
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

27

Particle Swarm Optimization with Cross-Over
Operator for Prioritization in Regression Testing

Dr. Arvinder Kaur

University School of Information Technology,

Guru Gobind Singh Indraprastha University

Divya Bhatt
University School of Information Technology,

Guru Gobind Singh Indraprastha University

ABSTRACT

Software Testing is continuous process of development and

maintenance in life of software. In maintenance phase,
regression testing gets exercisedwith additional resources/time

for performance. The prioritization of test cases helps to reduce

the cost-time of regression testing. Hence, completing

Regression Testing effectively and on schedule is challenge for

software tester. In this research paper, the Particle Swarm
Optimization (PSO) technology has been studied and used with

the blend of Genetic Algorithm (GA) and the hybrid prioritized

algorithm has been proposed. The Particle Swarm Optimization

is an optimization algorithm based on heuristic search which can

be used to solve time-constraint environment of Test Case
Prioritization and the concept of Genetic Algorithm will further

help in diversifying the solution within whole search space. For

finding the effectiveness of hybrid prioritization algorithm: the

efficiency %, saving %, reduction % and APFD/APCC has been

calculated.

KeywordsRegression Testing, Particle Swarm Optimization,

Genetic Algorithms

1. INTRODUCTION
During maintenance phase, modifications/defects in software are

corrected. Hence, it is very difficult to decide which test case

should be executed, or which test case to mark as ―effective‖ in

order to detect the cause of modification in software. Regression

Testing is done within maintenance phase. Regression Testing
assures that modification done in software has not over-ruled

user specification and expectations. Hence, to make Regression

Testing more scheduled many criteria‘s can be followed:

reduction of test case, test case selection, prioritization of test

cases. In this research paper, the concentration is in the area of
―prioritization of test cases‖. The time constrained prioritization

of test cases can be reduced to 0/1 knapsack problem [1] which

is a NP-hard [2] and solved using Particle Swarm Optimization

[3] and Genetic Algorithm [4] techniques. Thus, combination of

two optimization techniques has been used here, to make
effective solution on-schedule.

The techniques described are: Particle Swarm Optimization

(PSO) and Genetic Algorithm (GA) operator. The PSO is a

global optimization algorithm based on heuristic search [5]. The

idea was given by John Kennedy and Eberhert, in 1995 [6], after
observing the group of animals, flock of birds and fishes, where

each individual follows the path of ―global best‖ particle with in

its population, e.g. in ocean, while searching for good food

source (plankton), a school of fish, travels everywhere making

cylindrical shape. The inside story: every fish is observing its

neighbor‘s position and velocity then compare it with global

best position and velocity. The ―best‖ position and velocity is
chosen and updates are made by individuals in their position and

velocity. Thence, each fish converges towards the best position

after modification in its velocity, which helps to move towards

the food faster.

In this paper, we have blended the PSO with crossover operator
of GA [5], to avoid group of population from converging to

local best. The GA process consists of [7]: selection, crossover

and mutation. In GA, from general population, a set of best

fitted population is selected on the basis of fitness function and

crossover, mutation operators are applied to get optimal
solution. The crossover operator helps in PSO to make each

individual a widened look of search space, by crossing over

them with other individuals. This resulted in hybrid

prioritization algorithm of PSO & GA.

The PSO has been applied to NP-hard combinatorial problems
Traveling Salesman Problem [8], and NP Knapsack [3] whereas

GA is known for optimizing scheduling problems [9]. Here, we

have tried to use combination of PSO and GA to solve, time-

constrained prioritization and code based prioritization. To bring

clarity between prioritized and non-prioritized test-suite Average
percentage fault detection (APFD) [10] and Average percentage

Condition Coverage (APCC) [11] has been calculated and

represented using graphs. The APFD has been used to evaluate

average percentage of faults detected as per average percentage

of test-suites executed whereas APCC has been evaluated
average number of condition covered as per average percentage

of test suite executed.

2. RELATED WORK
The process of Regression testing is quite expensive and time

consuming even for small systems. To address problem of

regression testing many test case prioritization techniques have

been explored by researchers such as: hybrid approach by Wong

[12], Test Selection Algorithm by Aggarwal [13], version
specific technique [14] where test cases are prioritized for

specified version of software, hybrid technique based on

variable method for regression testing [15], optimization

algorithm techniques [16] by observing natural behavior of ants

and swarms [17] for test case prioritization, code-coverage
based technique [18] where internal structure is analyzed and

therevalidation strategy [19] based on extension of Fischer

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

28

algorithm decides which Test case to re-run for Regression

Testing, CBSE (component based software engineering) for

regression testing where features associated with test cases are
exercised [20], SBSE (search based software engineering) for

regression test optimization [21, 22] MORTO (multi objective

regression testing optimization) for selection and prioritization

usage in real world [23] . The regression testing techniques use

greedy approach [24] taking feedback from previous selection is
fast to achieve.

Many researchers have explored area of PSO and on being an

optimization approach it has been used to solve routing

optimization [25] problems where the optimized path for traffic

routing, packet routing is search. The scheduling problems such
as: job-scheduling [26], task scheduling problems in distributed

systems [27] where task or job is divided into subsets to make

performance cost efficient. The PSO has been applied in the

field of cryptography and crypt-analysis [28] for military

applications such as code encryption and effective code security.
The traveling salesman problems is to find optimal path to reach

from source to destination with less time and cost, that make it

NP-hard combinatorial problem has been solved using PSO

technique [29] and other combinatorial problems such as:

packing and knapsack [30]. The applications of detection of
fault and recovering from them includes field: test pat tern

generation for circuits [31], software faults detection [32] have

been applied by PSO technique.

The GA is favorable field of many scientists, explorers and

researchers; this makes application of GA in the diverse fields.
The field of regression testing and its techniques has been

explored using GA and tools are available to effectively

implement regression testing [33]. The GA allows data to evolve

naturally and it makes logical patterns that help in information

processing for trend, financial analysis such as: data mining
[34]. The GA is efficiently been used in the field ofencryption

and code breaking [35]. The GA approach can be used for

pattern detection for the learning accuracy improvement and

noise filtering [36] of image.

3. HYBRID PRIORITIZED ALGORITHM
In PSO, while searching for best solution in the search space, the

particle can converge towards point between particle best and

local best (neighbor best), this results particle to converge

towards single point, ignoring other aspects of search spaces

(ignoring global best conditions).To overcome this limitation,

GA factor has been used along with PSO algorithm to propose

hybrid prioritized algorithm. The reason to apply crossover [5]

in PSO is to increase population diversity and ability of PSO to

avoid local maxima [37] and make searching process fast.

3.1 Assumptions
a) Test cases of given problem is equal to particles in

population.

b) Randomly generate initial population.

c) The position, velocity and stopping criteria of particles

depend on problem.

d) In our case, two lists are maintained:
(1) Position= rank of test case based on faults or

conditional node covered.

(2) Velocity= execution time or independent

paths covered.

e) Stopping Criteria is total number of faults covered in
minimum time and independent path covered.

Input: ‗n‘ number of Test Case is selected.

Output: Test suite with minimum number of test cases and full-
filling stopping criteria.

3.2 Algorithm
Proposed Algorithm
{

Step I—Generate Population
 ‗n‘ number of particles {p1…..pn} generated.

Step-II—Initialization

 (Here, a particle represents a test case)
 For each ‗n‘ particle
 {
 Initialize position.

 Initialize velocity
 Set pos_velo_list(n); //for each particle.
 For each ‗n‘ particle

 {
 Identify local best.
 }//end of for
 Identify global_best particle (within search space).

//Selection of global best from ‗n particles‘
}//end of for

Step I: Here, ‗n‘ numbers of particles/Test Cases generated. The

generation of Test Cases can be done using Test Generation
Tools.

Step-II: In this step, initialization of Test Cases done. Position &

Velocity of particle helps in observing fitness of that particle.

The best particles are selected from population.

Step-III: Each particle updates itself with best particle in
population. The Position & Velocity get updated and fitness of

each particle is either improved or retained.

Step-IV: Updated population is crossed over by dividing in two

parts.

Step-V: Evaluate new off-springs and select the best off-spring
as prioritized solution.

The whole process of hybrid prioritized algorithm carried out

until feasible solution is achieved. The population keeps on

updating to reach the destination (final solution).

Step-III---Updation/Comparison
For each ‗n‘ particle
 {

pos_velo_list (n); //read

sort_list (n); // (each ‗n‘ particle compare its
position w.r.t. local_best & then with global_best).
}//end of for

For each ‗n‘ particle
{

sort_list(n); //read
For each ‗n‘
{

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

29

updation_postion_velocity(n);
//combine with either local or global best

}//end of for

If(updated position& velocity > old position & velocity)
{

Keep the new position & velocity
}//end of if

Else {revert back to old position and velocity}

Generate ‗New_Population‘;

}//end of for

Step-IV—Crossover Operator

Divide ‗New_Population‘ into two set.

 Apply crossover operator on both parents.
 //two new off-springs generated.
 For each ‗n‘
 {

Remove duplicity. /// comparison /////with in both
n/2 +n/2 off-springs

 } // end for

Step-V—Examine Test-Suite

 Evaluate new off-springs//
//////if loop runs for both off-springs of length n/2 each

If (any off-spring meets stopping criteria)
{

Set as final solution.
}//end of if

Else

{
Compare both off-springs
Select best // near to stopping criteria
Apply PSO on that off-spring

 (Go to Step-III).
}//end of else

} //end of Proposed Algorithm

3.3 Explanation of Hybrid Prioritized

Algorithm
Initially, particles are generated randomly. The particles are

initialized with position and velocity. Each particle contains

information regarding its own position and velocity. The

position in our problem is either number of faults covered or
number of conditional node covered and the velocity is either

execution time or independent paths covered. Now, set fitness

for each particle. The particle covering maximum number of

faults/conditions in less time or maximum independent path

covered is set as best particle. Each particle does comparison:
its own position and velocity with best. On getting new position

and velocity each particle compares it with old position and

velocity respectively. The crossover operator is applied on new

generated population such that: the off springs generated full

fills the stopping criteria. The proposed Hybrid Prioritized
algorithm has been automated for analyzing the test case

prioritization. The algorithm has been implemented using JAVA

in appropriate IDE.

3.4 Analysis of Hybrid Prioritized Algorithm
The analysis is based on complexity and correctness of

algorithm [38]. The complexity depends on execution time and

cost taken by algorithm whereas correctness of algorithm

depends on modification-traversing and modification-revealing

property of algorithm. The algorithm proved to select
modification-revealing (fault-revealing) test cases of any

program P, is said to be safe which means if any modification

done to P, the faults will be detected by algorithm. The

algorithm proposed in this research paper has been tested for

code coverage testing where CFG (control flow graph) are used
to test the program. The complexity of algorithm depends on

number of calls made in algorithm and on data available. In

proposed algorithm, the population is generated of size ‗n‘ that

takes O (n) operations. The initialization step three lists made

that required n*[O (n) +n (2O (n))] operations. Thereafter, in
updation and comparison of each particle w.r.t local best and

global best comparison between particles takes O(n*logn)

operation and updation for each particle is done. The crossover

operator does n*O (n) operations for ‗n‘ population. The last

step executed for two off-springs of length n/2 each. In best
case, the proposed algorithm‘s run time is O (n3). But in worst

case, the recursion operation is applied (in last step) and run

maximum 2n times. This makes complexity to reach O (2n. n3)

which can make it NP complete. This algorithm has been

executed on two approaches: fault-revealing and code coverage
and it is analyzed that this algorithm works on best case

prominently.

3.5 Fault based Testing Experimentation
To test perfectly, a program is tested for every single input,

whether inputs are valid or invalid. The fault based testing can

be used as quantifying measure for test cases. Test cases, which

are not able to find mutant or ―kill mutant‖ can be removed from

test suite, that is, quality of test suite is tested and raised using
mutation testing. Nevertheless, to execute mutation testing is

quite expensive task, particularly on the larger applications.

For analyzing the hybrid prioritized algorithm, all examples are

executed with implemented code (Triangle, Hotel, Student,

Railway, and Quadratic). The examples are executed by crossing
over each other and analyzing faults one-by-one. The algorithm

is executed 25 times on the each problem and the best prioritized

test suite is noted with its execution time. In hybrid prioritized

algorithm, the result of each 25 runs is same; therefore, final

optimized suite is represented in analysis table. It is declared
above that best test suite should cover all faults with minimum

time. The table shown below briefly explains the result of each

run. The best test suite of each run is shown in Table-1.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

30

Table 1: Summarized table of all examples for Crossover

With the table shown above it can be generalized that the
priority test suite is the shorted time taken test suite. The student

example takes T8T6 in ‘18.33‘ with average build of 3sec; hotel

example takes T5T6 in ‘20.64‘ with average build of 3sec,

triangle example takesT5T2 in‘7.0‘ with average build of 4sec

quadratic example takes T11T7T3 in ‘10.0‘ with average build
of 4sec and railway example takes T2T3 in ‘30.0‘ with average

build of 5sec. The effectiveness of run will be 100% as the best

optimal test suite is retrieved with one run only. The saving % of

crossover hybrid particle swarm optimization is same as of

mutated hybrid particle swarm optimization as the number of
test cases prioritized are same as of mutated one. Hence, the

crossover hybrid particle swarm optimization algorithm is more

efficient in getting optimal result.

3.6 Code Coverage Testing (Path Based)

Experimentation
The code coverage based testing consists of: branch coverage,
flow coverage, condition coverage. The path coverage testing is

also a form of code coverage where internal structure of

program is analyzed. In path coverage testing, the numbers of

independent paths are searched (McCabe, 1976) based on
control flow graph (CFG) that helps in finding the paths and

flow of code. Each independent path assures covering at the

least one condition.

According to McCabe, the basic path testing technique consists

of for steps:

a) Computation of program graph.

b) Cyclomatic Complexity calculation.

c) Selection of Independent paths.

d) Generation of test cases covering each independent

path.

The code coverage testing can be performed using: statement

based coverage where statement‘s coverage within a code is

considered, branch based coverage where branch‘s or decision‘s

coverage within a code is considered, and condition based

coverage where conditions within code are considered. All these
coverage variations are metrics that are used to evaluate code

coverage more efficiently. In the following example, a code-

coverage testing criterion has been chosen to prioritize test cases

and the conditional node coverage has been used as a parameter

to achieve maximum path coverage where the independent paths
are identified within program.The example takes three inputs

and based on input values corresponding output is generated

[39]. Test Cases chosen should be those that meet conditional

node coverage criteria within the program to prioritize test cases.

The test suite to be chosen as solution should consist of test
cases covering all independent paths.

On the basis of program flow graph Cyclomatic complexity

calculated is 7.

, where,

Test Cases are as follows:

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14,
T15, T16, T17, T18, T19.

On the basis of DD-graph shown above, the Independent Paths

are as follows:ABFGNPQR, ABCDEGHJKMQR,

ABCDEGHIMQR, ABCDEGNOQR, ABCEGNPQR,

ABCDEGHJLMQR, and ABFGNOQR

3.6.1 APPLYING HYBRID TECHNIQUE ON
ABOVE EXAMPLE
According to PSO technique, each particle will look for global

best and local best and will update its position and velocity for

maximum conditional node and independent path coverage. The

crossover operator is applied for swapping test cases to diversify
search process.

STEP-I & II:

First, each particle will maintain its own position and velocity.

Here, T2, T3, T5 T9, T10, T11, T15, T16 are global best

particles as they cover maximum number of conditions. Then,
each particle compares itself with best particle. Here, test case

T1 has compared itself with T2 (local best) and global best {T2,

T3, T5, T9, T10, T11, T15, T16} and since its local best is also

one of test case in global best. It had updated its position and

velocity w.r.t T2.

STEP-III:

Now, each particle will examine the updated position and

velocity with respect to old position and velocity. The new

values are retained if it improves position and velocity of

particle otherwise revert back to old position.

STEP-IV:

Now, apply crossover operation on updated generation of

population. In crossover operation, the population is divided in

set of two parents. Then, two-point crossover is applied to

search problem space more thoroughly. The one-point crossover
is not suited for this problem as it was not diversifying the

search space.

T10

T11

T12
T11

T13

T14
T15

T15

T16

T17

T18
T16

T19
T16

T1T2

T2

T3

T4

T5

T6T5

T7T5

T8T9

T9

Figure-1: Representing Crossover function

Program
Name

Priority
Suite

Execution
Time

Initial
Test

Suite

Size

Average
Build

Time

Student T8T6 18.33 9 3SEC

Hotel T5T3 20.64 5 3SEC

Triangle T5T2 7.0 17 4 SEC

Quadratic T11T7T3 10.0 19 4SEC

Railway T2T3 30.0 15 5SEC

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

31

Figure-2: two new off-springs generated.

STEP-V:

Now, the generated off-springs are compared to get best among

them. They are compared on the basis of maximum conditional

node coverage and independent path covered. Hence, the second

table covers all independent paths and conditions. On removing
duplicity: TEST-SUITE A: T10, T11, T3, T4, T5, T6, T7, T8,

And T9

TEST-SUITE B: T1, T2, T12, T13, T16, T17, T18

TEST-SUITE B covers all independent paths. In this example,

the total code coverage has been achieved using path coverage
(for identifying independent paths of code).

4. COMPARISION

4.1 Fault Coverage Analysis
The fault detection examples are being compared on the
parameter of: random order, reverse order, optimized order and

prioritized order for better clarity in results. The comparison has

been shown with the help of Average Percentage of Fault

Detection (APFD) formula as defined by Rothermal [8]. This

formula gives better vision towards final result. In below
Sections the APFD of various orders are been calculated and

represented with the help of bar graphs respectively.

4.1.1 Example-I

Table-2: Represents % of various orders of Triangle

Fig-3: Represents APFD for prioritized triangle suite with
other orders

4.1.2 Example-II

Table-3: Represents % of various orders of Hotel

Fig-4: Represents APFD for prioritized hotel suite with

other Orders

4.1.3 Example-III

Table-4: Represents % of various orders of student

Fig-5: Represents APFD for prioritized student suite with

other orders

T1T2

T2

T12
T11

T13

T14
T15

T15

T16

T17

T18
T16

T19
T16

T10

T11

T3

T4

T5

T6T5

T7T5

T8T9

T9

Technique APFD %
No Order 83.4

Random Order 84.3

Reverse Order 78.4

Optimal Order 90.3

Proposed Order 90.3

Ordering of Test Cases APFD%
No Order 46%

Random Order 66%

Reverse Order 62%

Optimum Order 66%

Prioritized Order 66%

Ordering of Test

Cases

APFD %

No Order 76.8%

Random Order 76.8%

Reverse Order 70%

Optimum Order 78.9%

Prioritized Order 78.9%

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

32

4.1.4 EXAMPLE-IV
Table-5: Represents % of various orders of Railway

Fig-6: Represents APFD for railway prioritized suite with

other orders

4.1.5 EXAMPLE-V
Table-6: Represents % of various orders for Quadratic

Fig-7: Represents APFD for prioritized quadratic suite with

other orders

4.1.6 FINAL ANALYSIS OF FAULT COVERAGE:
The saving % achieved by proposed algorithm has been

calculated:

& the efficiency % has been calculated:

Table-7: Represents summarized form of fault coverage

examples

Progra

ms

Fault

Seed

ed

Effective

ness %

Savin

g %

Optim

al

APFD

%

Prioritiz

ed

APFD

%

Student 5 28% 77.777

78

78.9 78.9

Hotel 5 60% 60 66 66

Tri 6 16% 88.235

29

90.3 90.3

Quad 9 20% 80 90.3 90.3

Railway 9 36% 89.473

68

87.9 87.9

Fig-8: Representing the saving of test cases for execution

The Table-7 represents the summarized qualities of proposed

algorithm‘s solutions for all examples. The table gives
information regarding the number of faults seeded in each

program respectively. The effectiveness of 25 runs for each

program with the percentage of saving in test cases, then the

optimal order and prioritized order (proposed order) are

compared with each other for all examples respectively.

4.2 CODE COVERAGE ANALYSIS:

To analyze code coverage effectively the Average Percentage of

Condition Coverage (APCC) approach has been used [99].

4.2.1 EXAMPLE-I

Table-8: Represents % of various orders of Triangle

Ordering of Test

Cases

APFD %

No Order 81.1

Random Order 71.6

Reverse Order 44.2

Optimal Order 87.9

Proposed Order 87.9

Ordering of Test

Cases

APFD %

No Order 62.9

Random Order 82.8

Reverse Order 83.4

Optimal Order 90.3

Proposed Order 90.3

Technique APCC %

No Order 89.6

Random Order 88.7

Reverse Order 87.8

Optimal Order 93.1

Proposed Order 87.8

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

33

Fig-9: Represents APFD % for all orders

5. CONCLUSION:
The algorithm has been proposed to prioritize test cases using

PSO technique along with crossover operator used in Genetic

Algorithm. The technique is used to prioritize test cases on the
basis of two different selection criteria namely: (i) total fault

coverage with in time constrained environment, (ii) amount of

code coverage. The results show that the proposed algorithm can

do prioritization of test cases on different selection criteria other
than used in this paper, as the algorithm uses the phenomena of

convergence (PSO) while diversifying search space (GA

operator) for regression testing. In proposed algorithm, PSO

technique initializes particles to get fitness which further used

for comparison within population to get local candidate solution.
Thereafter, crossover operator has been used for diversifying the

localization of solution by crossing over two parent strings with

each other for getting two new off-springs which are compared

according to desired stopping cr iteria. The effectiveness of

proposed algorithm has been shown with the help of APFD and
APCC values respectively. The APFD has been calculated for

all examples for fault based testing and APCC has been

calculated for code coverage testing example. The APFD and

APCC calculation helps in evaluate usefulness of proposed

algorithm. The APFD & APCC values are comparable w.r.t.
optimal result, that proves algorithm prioritizes efficiently.

In this paper, test cases have been selected from large set of

generated test data. The automation of prioritization has

simplified the process. Further improvement is going on.

6. REFRENCES
[1] Alspaughy, S., Walcotty,K. R., Belanichz, M.,

Kapfhammerz,G. M., Lou Soffa,M.,2007 Efficient Time-

Aware Prioritization with Knapsack Solvers, Proceedings

of the ASE 2007 Atlanta, Georgia, November 2007.

[2] Garey,M.R., Johnson,D.S., 1979, Computers and

Intractability, A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, New

York.

[3] Liang,Y, Liu,L.,Wang,D.,Wu, R., 2010,Optimizing

Particle Swarm Optimization to Solve Knapsack Problem,

ICICA, CICIS, Vol.105, Springer, Berlin, pp.: 437-443.

[4] Ezziane,Z., 2002 Solving the 0/1 knapsack problem using

an adaptive genetic algorithm, Analysis and
Manufacturing (AIEDAM), Vol.16(1), Jan-2010 pp.: 23-

30.

[5] Premalatha,K., Natarajan, A.M.,2009Hybrid PSO and

GA for Global Maximization,International Journal of

Open Problems in Computer Science and Mathematics,
Vol. 2, No. 4., pp. 597-608.

[6] Eberhart, R.C., Kennedy,J.,1995 A New Optimizer

Using Particles Swarm Theory ,IEEE Service Center,

Piscataway, NJ, Nagoya, Japan, pp.:39-43.

[7] Srivastava, P. R., Kim,T., 2009 Application of Genetic

Algorithm in Software Testing, International Journal of
Software Engineering and Its Applications Vol. 3(4),

pp.: 87-96.

[8] Lope, H.S.,Coelho, L.S., 2005 Particle Swarm

Optimization with fast local search for the blind

traveling salesman problem, Proceedings of Fifth

International Conference on hybrid intelligent systems
(HIS‘05), Brazil, pp.: 245-250.

[9] Yoshikawa, M.,Nishimura, H., Terai, H., 2010 A New

Genetic Coding for Job Shop Scheduling Problem
Considering Geno type and Pheno type, Proceeding of

the 4th WSEAS International Conference on Computer

Engineering and Applications, Harvard University ,

Cambridge, SEAS Press, pp.: 59-62.

[10] Walcott, K. R.,Kapfhammer, G. M., Soffa, M. L., Roos,

R. S., 2006 Time-aware test suite prioritization,
Proceedings of International Symposium on Software

Testing and Analysis, USA, pp. 1-19, July 2006.

[11] ASKARUNISA, A., SHANMUGAPRIYA, L.,

RAMARAJ, N., 2009 Cost and Coverage Metrics for

Measuring the Effectiveness of Test Case Prioritization
Techniques, pp.: 1-10.

[12] Wong, W. E., Horgan, J. R., London, S. and Agrawal,
H., 1997, A study of effective regression testing in

practice, In Proceedings of the 8th IEEE International

Symposium on Software Reliability Engineering
(ISSRE' 97), November 1997 , pp.: 264-274.

[13] Singh, Y., Kaur,A., Suri, B., 2006 A New Technique

for Version – Specific Test Case Selection and
Prioritization for Regression Testing, Journal of the

Computer Society of India, Vol.36(4), pp.: 23-32.

[14] Aggrawal, K. K., Singh, Y., Kaur, A., 2004 Code

coverage based technique for prioritizing test cases for

regression testing, ACM SIGSOFT Software
Engineering Notes , Vol.-29(5) pp.:1-4.

[15] Singh,Y., Kaur,A., and Suri,B., 2010 AHybrid

Approach for Regression Testing in Intraprocedural
Programs, JIPS, Vol.6 (1), pp.:21-32, March 2010.

[16] Singh,Y., Kaur,A., and Suri,B., 2010, ―Test Case

Prioritization Using Ant Colony optimization‖,

Association in Computing Machinery,ACM

SIGSOFT Software Engineering Notes, USA, July
2010, pp.: 1-7.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.10, August 2011

34

[17] Hla, K. H.S., Choi, Y., Park, J. S., 2008 Applying

Particle Swarm Optimization to Prioritizing Test Cases

for Embedded Real Time Software Retesting,
Proceedings of the IEEE 8th International Conference

on Computer and Information Technology Workshops,

pp.: 527-532.

[18] Aggrawal, K. K., Singh, Y., Kaur, A., 2004 Code

Coverage Based Technique for prioritizing Test

Cases for Regression Testing, ACM SIGSOFT
Software Engineering Notes, Vol.29(5), September

2004.

[19] Fischer, K., Raji, F.,Chruscicki, A., 1981 A methodology
for retesting modified software, In Proc. of the Nat'l.

Tele. Conf. B-6-3, Nov. 1981, pp. 1-6.

[20] Mehta, A., Heineman,G.T., 2000 Evolving Legacy

Systems Features for Regression Test Cases and

Components, Worcester Ploy technique Institute, MA,

pp.: 1-11.

[21] S. Yoo, M. Harman and S. Ur, ― Highly Scalable

Multi Objective Test Suite Minimization Using Graphic

Card‖, Department of Computer Science, University

College of London, UK, 2007, pp.: 1-26.

[22] Harman, M., Mansouri, A., 2010 Search Based

Software Engineering: Introduction to special issue of
IEEE Transactions on Software Engineering, IEEE

Transactions, Vol-6, No-4, Nov-2010, pp.: 737-741.

[23] M. Harman, ―Making the case for MORTO: Multi

objective Regression Test Optimization‖, University

College of London, CREST center London, pp.:1-4

 [24]Li,Z., Harman, M. and Hierons, R. M., 2007 Search

algorithms for regression test case prioritization, IEEE

Trans. On Software Engineering, Vol.-33, No.-4, April

2007, pp.: 76-89.

[25] Liu, H., Sun, S., Abraham, A.,2006 Particle swarm

approach to scheduling work-flow applications in
distributed data- intensive computing environments,

Proceedings of Sixth International Conference on In

Intelligent Systems Design and Applications, ISDA‘06,

pp.: 661–666.

[26] Zhao, F., Zhang, Q., Yang, Y., 2006 An improved particle
swarm optimization based approach for production

scheduling problems, in: Proceedings of the IEEE

International Conference on Mechatronics and Automation,

pp.:2279–2283.

[27] Kong,X., Sun, J., Xu,W., 2006 Particle swarm algorithm
for tasks scheduling in distributed heterogeneous system, in

Proceedings of Sixth International Conference on

ISDA‘06, pp.: 690–695.

[28] Laskari,E.C., Meletiou, G.C., Vrahatis, M.N., 2006

Utilizing evolutionary computation methods for the design

of s-boxes, in Proceedings of International Conference on
CIS-2006, pp.: 1299–1302.

[29] Zhi,X.H., Xing, X.L., Wang, Q.X., Zhang, L.H., Yang,

X.W., Zhou, C.G., Liang, Y.C., 2004 A discrete PSO

method for generalized TSP problem, in: Proceedings of

International Conference In Machine Learning and
Cybernetics, (4), pp.: 2378–2383.

[30] Liu,D.S., Tan,K.C., Goh,C.K., Ho, W.K., 2006 On solving

multi objective bin packing problems using particle swarm

optimization, in: Proceedings of IEEE Congress on

Evolutionary Computation, CEC2006, pp.: 2095–2102.

[31] Hou,Y.,Zhao, C., Liao,Y., 2006 A new method of test

generation for sequential circuits, in Proceedings, 2006

International Conference on Communications, Circuits and

Systems, pp.: 2181–2185.

[32] Sheta, A., 2006 Reliability growth modeling for software
fault detection using particle swarm optimization,

Proceedings of IEEE Congress on Evolutionary

Computation, CEC2006, pp.: 3071–3078.

[33] Krishnamoorthi, R., Mary, S.A., 2009Regression Test Suite

Prioritization using Genetic Algorithms, International
Journal of Hybrid Information Technology, Vol.2(3),, July

2009, pp.: 35-52.

[34] Kamble, A., 2010 Incremental Clustering in Data Mining

using Genetic Algorithm, International Journal of

Computer Theory and Engineering, Vol.2(3), , June 2010,
pp.: 1793-8201.

[35] Bergmann,K. P., Scheidler,R., Jacob, C.,

2008Cryptanalysis using genetic algorithms, in 10th annual

conference on Genetic and evolutionary computation,

ACM New York, NY, USA, pp.: 1099-1100.

[36] Krishna,K. S. R.,Reddy, A. G., Prasad, M.N.G., Rao,

K.C., Madhavi, M., 2010 Genetic Algorithm Processor for

Image Noise Filtering Using Evolvable Hardware,

International Journal of Image Processing, Vol.4(3), pp.:

240-250.

[37] Li,M., Zhang,Y., Jiang, W., Xie,J., Coll,Z., 2009 A

Particle Swarm Optimization Algorithm with Crossover for

Resource Constrained Project Scheduling Problem,

Proceedings of IITA SSME‘09, pp.: 69-72.

[38] Rothermel,G.,Harold, M. J., 1997 A Safe, Efficient
Regression Test Selection Technique,ACM Transaction on

Software Engineering and Methodology, Vol.6 (2),, April

1997, pp.: 173-210.

[39] Aggarwal,K.K.,Singh,Y., 2001 Software Engineering,

New Age International (P) Ltd.; Publishers, 4835/24,
Ansari Road, Daryaganj, New Delhi.

