
International Journal of Computer Applications (0975 – 8887) 

Volume 27– No.1, August 2011 

30 

Analytical Review of Test Redundancy Detection 

Techniques 
 
                                                         

                                  
 

 

 

 

ABSTRACT 
This paper presents an analytical review of approaches used by 

different authors. Coverage information is very important for 

finding redundancy in test cases. Test redundancy detection 

reduces the costs of testing and maintenance of software. A 

redundant test case is a useless part of test suite and it increases 

the testing cost and test suite size. There are a lot of works that 

proposed different approaches for test case redundancy detection. 

Some effective approaches have analysed and this study is very 

useful for future work in this direction. Some important factors 

like false positive error, fault detection effectiveness etc. have 

discussed. 
 

Keyword: Test case redundancy, test minimization, false 

positive error, fault detection effectiveness, coverage 

information.   
 

1. INTRODUCTION 
In software engineering, testing is an important task. With the 

evolution of software system, its test suite body also grows with 

the source code [1]. The process of software testing and 

maintenance is a time consuming and costly, so the size of test 

suite plays an important role. When the requirement of software 

systems change, test code might become unmanageable i.e., the 

ability of tests to check the correctness may become less 

effective. So there will be the need of using updated test cases. 

These test cases will cover the modified part of the program, but 

size of test-suite may increase. 

The idea of reducing the size of test-suites is necessary because 

continuously growth of test cases may affect the cost of 

maintenance. For test-suite reduction can be achieved by 

removing the redundant test cases. A redundant test case is one, 

which will not affect the fault detection effectiveness when 

removed. There are two types of redundancy: -- first one is 

semantic and other is syntactic test redundancy. Redundancy that 

we discussed above is semantic and other is test code duplication. 

In this work, we are focusing on the semantic redundancy.  

The motivation for test suite reduction is reducing the 

maintenance cost as well as fault detection capability should be 

constant. So truly redundant test-cases should be identified i.e., 

there should not be any faults that can be detected by the 

redundant part of a test-case, and not without. There are various 

techniques for test redundancy detection (also referred as test 

minimization). Some approaches are based on ―coverage 

information‖ which is very common (e.g., [2-7]). As discussed in 

[8], instead of discarding test-cases out of test-suite, the test cases 

are transformed such that the redundancy is avoided. 

For test redundancy detection, following factors are important:- 

 Coverage Information 

 False Positive (F+) Errors 

 Fault Detection Effectiveness  

 Cost of the technique 

Although coverage information can be useful in detecting 

redundant tests, it may suffer from large number of false-positive 

errors, i.e., a test case being identified as redundant while it is 

really not [9]. The work in [9, 10] shows that coverage 

information cannot be the only source of knowledge to precisely 

detect test redundancy. Detecting redundancy only based on this 

information may lead to a test suite which is weaker in detecting 

faults than the original one.  

The problem of finding the smallest test set has been shown to be 

NP-complete [11]. So to find an approximation to smallest test 

set, many heuristics were proposed. Some of the works have used 

the approach of data flow coverage criteria while others have 

used control flow criteria. Few works have applied a 

collaborative approach in which semi-automated system were 

used with human interaction [9, 12, 13]. 

2. TEST CASE REDUNDANCY 
―A test case is a set of conditions or variables under which a 

tester will determine whether an application or software system is 

working correctly or not. The mechanism for determining 

whether a software program or system has passed or failed such a 

test is known as a test oracle”. So a test case may be a simple 

input that can check the software working or it may be a proper 

plan.  

A software test-suite that contains a set of test-cases can have 

redundant test-cases. These test-cases can cover the same portion 

of the program and hence they may increase the cost of testing. 
A simple example for finding the redundancy is given in the next 

paragraph. 
Example: 1- 

Suppose there is a program for finding largest number from given 

two integers and square that number. 

/*Sample Program for Showing the Test Redundancy*/ 

1. main() 

1. { 

1. Integer a, b, c; 

2. Input a,b; 
2. if (a>b) 

3. then c=a*a; 

4. else c=b*b; 

5. Output c; 

6. End 

Now the Control Flow Graph of this program is:- 

Nagendra Pratap Singh 
Computer Science & Engg. Dept. 

Naraina Vidya Peeth, Panki, Kanpur 

Rishi Mishra 
Computer Science & Engg. Dept. 
United Bank of  India, Candigarh, 

Panjab 

Rajit Ram Yadav 
Computer Science. Dept. 

UPRTOU , Allahabad 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 27– No.1, August 2011 

31 

 

 

 

 

 

 

 

 

 

Fig- 1: CFG for the example-1 

CFG of a program shows the control flow of that program. 

Suppose the following is the given test suite:-  

 

TS= {t1, t2, t3, t4}: 

t 1: <a=4, b=3> 

t 2: <a=1, b=2> 

t 3: <a=3, b=4> 

t 4: <a=3, b=3>  

 

According to these test-cases we find the execution-traces. An 

execution-trace(t) shows the sequence of nodes that are touched 

by test-case ‗t‘. Although execution-trace is used in the 

automation of the test-method, but we are using it here just for 

showing the path in an easy way. Now the execution-trace for 

each of the above test-case is given below:- 

 
Test-case Execution-trace(t) 

t 1 Main.start, main.1, main.2, main.3, main.5, 

main.end  

t 2 Main.start, main.1, main.2, main.4, main.5, 

main.end 

t 3 Main.start, main.1, main.2, main.4, main.5, 

main.end 

t 4 Main.start, main.1, main.2, main.4, main.5, 

main.end 

 

The above execution-traces show that test-cases t2, t3 and t4 are 

covering the same part of the program. So these are redundant. 

We can now remove any two of them. Suppose we remove t3 and 

t4. 

So the new test suite is TS‘= {t1, t2}. This test-suite is sufficient 

to cover the complete program. But there is another factor that 

should be focused, that is fault detection effectiveness of the test-

suite. Suppose the program in example-1 is updated and one 

condition of equality is added, which is shown in the example-2 

below. 

 

Example: 2- 

Update the program given in example-1, there is an additional 

condition for the equality of the input values. Due to this CFG 

and execution-trace of test-cases will also be change. 

/* Updated version of the program given in example-1*/   

1. main() 

1. { 

1. Integer a,b,c; 

2. Input a,b; 

2. if (a>b) 

3. then c=a*a; 

4. else if(a<b) 

5. then c=b*b; 

6. else c=0; 

7. Output c; 

8. End 

For the modified program, CFG will also modify as given in  fig-

2. 

We have the test-suite TS‘ and now the execution trace according 

to this is:- 
Test-case Execution-trace(t) 

t 1 Main.start, main.1, main.2, main.3, main.7, 

main.end  

t 2 Main.start, main.1, main.2, main.4,main.6, 

main.7, main.end 

 

These test-cases covering only above two paths but the following 

path is not covered by them that is- ‗main.start, main.1, main.2, 

main.4, main.5, main.7, main.end‘. This path can‘t be covered by 

TS‘. The test-case t4 in TS was able to cover it but that was 

removed from TS. 

 

Fig-2: CFG for program in example-2 

So this will decrease the fault detection effectiveness of the test-

suite. There is the need to check this effectiveness before removal 

of any test-case. One method is mutation analysis for the 

measurement of fault detection effectiveness. All these issues are 

analyzed in the next section. 

3. REVIEWED METHODS 
There are various methods that used different types of test 

coverage criteria (e.g., [2-7]) for test redundancy detection.  



International Journal of Computer Applications (0975 – 8887) 

Volume 27– No.1, August 2011 

32 

In [3], the authors mentioned all-definition coverage criterion on 

simple program. In this work technique of selecting a 

representative set of test cases from a test suite proposed. The 

representative set provides the same coverage as the entire test 

suite. New test cases are designed wherever they are required to 

test the changed program. In practice, test cases are not removed 

due to future concern. The authors stated the problem of selecting 

a representative set. For a given program, a test selection criterion 

converts into a set of test case requirements. There is a heuristic 

approach used by authors for finding representative set and this 

approach is able to reduce about 40% of the size of test suite. The 

runtime of the proposed algorithm ―Reduce Test Suite‖ is 

O(n(n+nt)Maximum_cardinality), n is the size of test suite given. 

A generalization of their algorithm is known as ―greedy on 

bottlenecks‖ and is described in Zuev [13]. 

The control flow coverage criteria used in [2,5,7] are- branch 

coverage in [2], statement in[5] and MC/DC in[7]. In [5], authors 

proposed three basic orderings for executing test cases, which 

lead to a total of 12 heuristic reduction procedures. These 

procedures run the tests in different orders, with the goal of 

increasing the difference between the original and subsequent 

orderings as much as possible. The three basic orderings 

therefore go from the beginning to the end, the end to the 

beginning and the middle to both ends. The authors were able to 

reduce 30 % for mutation based test sets and 50% for statement 

coverage based test sets. They were used Mothra mutation system 

for creating mutants and Godzilla as test case generator in the 

empirical evaluation and also calculated the cost for test 

reduction. The Systems Under Tests (SUTs) used were small 

scale. In [2], authors examined costs and benefits of test suite 

minimization based on the study of analysis Wong, Horgan, 

London, and Mathur [14] and named it WHML study.  This study 

leaves many open questions and the following questions 

motivated in their work.  

1. How does minimization fare in terms of costs and benefits 

when test suites have a wider range of sizes than the test suites 

utilized in the WHLM study? 

2. How does minimization fare in terms of costs and benefits 

when test suites are coverage-adequate?  

3. How does minimization fare in terms of costs and benefits 

when test suites contain additional coverage redundant test cases, 

including multiple test cases that execute equivalent execution 

traces? 

In this work, authors were used following formula to measure the 

percentage of reduction— 

{(|T|- |Tmin|) / |T|}*100; it is assumed that all test cases have same 

cost. 

In this work, ―the researchers at Siemens Corporate Research 

sought to study the fault-detecting effectiveness of coverage 

criteria. Therefore, they created faulty versions of the seven base 

programs by manually seeding those programs with faults, 

usually by modifying a single line of code in the program. In a 

few cases they modified between two and five lines of code‖. 

In [7], a case study was done to analyse ―using coverage based 

criteria for reducing the size of test case is reasonable or not‖. 

The following steps summarize the experimental methodology 

used in this work.   

1.  Program selection  

2.  Test set generation  

3.  Test set minimization  

4. Determination of the fault set and preparation of faulty     

version  

5.  Size and effectiveness reduction  

6. Null hypothesis testing  

In this work, faults, injected manually, were obtained from the 

error-log maintained during its testing and integration phase. Out 

of 18 injected faults, eight were in the ―logic omitted or 

incorrect‖, seven belong to the type of ―computational problems‖ 

and the remaining three faults had ―data handling problem‖. 

The reference [4], ―presents an algorithm for test-suite reduction 

and prioritization that can be tailored effectively for use with 

MC/DC‖. There are three main contribution of this paper-1. 

Analysing the problems that occur at the time when existing test-

suite reduction and prioritization algorithms are used with 

MC/DC, so the new and effective techniques are necessary; 2. A 

description of general approach for new algorithm design; 3. A 

set of empirical studies performed on two real C projects. 

Modified condition and decision coverage is stricter than decision 

coverage and requires execution coverage at condition level. A 

condition is answered in true or false, that is, Boolean valued 

expression. This paper presents two new algorithms- one for test 

suite reduction and other is for test suite prioritization. The size 

of reduced suite for break down technique was lower than the 

size of build up technique. Break down approach was used in test 

suite reduction algorithm and build up approach was used in 

prioritization algorithm. Authors were implemented these 

algorithm on a prototype tool and found good reduction in test 

suite. 

A different approach in [8] was proposed. According to this 

approach, to avoid redundancy test-cases can be transformed 

instead of discarding. Authors were used a model checker based 

test case generation approaches. Model checkers use Kripke 

structures as model formalism i.e., a Kripke structure K is a tuple 

K =(S, s0, T, L), where S is the set of states, s0 ∈ S is the initial 

state, T⊆S×S is the transition relation, and L: S → 2AP is the 

labeling function that maps each state to a set of atomic 

propositions that hold in this state. AP is the countable set of 

atomic propositions. The approach used here is significant 

(slightly) for test reduction but not as large as with approaches 

that heuristically discard test-cases. Although there is one draw 

back with run-time complexity but test minimization is improved.  

In [9], some experiments were performed to evaluate coverage-

based test redundancy detection. This paper presents a different 

approach i.e., human computer interaction for inspecting the 

process of test suite reduction, and named as ―tester assisted 

methodology‖. The approach of this paper shows that ―coverage 

information can‘t be the only source of knowledge to precisely 

detect test redundancy‖. There are different granularity levels (3 

levels) of JUnit* tool, as shown in the following figure:-   

 

Fig-3: Test Granularity in JUnit (from [9]) 



International Journal of Computer Applications (0975 – 8887) 

Volume 27– No.1, August 2011 

33 

Three levels of package, class and methods were considered in 

this granularity. Two redundancy metrics were proposed- Pair 

Redundancy (PR) and Suite Redundancy (SR). PR is the ratio of 

covered items in SUT by the first test artifact with respect to 

second one while SR is the ratio for first test artifact with respect 

to all other tests.  Following equations (1) and (2) were given for 

PR and SR. Equation (1) shows PR (tl) with (tk):- PR(tj ,tk  )  

 

--------(1)  

Equation (2) shows SR:- 

SR(tj ) 

     -----------(2) 

The result of the case study in [9], shows that using a 

collaborative process that involves human testers is more 

effective in test redundancy detection as well as fault detection 

effectiveness is unchanged and same as original test suite. But 

cost of human effort was not discussed. 

 

4. CONCLUSION 
In this paper, we have introduced a review work for test 

redundancy detection techniques. A lot of works have been 

completed on this issue that is redundancy. After doing the 

detailed review of all discussed work we conclude that coverage 

information plays an important role to find the redundancy in test 

cases. Different types of coverage criteria have been used; 

combination of more than one criterion gives better result. In all 

these works, there is a problem of false positive error that is a test 

case is declared redundant but actually it is not. There is another 

problem of fault detection effectiveness of test suite after 

minimization. The approach of human-interaction is effective for 

these problems, but the cost of human testers and their efficiency 

is still an issue. Some works show that redundant test cases 

should be transformed instead of discarding, that will effective 

for fault detection capability. So all these works motivate us to do 

some new work in this area.   

 

5. REFERENCES 
[1]   R. Reichart and T. Girba, ―Rule-base Assessment of Test 

Quality‖, vol. 6, no. 9, 2007. 

[2]    G.Rothermel, M.J.Harrold,  J.Ostrin, andC. Hong,― An 

empirical study of the effects of minimization on the fault 

detection capabilities of test suites,‖ in Proceedings of the 

Conference on Software Maintenance (ICSM ‘98), pp. 34–

43, Bethesda, Md, USA, November 1998. 

[3]    M. J. Harrold, R. Gupta, and M. L. Soffa, ―A Methodology 

for controlling the size of a test suite,‖ ACM Transactions 

on Software Engineering and Methodology, vol. 2, no. 3, pp. 

270–285, 1993. 

[4]    J.A. Jones and M.J. Harrold, ―Test-suite reduction and 

prioritization for modified condition/decision coverage,‖ 

IEEE Transactions on Software Engineering, vol. 29, no. 3, 

pp. 195–209, 2003. 

[5]    A.J.Offutt, J. Pan, and J. M. Voas, ―Procedures for reducing 

the size of coverage-based test sets,‖ in Proceedings of the 

11th International Conference on Testing Computer Software 

(ICTCS ‘95), pp. 111–123,Washington, DC, USA, June 

1995. 

[6]    W. E.Wong, J. R.Morgan, S. London, and A. P.Mathur, 

―Effect of test set minimization on fault detection 

effectiveness‖, Software- Practice & Experience, vol. 28, no. 

4, pp. 347–369, 1998. 

[7]       W. E. Wong, J. R. Horgan, A. P. Mathur, and Pasquini, 

―Test set size minimization and fault detection effectiveness: 

a case study in a space application,‖ in Proceedings of the 

IEEE Computer Society‘s International Computer Software 

and Applications Conference (COMPSAC ‘97), pp. 522–

528, Washington, DC, USA, August 1997. 

[8]   Gordon Fraser and Franz Wotawa, ―Redundancy Based 

Test-Suite Reduction‖, M.B. Dwyer and A. Lopes (Eds.): 

FASE 2007, LNCS 4422, pp. 291-305, 2007. 

[9]    Negar Koochakzadeh and Vahid Garousi, ―A Tester 

Assisted Methodology for Test Redundancy Detection‖, 

Software Quality Engineering Research Group, University 

of Calgary, Canada, 2009.  

[10]  N. Koochakzadeh, V. Garousi, and F. Maurer, ―Test 

redundancy measurement based on coverage information: 

evaluations and lessons learned,‖ in Proceedings of the 2nd 

International Conference on Software Testing, Verification, 

and Validation (ICST ‘09), pp. 220–229, Denver, Colo, 

USA, April 2009. 

[11]    M. R. Garey and D. S. Johnson, Computers and 

Intractability; A Guide to the Theory of NP-

Completeness,W.H.Freeman,San Francisco, Calif, USA, 
1990. 

[12]    A. Ngo-The and G. Ruhe, ―A systematic approach for 

solving the wicked problem of software release planning,‖ 

Soft Computing, vol. 12, no. 1, pp. 95–108, 2008. 

[13]   R. Milner, ―Turing, computing, and communication,‖ in 

Interactive Computation: The New Paradigm, pp. 1–8, 

Springer, Berlin, Germany, 2006. 

 [14]     W. E.Wong, J. R. Horgan, S. London, and A. P.Mathur. 

Effect of test set minimization on fault detection 

effectiveness. In 17th Int’l. Conf. on Softw. Eng., pages 41–

50, Apr. 1995. 

[15]    Y.  A.  Zuev, ―A set-covering problem:  The 

combinatorial-local approach and the branch and bound 

method,‖ U. S. S.  R  Computationa1 Math ematics and 

Mathematical Physics, 19(6):217-226, June 1979. 

 

 


