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ABSTRACT

A smooth surface interpolation scheme for positive and convex
data has been developed. This scheme has been extended from
the rational quadratic spline function of Sarfraz [11] to a
rational bi-quadratic spline function. Simple data dependent
constraints are derived on the free parameters in the description
of rational bi-quadratic spline function to preserve the shape of
3D positive and convex data. The rational spline scheme has a
unique  representation. The developed scheme s
computationally economical and visually pleasant.
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1. INTRODUCTION

Shape control [17], shape design [18], shape representation
[19-20] and shape preservation [10-16] are important areas for
graphical presentation of data. The problem of shape
preservation has been discussed by a number of authors. In
recent years, a good amount of work has been published [1-15]
that focuses on shape preserving curves and surfaces. The
motivation of the work, in this paper, is due to the past work of
many authors. Butt and Brodlie [3] discussed the problem of
positivity using the piecewise cubic interpolation. The
algorithm of Butt and Brodlie [3] works by inserting one or
two extra knots, wherever necessary, to preserve the shape of
positive data. Brodlie, Mashwama and Butt [2] developed a
scheme to preserve the shape of positive surface data by the
rearrangement of data and inserted one or more knots, where
ever required, to preserve the shape of the data. Piah, Goodman
and Unsworth [10] discussed the problem of positivity
preservation for scattered data. Nadler [9], Chang and
Sederberg [4] have also discussed the problem of nonnegative
interpolation. They considered nonnegative data arranged over
a triangular mesh and interpolated each triangular patch usinga
bivariate quadratic function. Schmidt and Hess [13] discussed
quadratic and rational quadratic spline and developed
necessary and sufficient conditions for the positivity.

Hussain and Sarfraz [7] used the rational cubic functions to
preserve the shapes of curves and surfaces over positive data.
Schumaker [14] used piecewise quadratic polynomial which is
very economical but the method generally inserts an extra knot
in each interval to interpolate. The problem of convexity of
curves using the piecewise cubic interpolation is discussed by
Sarfraz and Hussain [12]. Great contributions to convexity
preservation of surfaces are by Asauryan [1], Constantini and
Fontanella [5], Hussain and Maria [8], and Dodd [6].
Asaturyan [1] scheme divides each grid rectangle into nine sub
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rectangles to generate convexity preserving surfaces. This
scheme is not local i.e. by changing data in X -location of one
edge of a sub-rectangle there must be a change throughout the
grid for all sub rectangle edges located at the original X -
values. The scheme of Constantini and Fontanella [5]
interpolates the bivariate data defined over a rectangular grid
and is the extension of univariate shape preserving scheme.
Tensor product of Bernstein polynomial is used as interpolant.
Convexity preserving constraints are applied along grid lines.

The scheme gives a C* convex surface but its disadvantage is
that it is not local. Dodd [6] produced a quadratic spline along
the boundary of each grid rectangle and used these splines to
define functional and partial derivatives on the boundaries of
rectangles, formed by the grid. This scheme preserves the
convexity of the surface along the grid lines but fails to
preserve the convexity in the interior of the grids and produces
the undesirable flat spots due to vanishing of second order
mixed partial derivatives. Hussain and Maria [8] discussed the
convexity of surfaces. They derived simple sufficient data
dependent conditions on free parameters of rational bicubic to
preserve the shape of data. The scheme used for both simple
data and data with derivatives. This is a local scheme and is
computationally economical and visually pleasing.

This research is a contribution towards achieving shape
preserving curves and surfaces for positive data. The rational
quadratic spline function of Sarfraz [11], which was used to
achieve monotony preserving curves for monotonic data, has
been extended to a rational bi-quadratic spline function. Shapes
of positivity and convexity have been considered, to preserve
the positive and convex data respectively, by interpolating
spline surfaces. Simple data dependent constraints are derived
on the free parameters in the description of rational bi-
quadratic spline function to preserve the shape of 3D positive
and convex data. Unlike its cubic or rational bicubic
counterparts [1-3, 5-8, 10-11], the underlying scheme is
rational bi-quadratic. Hence, the proposed scheme is
computationally economical. Moreover, the proposed scheme
produces visually pleasant results.

The method in this paper has number of advantageous features.
It produces smooth interpolant. No additional points (knots) are
needed. In contrast, the quadratic spline methods of Schumaker
[14] and the cubic interpolation method of Brodlie and Butt
[15] require the introduction of additional knots when used as
shape preserving methods. The interpolant is not concerned
with an arbitrary degree as in [16]. It is a rational spline with
biquadratic numerator and denominator. The rational spline
curve representation is unique in its solution.
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The paper begins with a definition of the rational function in
Section 2 where the description of rational quadratic spline
curve is made, it preserves the positivity and convexity features
of the data. In Section 3, the rational quadratic spline is
extended to rational bi-quadratic spline. Section 4 deals with
the proposed scheme which is developed to preserve the shape
of positive data to present positive surfaces. Section 5 deals
with the proposed scheme which is developed to preserve the
shape of convex data to present convex surfaces. Section 6
concludes the paper.

2. SHAPE PRESERVING RATIONAL
QUADRATIC SPLINE

In this section, a piecewise rational quadratic spline function is

introduced which was initially developed by Sarfraz [11]. Let

(x,f),i=12,..,n, be a given set of data points where

X <X, <..<X, .Let

—x, A =T
h,

a rational quadratic spline

h =x

i i+l
In each interval I, =[x,%,],
S(x) may be defined as:

s(x) = P @

20’ i=12,..n (1)

where
p@)=1-0af+ o+ B 01-0 V,+0* B,
@) =1-0 o, +683,

with
\/i - aldl f|+1+ﬂ|d|+l i / ad +13|d|+1
and

g:X;Xi, 0<o<1.

The further analysis of the interpolant leads to the followings
Theorems 1 & 2:

Theorem 1. The rational quadratic spline function (1)
preserves positivity if the free parameters ¢, and 2, satisfy
the following conditions:

L. >0 and
f.d d.
;=1 +Max<0,—p 2 —p L | > 0.
al 1 { ﬁl f|+ld ﬁl di } 1

Proof. The proof is straightforward and follows from the
Bézier-Bernstein theory when we want to make all the terms in
Eqn. (1) positive.

Theorem 2. The rational quadratic spline function (1)
preserves the convexity if free parameters ¢ and

/3, satisfies the following conditions:

£ >0,

a;, =n, +Max{0 -0 Jl},ni >0.

Proof. One needs to derive the second derivative of Eqn. (1).
While keeping all the terms in the Bézier-Bernstein form, we
will want to make all the coefficient terms of the Bézier
polynomials, in the numerator, positive. This will lead to the
proof.
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3. RATIONAL BI-QUADRATIC SPLINE

The piecewise rational quadratic spline function (1) is extended
to bi-quadratic partially blended rational spline function

S x,y over rectangular domain D= a,b x c,d .Let
Tia=%X <X <..<X,=b be partition of ab and
ZiC=Yy,<Y,<..<y,=d be partition of c,d .Rectangular
bi-quadratic spline function is defined over each rectangular

patch X X1 X Yoo Yia where  i=0,12,...,m-1
j=012,..,n-1as:
S x,y =—AFB", 2
where
0 S xy; SV
F=| S x.,y S X, Y;j S X, Yju |

S Xi+1ly S Xi+11yj S Xi+1'yj+1

A=[-1 a, 0 a 6 ];B=[-1 b ¢ b ¢];
with

=1-60°1+20 , a =6 3-20 ,
=1-¢°1+24 , b =¢* 3-2¢ .

) hi=Xi+1_Xi' OSHS].

L, hj=yja-Yj 0<g<l.

S XY 4S8 XY »S X,Yy  and are rational
quadratic spline (1) defined over the boundary of rectangular

patch XX, x[¥;,Y,.,] as

S X|+1’y

2 i
> 1-07'0'A
S x,y; =+2 ®3)
! q O
with
AO alj i j?
A= o;+56; Vi
Azzﬂij|:i+lj’
V-< aIJI:IJI:I+lj+ |J|+1J|J
L1 X ’
a; K5+

ijlij Ijl+lj

@0 =1-6 a,+05,.

Z 1-0 *'o'B

S X Yjua = =0 qQ O
2

: 4)

with

B, =& i..F

i, j+1" i, j+10

Bi= .t lBi,j+1 Vi
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B, = ﬁ. j+1Fi+1 j+1r

Vi,j+1 = &, HlF'XJﬂFHl it A J*lFLil J+1FI j+1 )
& 1B ia AR
A, 6 =1-0 o, +6B, ...
S 1-¢ 2gic,
Sy T ’ ®)
with
Co=a ;F;,
Ci= &, +h, Vi
C: =B‘viFivj+1,
\7ij= F|:|j+1+|J|J+1 |
| & R+ B R
0, ¢ = 1—¢ di,,~+¢ﬂi,,-.
> 1-¢ 2'¢D,
SNy T ®
with

D aA|+1JFi+1,j,

D, = O?H-l,j +ﬁi+1,j \7i+1,j'

Dz :Bi+1,j':i+1,j+11

\7”1 — &i+1,JF|J):1 jFI+l j+1 +B|+l jFiJ):l j+lFi+1,j ,
K aH—lJFH—lj +ﬁ|+1 jFl-{l j+1

Q4 ¢ 1- ¢ al+1] ¢ﬂi+l,j'

4. POSITIVE SURFACE
INTERPOLATION

Let  x,y,F; (i=12,..m; j=12..,n
data defined over rectangular grid I, ; =

m-1, j=0,12,.,n-1. Letus have
F;>0 Vi, j.

where i =0,1,2,...,

The piecewise rational bi-quadratic spline function (2) is
1S vaj+1 1

X,y and S X,y defined in (3), (4), (5) and (6) are

positive if the boundary curvesS X,Y;

positive. Now,
2 .

Sxy, >0if > 1-0 *'0'A>0ad g 6 >0.
i=0

But,
q16’>0 if a,,J>O and l6,|1>0

Thus,
2 i
> 1-0*'¢'A>0 if A>0,i=012.

One can easily see that

be the positive

Xy X X |:yj J yi+1:|’
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i iFi P
A0 if > Puifnifiimg gy

Fiis iR
=i iRl
ai’j >—X
Fj
Similarly,

2 i
S XY, >0 if > 1-0*'¢'B,>0
i=0

q, @ >0.

But,

d, ¢ >0 if & jq>0and g ;,, >0.
Thus,

2 P
> 1-0°'¢'B,>0 if B >0,i=0,12.

One can easily see that

U]

®)
©)

and

(10)

(11)

(12)

BO>OIf ai’j+l>0.
E ... .FX .
Bl>0 if ai'j+1>—ﬂi'j+1M and
F|+l,j+1|:| j+l
FX,
ai,j+1>_ﬂi,j+1%'
i, j+1
BZ>0|f ,6’i‘j+1>0.
Similarly,
2 -
S %,y >0 if Z 1-¢ °'gic;>0 and 0z ¢ >0.
i=0
But,

gz ¢ >0 if diyj >0and S, ; >0.

Thus,

2 -
Z 1-¢ “'gic;>0if C;>0,i=0,1,2.
i=0
One can easily see that

CO>O if 0’\(|,J>O
~ K FY
C,>0 ity >-f—dd
Fl,j+1Fl,j
~ Fiy-
~ ,Jj+1
(2] j >_ﬂi,j—'
R
c,>0if /i j>0.

(13)

and

(14)

(15)
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Similarly,
2 B .

S Xy >0 if D> 1-4%gDj>0  and
i=0

az ¢ >0.

But,

q4¢>0|f O’Zi_'_l,j>oand /8i+1,j>0‘
Thus,

2 P
z 1-¢ “'¢'D, >0 if D;>0,i=0,1,2.
i=0

One can easily see that
DO >0 if O?i+1,-i > 0. (16)

e A A Fiu 'F'yl j+1
D, >0 if G, )>fhyj— ot and

Rovjafils

. ~ Flija

G > ~Pj—y 17
i+1, ]

D,>0if /S j>0. (18)

The above discussion can be summarized as:

Theorem 3. The rational bi-quadratic spline function defined
in (2) preserves the shape of positive data if in each rectangu lar
patchl,; = XX, x[yj,yjﬂ],free
By @ijan By i
following conditions:

ﬁi!j >O’ﬁi,j+l >0lﬁi,j >Onﬁi+1’j > 0.

parameters i

3.6, and f3,,, ; satisfy the

and
-B FE FX .. - RN
aij>Max 0, 1] I,JI)—(O—l,j, I,jXI+l,j
Fig iRl B
X X
i a1 > Max 0’_ﬂi,j+1|:|,j+1lj+1,j+l,_/Bi,j+1':|+1,j+l ’
|:|+1,j+1Fi,j+l |:|,j+l

~4iR, iR g 4R a
R, jaFj R

&i,j > Max 0,

2 y 2 y P
_ﬂi+l,j|:i+1,j|:i+1,j+1 _ﬂi+1,j|:i+1’j+1 parameters 3, = 5, ;.1 = .

@iy, j > Max4 0,

’

|:_y

. y
':I +1, J+1Fi +1, j i+1,j

The above constraints can be rewritten as:

B >O,ﬂi'j+1>0,,5’iyj >OBi+1,j > 0.
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and

-5 iR R =B iR
ai,j:ai,j"'MaX 0, ﬂl,j [ :(+1,J’ :Bl,jxl+1,j
Fi iR Fj

X
=6 j+1hF,j1Fi, ja

ai’j+1:bi’j + Max-< 0,
Fi +1, j+1F|,Xj +1
—fi j+1Fh 41
Fi,xj+l
2 y 3 y
-4 iR iR a A iRja

R+ R

di’j=Ci’j+MaX O,

2. E EY
_:Bl +1,j FI +1,j l:i +1, j+1

y
Fiig, j+aFida j

di+l,j :di,j + Max-< 0,

2. EY
_ﬂ|+1,j I:i+l, j+1

y
Fitj

4.1 Demonstration
Let us demonstrate the devised scheme for positive data in the
following examples:

Example 1: A positive data set is considered in Table 1
generated by the following function:

Foxy =e <Y 10.000L—
1 X,y =e +0.000;,—-3<x,y<3.

The data set is reported by taking the values truncated to four
decimal places.

Figure 1 is produced from the data set in Table 1 using bi-
quadratic spline function which looses positivity. This flaw is
nicely recovered in Figure 2 using the scheme developed in
Section 4 by assigning the values to free

parameters £, ; = £, ;.1 = ,3,] = B”l,j =0.5 and
8 ;=b;=0¢,;=d; =05 Itis clear from the Figure 2 that

the shape of positive data is preserved.
Example 2: A positive data set is considered in Table 2
generated by the following function:

F, X,y = x2—y2+0.52;—3sx,y33.

Figure 3 is produced from the data set in Table 2 using bi-
quadratic function which looses positivity. This flaw is nicely
recovered in Figure 4 using the scheme developed in Section 4
by assigning the values to free
= ﬂA’”“ =1 and
& ;=Db,;=c;=d ;=1 Itis clear from the Figure 4 that the
shape of positive data is preserved.
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Table 1. A positive data set.

yIx -3 -2 -1 0 1 2 3

-3 0.0001 | 0.0001 0.0001 | 0.0002 0.0001 | 0.0001 0.0001
-2 0.0001 | 0.0004 0.0068 | 0.0184 0.0068 | 0.0004 0.0001
-1 0.0001 | 0.0068 0.1354 | 0.3680 0.1354 | 0.0068 0.0001
0 0.0002 | 0.0184 0.3680 | 1.0001 0.3680 | 0.0184 0.0002
1 0.0001 | 0.0068 0.1354 | 0.3680 0.1354 | 0.0068 0.0001
2 0.0001 | 0.0004 0.0068 | 0.0184 0.0068 | 0.0004 0.0001
3 0.0001 | 0.0001 0.0001 | 0.0002 0.0001 | 0.0001 0.0001

Table 2. A positive data set.
yIx -3 -2 -1 0 1 2 3
-3 0.2500 | 30.2500 | 72.2500 | 90.2500 | 72.2500 | 30.2500 | 0.2500
-2 20.2500 | 0.2500 | 12.2500 | 20.2500 | 12.2500 | 0.2500 | 20.2500
-1 56.2500 | 6.2500 | 0.2500 2.2500 | 0.2500 6.2500 | 56.2500

0 72.2500 | 12.2500 | 0.2500 | 0.2500 | 0.2500 [ 12.2500 | 72.2500
1 56.2500 | 6.2500 | 0.2500 | 2.2500 | 0.2500 [ 6.2500 [ 56.2500
2 20.2500 | 0.2500 | 12.2500 | 20.2500 | 12.2500 [ 0.2500 [ 20.2500
3 0.2500 | 30.2500 [ 72.2500 | 90.2500 | 72.2500 | 30.2500 | 0.2500
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Fig 1: Bi-quadratic Surface. Fig 2: Positive Rational Bi-quadratic Surface.
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Fig 3: Bi-quadratic Surface. Fig 4: Positive Rational Bi-quadratic Surface.
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5. CONVEX SURFACE INTERPOLATION

Let %, Y R i=12,..., be convex data

defined over rectangular grid 1= X, X4 %[V}, V).,

i=0,1,2,...,m-1 j=0,12,..,n-1. suchthat:
Fi<A,;<F! FX.<A .,<FE!

i+1,j7 i, j+ i j+1 — Ui+l j+1

FY <A <F%. F% <A, <F’

ihj — =, — N, j+1 i i+1,j+1°
where

m; j=12,...,n

i+1,j —

A= Fi+1.j+1_ Fi,j+1 A = Fi+1,j+1_ Fi+1,j.

i j+1 hi 1 i+l hj
Now rational bi-quadratic spline function defined in (2) will be
<[V Yy s if

each of the boundary curves s XY S XY, S XY and

convex in each rectangular patch | ;= %, x

S X,,;,y definedin (3), (4), (5) and (6) are convex.

Now, S x,y, will be convexif S* Xy, >0.Thatis

2 P
> 1-0*'0R
S? xvy, = i=0 - >0,
hiql 9 alj':lj+ﬂlj |+1J
with
R, = 2ai2,j18i?in, F.il, Fi,x' )
R1=4ai2,j18i?in, 'zlilj lej )
R, = Zaiz,jﬁi?in, Flilj Fi,xj )

o7} 0 =1-6 % +0ﬂ|,j'

Thus, S® x,y; >0 if
2
> 1-
i=0
G 6 >0.

But, ql 0 >0 if

0 *'0'R >0, a R+ 4 R, >0and

>0and S, ; >O. (19)

- |+1J
IJIJ+'8IJI+lJ >0IfGfi,j> lBlJ

23

FX
(20)
Thus,
2 .
> 1-09R>0if R >0,i=012.
i=0
One can see easily that
R>0if «;>0and 5 ;>0. (21)

Similarly, S X,¥;., will be convex if s? X,¥;, >0.Thatis
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2

2-i i
St xy ; 1-60 " 0'S, o
" hQ2 0 o ;. |J+1+/B| j+1 I+1j+1
with
S, = zaiz.jﬂﬁfjﬂAi,jﬂ Flil j+1 FIXJ+1 )
S, = 4ai2,j+lﬂi?j+lAi,j+1 F|i1 j+1 F|XJ+1 )
S, = 2ai2,j+1ﬁi?j+lAi.j+1 Rl j+1 ':IX]+1 )

2 0 = 1-0 & ju+05 ju

Thus, S ?
2

> 1-0
i=0

and ¢ 6 >0.

But,

g0 >0if o, >0and g,,> (22)

X, ¥, >0 if

2.0 4 x x
0's, >0, ai,j+1Fi,j+l+lBi.j+lFi+l,j+l >0

ai.j+1Fi,j+1+:Bij+1 i jaa >0 if

Flil j+1
. 23
e (23)

i, j+1

&1 > _ﬁi,j+l
Therefore,

2 P
> 1-0*'9's,>0if S,>0,i=012
i=0

One can see easily that

S >0if & ,,>0ad 4, >0. (24)

Similarly, S x,y will beconvexifS* x,y >0.Thatis,

2 i N
2 1-¢ 2"¢'Ti
ST Xy =2 T >0,
th3¢ IJIJ+ 'JIJ+l
with
To—2 ﬁA |J+1 F.,v
SBA Fla R
T _Zdzﬂ |]+1 Fi,yj )
93 ¢ = 1-¢ o?i,,-+¢ﬂi,,-.
Thus, S 2 X,y >0 if
2 i ~
ZO: ¢ITi>O, ai'jI:i'yi_'_ﬂ'J IJ+1 >0 and
g ¢ >0.
But,} ¢ >0 if &, >0,and S >0. (25
EY
if & |J+1
|J|J+ﬂ|J,J+1 >0If0(i'j> ﬂlj Fy

(26)
Therefore,

2 2-ii . .
S 1-¢ 74T >0if T,>0i=012
i=0
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One can see easily that
T,>0if & ;>0ad 3, >0. (27)

Similarly, S x,,,y will be convex if S* x,,,y >0. That
is,

Z 1-¢ *'g'U,
S 2 Xi+11y == 3 li >O,
hqu ¢ a|+1 jFI+lj + |+1,j':izl.j+l
with
U - 20’2|2+1 Jﬂwl ]Al+lj Flil j+1 FI-):-IJ ’
U - 4&|2+l jﬁl-)-l JAH-lJ FIZl j+1 FI-):l] 1
U |+1 ]ﬁ|+1 jAH-lJ Flzl j+1 Flzu '
QG ¢ = 1-¢ G j+ B ;-
Thus, S? x,,y >0 if
2 H N
> 1-¢ *'gU, >0,
i=0
I+lj |+1] /BI+1J i+1,j+1 >0 and qz ¢ >0.
But,
q; ¢ >0if &, >0and ,6’”1] > 0. (28)
d'i+1,jFi1¥1,j+[}i+1,jFii,1,j+1 >0 if
~ P, Fli j+
i >_l8i+1,i Fxllj o (29)
i+1,j
Therefore,
2 H N
> 1-¢ “'gU, >0if U, >0i=012
i=0
One can see easily that
U, >0if &,,; >0and ,6'+1J >0. (30)

The above discussion can be summarized as follows:

Theorem 4. The rational bi-quadratic spline function defined in
(2) preserves the shape of convex data if in each rectangular
patch I = X, %, [yj,yj+1],free

0= parameters «; ;, 3, ;.
3 and ,8,+1 j satisfy the

& ji1 ﬁi,j+l’ Aij Pij &,

following conditions:

ﬁi:j >0’ﬂi,j+1 >OlBiyj >OBi+1,j >0
and

o - > Max P ,
i, { ﬂl] FX }

FI+ +
o > I\/Iax{ —LB i Fij 1},

i+1,j

i, j+1

International Journal of Computer Applications (0975 — 8887)
Volume 27— No.10, August 2011

y
B Fi+1 j+1
i+Li Ty ("
Fl+lj

The above constraints can be rewritten as:

I+lj

> Max{o

Ba.>0, Bu >0, léi+l,j > 0.

><
_ I+lj
ai'j—ui'j+Max{ /S',J Ex },ui,j>0,

Fi«tlj+1
& i, =V + Max O,—/?i,jﬂ—':x Vil >0,

i, j+1

~ i, j+1
& =W, + Max{ ,6’,1 ij },Wi,j >0,

5.1 Demonstration

Let us demonstrate the devised scheme for convex data in the
following examples:

Example 3: A convex data set is considered in Table 3
generated by the following  function:

F Xy =x2+y2

Figure 5 is produced from the data set in Table 3 using bi-
quadratic spline function that looses convexity. This flaw is
nicely recovered in Figure 6 using the scheme developed in
Section 5 by assigning the values to free

parameters £, ; = £, .1 = ,3,] = ﬁ.u, 0.5 and
=1. It is clear from Figure 6 that the
shape of convex data is preserved.

U =Vi =W, =X |

Example 4: A convex data set is considered in Table 4
generated by the following function:

F, X,y =y>+9x*-16.
Figure 7 is produced from the data set in Table 4 using bi-
quadratic spline function that looses convexity. This flaw is

nicely recovered in Figure 8 using the scheme developed in
Section 5 by assigning the values to free

parameters 3, ;= B, =B.; = FB..; =05 and
U ;=Vi; =W ;= X; =1. Itisclear from the Figure 8 that the
shape of convex data is preserved.

18



International Journal of Computer Applications (0975 — 8887)
Volume 27— No.10, August 2011

Table 3. A convex data set.
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A convex data set
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Fig 7: Bi-quadratic Surface.

6. CONCLUSION

In this paper, we have derived the data dependent constraints
on the free parameters in the description of rational bi-
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Fig 8: Convex Rational Bi-quadratic Surface.

quadratic spline function to preserve the shgpe of data. Shape
preserving surfaces have been produced to visualize the
positive and convex data. The choice of derivatives is left free
for the user. The developed methods are verified with some
examples of data. The rational spline scheme has a unique
representation. The developed schemes are very easy to
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implement, computationally economical, and visually
pleasant. However, this paer does not deal with another
important shape of the data called monotony. This work is left
as a future research and hopefully will appear soon as a
continuity ofthe work in a subsequent paper.
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