 457-469 Springer Verlag 1992.

[7] Y. Desmedt and Y. Frankel “Homomorphic zero

knowledge threshold schemes over any finite abelian

group” SIAM journal on Discrete Mathematics 7(4): 667-

675, 1994.

[8] H. F. Hua ng and C.C. Chang “A novel efficient (t, n)

threshold proxy signature scheme” Information Sciences

176(10): 1338-1349, 2006.

[9] A. De Santis, Y. Desmedt,Y. Frankel and M. Yung “How

to share a function securely ?” In proc of STOC 94, paper

522-533, 1994.

[10] V. Shoup “Practical threshold signatures” In Proc of

Eurocrypt 2000. volume 1807 of LNCS paper 207-220,

Springer-Verlag 2000.

[11] Bozkurt, Kaya, Selcuk, Guloglu “Threshold Cryptography

Based on Blakely Secret Sharing” Information Sciences.

[12] K. Kaya and A. A. Selcuk “Threshold Cryptograhy based

on Asmuth-Bloom Secret Sharing” Information Sciences

177(19) 4148-4160, 2007

