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ABSTRACT 

This paper analyses the velocity estimation of a target, from the 

Doppler filter using 1) Kalman filter 2) Adaptive Kalman filter 

3) Kalman filter with state vector fusion 4) Adaptive Kalman 

filter with state vector fusion 5) State vector fused adaptive 

Kalman filter.  Simulation through MATLAB gave good 

response for 4th and 5th algorithms under low signal to noise 

ratio. 2nd and 3rd algorithms gave better results in intensive 

maneuvers. But 1st algorithm even though it is low cost and 

faster, fails due to the delay in response.   
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1. INTRODUCTION 
For tracking the velocity of a target, required Doppler frequency 

shift of the received echo signal is obtained using short time 

Fourier transformation (STFT) [4] on a rectangular window 

function.  Then quadratic interpolation is used to find better 

frequency shift. This estimated velocity is optimized using 

fusion technique. The integration or fusion of redundant 

information can reduce overall uncertainty and thus serve to 

increase the accuracy with which the features are perceived by 

the system [10]. Multiple sensors providing redundant 

information can also serve to increase reliability in the case of 

sensor error or failure [5]. Papic et al., [1] estimated the velocity 

through window width adaptation, based on the estimates of 

target acceleration and signal-to-noise ratio. Banerjee et al., [9] 

and Bhattacharya et al., [3] used the state-vector fusion 

technique for estimating the position of the target. Hedrick [5] in 

his research report used adaptive Kalman estimation but used 

PDA method to obtain fused velocity estimates. In this paper an 

attempt is made to compare the performance of the state vector 

fused adaptive Kalman velocity estimation [fig.5] with the 

adaptive fused Kalman velocity estimation [fig.6]. 

Here the estimated velocity from Doppler filter is optimized 

using five different approaches namely  1) Kalman filter [10]  2) 

Adaptive Kalman filter [1,5]  3) Kalman filter with state vector 

fusion [2,3,9]   4) Adaptive Kalman filter with state vector 

fusion [1,3,5,9] 5) State vector fused adaptive Kalman filter and   

are simulated  through MATLAB  and compared.     

The structure of this paper is as follows. The problem 

formulation of state vector fusion [2, 3], in Kalman filter 

structure and the adaptive Kalman filter structure along with the 

importance of multi sensor data fusion are explained in sections 

2 to 6. In section 7 results of velocity estimation through these 

algorithms is simulated. Finally the conclusion is given in 

section 8. 

2. KALMAN FILTER VELOCITY 

ESTIMATION 

 

Fig.1 Block diagram of Kalman filter velocity estimation 

2.1  Doppler filter  
Since the target is moving, the reflected signal frequency is 

different from that of transmitted signal by the Doppler effect   

[1, 4, 11]. This approximate Doppler frequency shift is obtained 

from the received signal using Quadratic interpolation of the 

time dependent Fourier transformation (TDFT) [4] and then 

smoothed [1, 9] using Kalman filter as shown in Fig 1. 

 

2.2 TDFT  
Also referred to as STFT [4], [1] of a signal x[n], it is defined as  

 

where w[m] is a window sequence.  Taking finite duration of 

sequences in real time application, STFT [4] becomes,  

 

where NW represents the window function length, k is the 

frequency index that corresponds to the frequency    , 

 k = 0, 1. . . N-1 and n is the time index that corresponds to the 

sampling period nT. So, NW sample data window can be used 
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together with large N and the zero-padded FFT may be 

computed, to minimize errors in the frequency estimation.  

2.3 Quadratic interpolation 
In order to avoid errors due to frequency quantization [1, 9] a 

simple interpolation procedure based on the second order 

polynomial approximation is used. Assume fp, fq and fr are the 

highest peaks in the frequency distribution from TDFT analysis. 

The magnitude of the signal at these frequencies given by  
 

                (1) 

 

leads to forming the quadratic equations as in (2)   

 

                                      (2) 

 

The Doppler frequency f̂ , which is the root of the quadratic 

equation, is estimated as [9], 

                                                                        (3) 

Target echo frequency ft is a function of radar transmit 

frequency f0 and radar Doppler frequency may be given by  

                                                             (4) 

where Doppler frequency f̂ is a function of radar transmit 

frequency f0 and target velocity vt. It is positive (+) for 

approaching targets and negative (-) for receding targets.  

                                                                   (5) 

where c is the velocity of light. Substituting equation (5) in 

equation (4) yields 

                                                          (6) 

2.4   Kalman filter 
Here Kalman filter is used to smooth noisy measurement from 

the Doppler filter. It involves the design of the Kalman filter 

whose inputs are the velocity estimates by the Doppler filter and 

the outputs are the refined velocity estimates [1, 9]. The state 

space representation of object kinematics is given by 

                                   (7) 

Where Z (k) is the state vector , v (k) and a(k) are 

the velocity and acceleration of the target respectively. (k) is 

the state transition matrix . Assume the measurement 

equation is in the following algebraic form                            

 where                 (8) 

The random variables ω (k) and μ (k) represent the process and 

measurement noise which are white Gaussian with covariance 

matrices Q (k) and R (k) respectively. The Kalman filter 

estimates a state at some point of time and then obtains feedback 

in the form of noisy measurement. These two steps are called 

prediction and correction.   

2.4.1 Prediction 

  

               (9) 

2.4.2     Correction 

          (10) 

  (11) 

                   (12) 

Where  and  are the prediction and 

correction errors. The first task during the correction step is to 

compute the Kalman filter gain K (k) from (10). The next step is 

to generate   a posteriori state estimate  whose elements 

are the unknown target velocity and acceleration, by 

incorporating the measurement as in equation (8). The final step 

is to obtain an a posteriori error covariance estimate via 

equation (12). 

3. ADAPTIVE KALMAN FILTER 

STRUCTURE WITH SINGLE SENSOR 

Fig. 2   Block diagram of Adaptive Doppler Kalman filter 

structure with single sensor 

The filter structure as shown in Fig. 2 uses a single sensor. The 

basic operations in Doppler filter and Kalman filter are the same 

as in section 2. 

3.1    Window length adaptation 
Since we are considering fixed window length in Doppler 

Kalman filter, it experiences a delay in tracking the target 

dynamics [1, 5, 9]. The applied window function length must be 

short enough to avoid the effect of velocity averaging across a 

long interval. This velocity averaging would result in bad 

velocity estimation in the case of intensive object dynamics 

resulting in larger acceleration. On the other hand window 

length has to be long enough to contain relevant information on 

the Doppler frequency shift especially in the case of low signal 

to noise ratio. This is in accordance with the known results from 

the literature [1, 7, 8]. So in adaptive Kalman filtering, proper 

window length is chosen based on acceleration of the target and 

SNR. By obtaining  the target velocity and acceleration 

are estimated. Now the next unknown is the SNR which can be 

estimated as follows. 
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3.2   Choice of optimal window length 
Window length which has less cumulative estimation error (cee) 

is taken as [1, 9] the optimal window length. Thus, Cumulative 

estimation error (cee) is given as,   

                                (13) 

Cumulative error is estimated (cee) for the set of estimated 

velocity at a different window length for the estimated SNR. 

Window length corresponds to the lowest cee is taken as an 

optimal window length. 

3.3   Signal to noise ratio(SNR)      

  estimation  

 

Where  -Estimated signal amplitude 

 

                  (14) 

 

Fig.3 shows the graph on window length verses cee for different 

acceleration at constant 20dB SNR. Window length which has 

less estimation error is taken as the optimal window length. 

From the graph it is observed that the optimum window lengths 

depend on the acceleration of the object. When same responses 

were observed at different SNRs, optimum window lengths are 

different for the same acceleration (a) [1, 14].Thus, the optimum 

window length selection depends on acceleration and SNR. For 

a >10 m/s2 and SNR >10 dB, the window length variation is 

rather linear and linear interpolation technique is used to get 

optimum window length. 

 

Fig.3 Window length verses cumulative estimation error for 

different acceleration at 20dB SNR 

4. KALMAN FILTER WITH STATE 

VECTOR FUSED VELOCITY 

ESTIMATION 
Two sensor information pertaining to the same target can be 

fused together to get the optimized information as shown in 

Fig.4 

 

Fig. 4 Block diagram of non adaptive Kalman filter with 

state vector fusion 

4.1 Fusion technique 
Two commonly employed multi sensor information fusion [10] 

techniques are (i) state-vector fusion and (ii) measurement 

fusion [3, 5]. The state-vector fusion method uses covariance of 

the filtered output of individual noisy sensor data to obtain an 

improved joint state estimate. On the other hand, the 

measurement fusion method directly fuses the sensor 

measurements to obtain a weighted or combined measurement 

and then uses a single Kalman Filter to obtain the final state 

estimate based on the fused measurement [3]. In the present 

case, state-vector fusion methodology has been employed.   

4.1.1 State vector fusion algorithm 

The fused state vector is given by [2], [3], [5]. 

(15) 

Where Z1(k | k )  and Z2(k | k ) are  the estimated states of 

individual sensors  and   is the  error covariance which 

is  given as,  

                                     (16) 

The covariance of the fused state vector is given by 

      (17) 
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5. ADAPTIVE KALMAN FILTER WITH STATE VECTOR FUSED VELOCITY 

ESTIMATION 

 
Fig. 5   Block diagram of adaptive Kalman filter with state vector 

6. STATE VECTOR FUSED ADAPTIVE KALMAN FILTER  VELOCITY ESTIMATION 

 

 
Fig. 6  Block diagram of state vector fused adaptive Kalman filter 
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7. Result and Discussion 
Here it is assumed that both the sensors received the data every 

3 milliseconds. Maximum number of samples for processing is 

5000. (i.e.) the period of observation is  5000×3×10-3 =15s.In 

the velocity profile, fast maneuvering, it is assumed to change 

from 250 m/s to 116.6 m/s within 3.6 s. This gives the 

acceleration rate as 37.13 m/s2. 

First simulation is to compare the effect of  Doppler Kalman 

filter with state vector fused Doppler Kalman filter.Fig.7,8,9 

and 10 show the  performance graphs  of path 1. Fig. 11, 12 

and 13 show the same analysis made for the path 2. 

 
Fig.7 Kalman estimated velocity by sensor1 for path 1  

 

 
Fig.8 Kalman estimated velocity by sensor2 for path 1  

 
Fig.9 Fused Kalman estimated velocity by sensor 1&2 for 

path 1 

 
Fig.10 Cumulative estimation error (cee) in individual 

sensors estimation and fused output for path 1 

 

  

Fig.11 Kalman estimated velocity by sensor1 for path 2  

 

 
Fig.12 Kalman estimated velocity by sensor2 for path 2  

 
Fig.13 Fused Kalman estimated velocity by sensor 1&2     for 

path 2 
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Fig.14 Cumulative estimation error (cee) in individual 

sensors estimation and fused output for path 2 

 

From the above graph, it is obvious that fusion gives better 

velocity optimization in path 2 compared to path 1. Figure 15 

shows the comparative analysis of cumulative error in 

estimation using adaptive Kalman filter by the individual 

sensors with the fused   adaptive Kalman technique (Fig.5) for 

path 2. Figure 16 shows the comparative analysis of error in 

estimation by the adaptive Kalman technique with that of 

adaptive fused Kalman (Fig.6). 

 

 
Fig.15. Estimation of error in adaptive Kalman filter by the 

individual sensors with the fused   adaptive Kalman velocity 

 

 

Fig.16. Estimation of error in adaptive Kalman filter by 

the individual sensors with the adaptive fused Kalman 

velocity estimation 

7.1  Result analysis 
From the results, for different SNR, delay in the Kalman 

smoothing due to the non adaptation, is minimized in the fused 

result. Over the entire SNR range, fusion gives the better result 

than the individual adaptive response at the acceleration and 

deceleration. At constant velocity individual adaptive estimation 

is better than the fused one. It is possible to estimate the velocity 

up to 15 dB SNR in both the paths by using both adaptive fusion 

and fused adaptation techniques. With single sensor information 

velocity estimation is possible only up to 35 dB SNR.  

8. CONCLUSION 
In the case of fast maneuvering (path 2), fusion gives better 

result than the individual sensor estimation. Individual adaptive 

estimation gives better results than the fused estimation only at 

constant velocity. For better smoothing, non adaptive fusion 

technique is best and for less delay in estimation, adaptive 

fusion or fused adaptation techniques are better. There has to be 

a tradeoff between the smoothing and the delay in estimation. 

Performance of the fused adaptation is same as that of the 

adaptive fusion. Fighter aircraft with the velocity of 1.7 mach 

and the maneuverability of 9g to -3.5g (88.2 m/s2 to 34.3 m/s2) 

may be tracked using these algorithms with reliable results. 
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