
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

41

Optimization of Object-Oriented Design using

Coupling Metrics

Parul Gandhi
Department of Computer Science & Business

Administration

Manav Rachna International University

Faridabad, 121001, India

Pradeep Kumar Bhatia
Department of Computer Science & Engineering

G. J. University of Science and Technology

Hisar, 125001, India

ABSTRACT

In spite of large acceptance of object-oriented paradigm, many

programmers don’t have a firm grip on the design principles and

the intimate mechanisms of object-orientation and this result

into to a lot of poor designed large scale OO systems. Coupling

in the software is one of the most vibrant internal quality
attribute to measure the design performance. In this paper, we

propose Message Received Coupling (MRC) and Degree of

Coupling (DC) metrics for the automatic detection of a set of

design problems along with an algorithm to apply these metrics

to redesign an object-oriented source code, if necessary. We also
design a Method Calling Graph (MCG) that helps in calculating

the value of proposed metrics. The revised set of metrics helps

the developers to decide whether a design needs to be changed

or left in its original form.

General Terms

Analysis, Metrics, Object-Oriented Design.

Keywords

Object oriented metrics, Coupling, Design optimization.

1. INTRODUCTION
Popularity of object-oriented paradigm requires acute analysis of
object oriented software to accurately monitor the internal

software quality attributes such as coupling, cohesion, size and

complexity etc. According to Biggerstaff this paradigm has a

good balance between power and generality [10]. Design is the

backbone of any software system. Object-Oriented (OO)
paradigm includes a set of mechanisms such as inheritance,

encapsulation, and polymorphism and message-passing that

plays an important role in designing of object-oriented code.

Coupling has been defined as one of the most basic qualitative

attribute to measure the performance of software at design or
implementation phase [8, 9]. Good software design should have

minimized coupling interaction [7, 12, 13]. Many object-

oriented metrics have been proposed to assess the design of a

software system [1, 2, 4].

The remaining section of this paper is organized as follows.
Section 2 discusses the limitations of existing metrics. Section 3

introduces proposed coupling metrics. In Section 4 we introduce

a new method that assist in doing the analysis of proposed

metrics. Section 5 shows the experimental result which indicates

why our metrics are better than the already existing metric.
Section 6 discusses the new redesigning algorithm develop for

automatic detection of design problem. Section 7 offers

conclusions and directions for future research.

2. LIMITATIONS OF EXISTING

 METRICS
Numerous metrics have been proposed by various researchers to

measure class coupling, these metrics fail to control coupling

interaction in various parts of object-oriented system.
Chidamber and Kemerer [6] and Li and Henry [11] have

proposed a set of object-oriented metrics including Coupling

Between Objects (CBO) and Message Pass Coupling (MPC).

Informally, the CBO metric aims to measure the amount of

interconnectivity between a given class and other classes in the
system and MPC gives an indication of how many messages are

passed among objects of the classes. The CBO metrics defined

by Chidamber and Kemerer have later been formalized by

Briand et al. [5]. MPC (Message Pass Coupling) addresses the

external methods which is the “number of send statements
defined in a class”. If a message invokes numerous methods as a

response, the class becomes more complicated and more testing

and debugging is required.

In this paper we propose Message Received Coupling (MRC)

and Degree of Coupling (DC) and also provide example to show
that MRC and DC are more adequate to check the design

performance of an object-oriented system as compare to MPC

metric.

3. PROPOSED METRICS
We propose two metrics MRC and DC that helps to detect the

flaws in design of object-oriented software at an early stage. In

the MPC metric the redesigning of the software depends on only

the number of send statements from a particular object
regardless of the status of incoming call of that object which

also plays an important role in the designing of software. The

proposed metrics will help overcome the above said. These

metrics are:

3.1 Message Received Coupling (MRC)
 can be defined as the number of statements received by a class.

It also used to measure the complexity of messages received

among classes.

MRC= number of received statement in a class

3.2 Degree of Coupling (DC)
It will be calculated at class level. It can be defined as the ratio

of number of incoming statements to a class to the ratio of

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

42

outgoing statements from a class. This metric helps in finding

and correcting the defects in the design of object-oriented

software in a better way as compare to Message Pass Coupling
(MPC).

DC=

Experimental results shows that much deviation in the value of

this metric from the interval less than 0.5 and greater than 2

indicates the prioritize redesigning of that class.

4. ANALYSIS OF PROPOSED METRICS
We design Method Calling Graph (MCG) that helps to evaluate

the proposed metrics. Method Calling Graph (MCG) traverses

all possible paths upon methods called in a class by another

class. We construct on MCGs for each method in a class that is

called by other methods

The nodes of graph are of the form A::fi where fi is a method in

class A. If C::Fn is called by A::Fm and also by B::Fk then we

construct it as follows:

We now compute MPC, MRC and DC value for all the classes

in figure 1.

Class A has 10 methods. MCG for class A is

MPC for class A is 9 as 9 send statements are from class A.

MRC count for this class is 1 and DC can be calculated as the

ratio of MRC to MPC, therefore DC of class A is 1/9 i.e. 0.11

Fig 1: Method Invocation Chart

Class B has 3 methods. MCG for class B is

MPC for class B is 2 as 2 send statements are from class B.

MRC count for this class is 1.

Class C has 10 methods. MCGs for class C is

B::F1 A::F10

A::F2 B::F1

C::Fn A::Fm

MRC

MPC

 A

F1()

F2()

F3()

F4()

F5()

F6()

F7()

F8()

F9()

F10()

F10()

 B

F1()

F2()

F3()

B::Fk

 C

F1()

F2()

F3()

F4()

F5()

F6()

F7()

F8()

F9()

F10

F10()

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

43

MPC for class C is 0 as 0 send statements are from class C.

MRC count for this class is 9 and DC can be calculated as the

ratio of MRC to MPC, therefore DC of class C is 9/0 i.e. ∞

5. EXPERIMENTAL RESULTS

Table 1. Class Level Metrics

Class Object-Oriented Metrics

MPC MRC DC

A 9 1 0.11

B 2 1 0.5

C 0 9 ∞

DC responds better to change in coupling than MPC. A larger

number of MPC indicates increased coupling between this class

and other classes in the system. This makes the classes more

dependants on each other which increases the overall complexity

of the system and makes the class more difficult to change.

In the example discussed above the MPC value for class A is 9

whereas for class C MPC value is 0. MPC showed the designer

to redesign Class A and there is no requirement to change class

C. MPC in this case could provide partial guidance regarding

the need to redesign class A, whereas DC showed that the
classes having values less that 0.5 and greater than 2 needs to be

redesigned, therefore both class A and C needs to be redesigned

to maintain the balance in the designing of object-oriented

software. Thus DC responds better which classes needs to be

redesigned than MPC.

6. REDESIGN ALGORITHM

1. Class A, Generate MCG corresponding to each method in

a class

2. Based on MCG Created, compute MRC for the class by

MRC (A) =

3. We now compute DC for the class

 By

DC (A) =

 Where MPC is Message Pass Coupling metric value for the

corresponding class.

4. If DC of a class is < 0.5 or >2 Then designer must decide

which method should be moved without affecting the

inheritance property.

 Else

 No action is required.

7. CONCLUSION
In this paper we have introduced new set of coupling metrics

MRC and DC. The results show that these metric gives better

indication about redesigning of source code as compare to

existing metric MPC. We have also designed MCG that helps in

calculating the value for these metrics and also design an
algorithm that provides a way how to apply these metrics for the

automatic detection of design flaws at an early stage of software

development life cycle.

8. ACKNOWLEDGMENTS
I express my sincere gratitude and acknowledgement towards

Dr. Pradeep Kumar Bhatia, Associate Professor, who guided me.

It was his constant support and inspiration without which my

efforts would not have taken this shape. I sincerely thank him
for this, and seek his support for all my future endeavors.

9. REFERENCES
[1] Ghassan Alkadi and Ihssan Alkadi, "Applying A Revised

RFC Metric to Redesign AN OO Design," Aerospace

Conference, IEEE Proceeding, 2001.

C::F10 A::F10

C::F4

A::F4

C::F5 A::F5

C::F6 A::F6

C::F8 A::F8

C::F9 A::F9

C::F2 A::F2

C::F1 A::F1

()

()

MRC A

MPC A

1

i

n

i

MCG

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7416
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7416
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7416

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

44

[2] Simon Allier, St´ephane Vaucher, Bruno Dufour, and

Houari Sahraoui, “Deriving Coupling Metrics from Call

Graphs”, IEEE International Workshop on Source Code
Analysis and Manipulation, pp. 43-52, September 2010.

[3] Mandeep Kaur, Parul Batra & Akhil Khare,”Static Analysis

And Run-Time Coupling Metrics”, International Journal of

Information Technology and Knowledge Management,

Volume 3, No. 2, pp. 707-710, July-December 2010.

[4] Denys Poshyvanyk, Andrian Marcus, The Conceptual

Coupling Metrics for Object-Oriented Systems”, 22nd

IEEE International Conference on Software Maintenance,

2006

[5] L. Briand, J. Daly, and J. W¨ust, “A unified framework for
coupling measurement in object-oriented systems,” IEEE

Trans. on Software Engineering, vol. 25, no. 1, pp. 91–121,

jan/feb 1999.

[6] S. Chidamber and C. Kemerer, “A metrics suite for object

oriented design,” IEEE Trans. on Software Engineering,
vol. 20, no. 6, pp. 476–493, June 1994.

[7] Huan Li, “A Novel Coupling Metric for Object-Oriented

Software Systems”, IEEE International Symposium on

Knowledge Acquisition and Modeling Workshop, pp. 609-

612, 2008

[8] L.C. Briand, J.W. Daly, and J.K. Wust, “A Unified
Framework for Coupling Measurement in Object-Oriented

Systems”, IEEE

[9] Transactions on Software Engineering, vol. 25, no. 1, pp.

91–121, Jan 1999.

[10] Troy, D.A., Zweben, S.H. “Measuring the Quality of
Structured Designs”, Journal of Systems and Software, pp.

113-120, 1981.

[11] Biggerstaff, T., and C. Richter, "Reusability Framework,

Assessment, and Directions," IEEE Software, pp.41-49,

March 1987.

[12] W. Li and S. Henry, “Object oriented metrics that

predictmaintainability.”, Journal of Systems and Software,

pp. 111–122, Nov 1993.

[13] S.L. Pfleeger and J.M. Atlee, “Software Engineering:

Theory and Practice” 3rd ed. Pearson Prentice Hall, 2006.

[14] G. Myers, “Software Reliability: Principles and Practices“,

Wiley, 1976.

http://www.computer.org/portal/web/csdl/abs/proceedings/scam/2010/4178/00/4178a043toc.htm
http://www.computer.org/portal/web/csdl/abs/proceedings/scam/2010/4178/00/4178a043toc.htm
http://www.computer.org/portal/web/csdl/abs/proceedings/scam/2010/4178/00/4178a043toc.htm

