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ABSTRACT 

The main goals of Association Rule Mining (ARM) are to find 

all frequent itemsets and to build rules based of frequent 

itemsets. But a frequent itemset only reproduces the statistical 

correlation between items, and it does not reflect the semantic 

importance of the items. To overcome this limitation we go for a 

utility based itemset mining approach. Utility-based data mining 

is a broad topic that covers all aspects of economic utility in data 

mining. It takes in predictive and descriptive methods for data 

mining. High utility itemset mining is a research area of utility 

based descriptive data mining, aimed at finding itemsets that 

contribute most to the total utility. The well known faster and 

simpler algorithm for mining high utility itemsets from large 

transaction databases is Fast Utility Mining (FUM). In this 

proposed system we made a significant improvement in FUM 

algorithm to make the system faster than FUM. The algorithm is 

evaluated by applying it to IBM synthetic database. 

Experimental results show that the proposed algorithm is 

effective on the databases tested.  

General Terms 
Algorithms, Performance, Process, Results. 

Keywords 
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1. INTRODUCTION 
Data mining can be regarded as an algorithmic process that takes 

data as input and yields patterns, such as classification rules, 

itemsets, association rules, or summaries, as output [9]. The 

most significant tasks in data mining are the process of 

discovering frequent itemsets and association rules [1]. 

Numerous efficient algorithms are available in the literature for 

mining frequent itemsets and association rules. Incorporating 

economic utility considerations in data mining tasks is gaining 

popularity in recent years. The aim of utility-based data mining 

is to integrate utility considerations in both predictive and 

descriptive data mining tasks. Certain association rules enhance 

the business value and the data mining community has 

acknowledged the mining of these rules of interest since a long 

time. Several business applications have been found to benefit 

from the discovery of frequent itemsets and association rules 

from transaction databases. The goal of Frequent Itemset Mining 

is to find items that co-occur above a user given value of 

frequency, in the transaction database. In the Frequent Itemset 

Mining problem, the occurrence of each item in a transaction is 

represented by a binary value without considering its quantity or 

an associated weight such as price or profit [8]. However, 

quantity and weight are significant for addressing real world 

decision problems that require maximizing the utility in an 

organization. 

Interestingness measures can play an important role in 

knowledge discovery. These measures are intended for selecting 

and ranking patterns according to their potential interest to the 

user [6]. In practice, the frequency of occurrence may not 

express the semantics of applications, because the user's interest 

may be related to other factors, such as cost, profit, or aesthetic 

value. 

Utility based data mining refers to allowing a user to 

conveniently express his or her perspectives concerning the 

usefulness of patterns as utility values and then finding patterns 

with utility values higher than a threshold [7]. A pattern is of 

utility to a person if its use by that person contributes to reaching 

a goal 

The remaining parts of the paper are organized as follows. In 

section 2, high utility itemset mining process is described. 

Existing algorithms were discussed in section 3. In section 4, 

proposed iFUM algorithm is presented. In section 5, 

experimental results were presented and analyzed. Section 6 

concludes the paper 

2. HIGH UTILITY ITEMSET MINING 

PROCESS 
A frequent itemset is a set of items that appears at least in a pre-

specified number of transactions. Formally, let 

{ }mi,...,
2

i,
1

iI =  be a set of items and 

{ }nT,...,
2

T,
1

TDB = a set of transactions where every 

transaction is also a set of items (i.e. itemset). Given a minimum 

support threshold MST an itemset S is frequent iff: 

MST
D

I}SD,TRTR,S|{TR
≥

⊆⊆⊆
     (1) 

2.1 High Utility Itemsets (HUI) 
An itemset with utility value greater than the minimum 

threshold utility as specified by the user depending upon his 

context of usage is called as the high utility itemset [11]. A well 

known model for mining such high-utility itemset was defined 

by Yao et al which is a generalization of the share-mining model 

[2, 3]. The following is the set of definitions given by Yao et al 

and is illustrated by a simple example. 

A transaction independent numerical value say yp defined by the 

user which reflects the importance or the profit value of an item 

say ip is defined as the external utility of the item ip. External 

utilities are stored in a utility table. For example, external utility 

of item B in Table 2 is 10. 
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A transaction dependent numerical value say xp defined by the 

user which reflects the quantity Q of an item say ip in a 

transaction say T is defined as the internal utility of the item ip. 

For example, internal utility of item E in transaction T5 is 2 as 

mentioned in Table 1. 

Utility function f is a function of two variables commonly 

defined as the product of internal and external utility as given 

below 

pypxyxf ×:),(       (2) 

Table 1 Database with 10 Transactions and 5 Distinct Items 

 

TID A B C D E 

1 0 0 18 0 1 

2 0 6 0 1 1 

3 2 0 1 0 1 

4 1 0 0 1 1 

5 0 0 4 0 2 

6 1 1 0 0 0 

7 10 0 0 1 1 

8 3 0 25 3 1 

9 1 1 0 0 0 

10 0 6 2 0 2 

 
Table 2 External Utilities of Items from Database given In 

Table 1 

Item A B C D E 

Profit 3 10 1 6 5 

 
The utility of item ip in transaction T is the quantitative measure 

computed with utility function as defined above  

(i.e.) TpipypxfTpiu ∈= ),,(),(                   (3) 

For example: utility of item E in transaction T5 is 2 × 5 = 10. 

The utility of itemset S in transaction T is defined as follows 

 ∑
∈

=
s

p
i

SpiuSU ),()(      (4) 

For example: utility of itemset {C, E} in transaction T1 is   

u({C,E} , T1) = u({C} , T1) + u({E} , T1) = 18 × 1 + 1 × 5 = 23. 

On the basis of the above definitions, high utility itemset can be 

defined as follows 

Itemset S is of high utility if U(S) ≥ minUtil where minUtil is 

user defined utility threshold in percents of the total utility of the 

database. High utility itemset mining is the task of finding set H 

defined as  

{ }UtilSUISSH min)(,| ≥⊆=                   (5) 

 

where ‘I’ is the set of items (attributes). 

 

3. EXISTING ALGORITHMS 

3.1 UMining Algorithm 
One of the well known algorithm used for mining all high utility 

itemsets is UMining [10]. Figure 1 briefly describes the 

Umining algorithm.Further details of the Umining algorithm and 

detailed description of the function Scan, CalculateAndStore, 

Discover, Generate, and Prune can be found in [10]. 

 

Input : -database T  

  -constraints minUtil  

Output : -all high utility itemsets H 

1.  I = Scan(T); 

2.  C1= I; 

3.  k = 1; 

4.  Ck = CalculateAndStore(Ck ,T, f);  

5.  H = Discover(Ck, minUtil); 

6.  while (|Ck| > 0 and k <= K) 

7.  { 

8.  k = k + 1; 

9.  Ck = Generate(Ck-1, I);  

10.  Ck = Prune(Ck, Ck-1, minUtil);  

11.  Ck = CalculateAndStore(Ck,T, f); 

12.  H = H U Discover(Ck, minUtil); 

13.  } 

14.  return H; 

Fig 1: Pseudo Code of the Umining Algorithm 

3.2 FUM Algorithm 
FUM [5] algorithm is used for mining all high utility itemsets. 

Figure 2 briefly describes the FUM algorithm which generates 

high utility itemsets using CombinationGenerator. 

It is simpler and executes faster than Umining algorithm, when 

large number of itemsets are identified as high utility itemsets 

and as the number of distinct items increases in the input 

database. 

The CombinationGenerator(T) is a method which is used to 

generate all the combinations of the items. It takes the Itemld 

and the level as the input which is generally denoted by the 

variable loop. The factorial computation method is defined in 

this, to generate the factorial of a given number. 

The combination generation is based on the concept proposed by 

Kenneth H. Rosen, Discrete Mathematics and its applications 

[4]. First the items for which the combination is to be generated 

is put in the form of an array. Then the getNext() method is 

called until there are no more combinations left. The getNext() 

method returns an array of integers, which tells the order in 

which to arrange the original array of letters. 

Task: Discovery of High Utility Itemsets  

Input: Database DB {Set of Transactions}  

Transaction DBT ∈  Minimum Utility value threshold minUtil 

Output: High Utility Itemsets  H  

1. Compute the utility value ∀  single itemset 

2. For each DBT ∈  

3.        begin 

4.    if  T  ∉ S  {where S ⊆ DB |  S = [0 .. T-1]}    

5.    begin 

6.    Candidateset  = CombinationGenerator(T) 
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7.    For each C ∈  CandidateSet 

8.      begin 

9.        if  ( HC ∉ ) )min),(( UtilTCU ≥∧  

10.         H.add (C); 

11.             end 

12.    end 

13.  end 

14. return (H); 

CombinationGenerator(T) - Generate all possible combinations 

of itemset ∈  T 

 

Fig 2: Pseudo code of the FUM algorithm 

 

Let us consider Table 1 and Table 2 as input to the proposed 

FUM algorithm. we compute the utility values of all single 

itemsets say A, B, C, D and E in step 1(as explained in section 

2). In step 2, we begin a loop for processing each and every 

transaction present in the DB one by one. In step 4, the 

algorithm generates the itemsets in the current transaction. For 

e.g. In Table 1, the first transaction is represented as CE 

according to FUM algorithm, since only those two items were 

purchased in that transaction. FUM algorithm omits the 

remaining items A, B and D. In a similar way, the remaining 

transactions are processed. The algorithm also checks (step 4), 

whether a transaction defined by an itemset purchased in it, 

repeats its occurrence in a later transaction. If a later transaction 

also contains same itemset purchased in any of the previous 

transactions, then that transaction is ignored from processing. In 

Step 6, the candidate itemsets are generated using the 

CombinationGenerator(T) function, which takes itemset, 

purchased in a particular transaction as input and generate the 

various possible combinations of the itemset. In the consecutive 

steps, the algorithm analyzes each candidate belonging to the 

candidate itemsets generated. In step 9, the algorithm computes 

the utility value of each and every candidate, U(C,T) as 

described in section 2. If the utility value of a candidate is found 

to be more than the minimum utility threshold, which is given as 

input by the user, (say a sales manager) then that particular 

candidate is added to the set of High Utility Itemsets {H} in step 

10 of the algorithm. The condition C ∉  H in step 9 simply 

ensures no duplicate high utility itemsets are generated.  

4. PROPOSED iFUM ALGORITHM 

The core step of FUM algorithm is CombinationGenerator(T) 

which takes significant time to compute. In the existing system 

FUM combination generation is performed for itemsets and its 

subset without checking one important condition. This is 

illustrated as follows, 

A set X is a subset of a set Y if every element of X is also an 

element of Y. Such a relation between sets is denoted by 

YX ⊆  

 

The CombinationGenerator output for itemset AB are 

{ }ABB,A, and itemset ABC are { }ABCAC,BC,AB,C,B,A, .  If 

we have already computed the utility value for any of the 

subsets of ABC and if any of the subset repeats itself as a later 

transaction, then it is not necessary to generate the subsets again 

(which is implemented in step [4]), say for AB and also not 

necessary to calculate the utility value for the same. Existing 

FUM algorithm fails to check this condition so it generates the 

combinations for the already generated subset of the itemsets 

too, if it repeats in a later transaction of the input database. Our 

proposed algorithm avoids these extra computations and 

enhances FUM efficiency. The proposed iFUM algorithm is 

illustrated in Figure 3.  

In step 1 of the iFUM algorithm, we compute the utility values 

of all single itemsets. In step 2, we begin a loop for processing 

each and every transaction present in the DB one by one.  In step 

4, the algorithm generates the itemsets in the current transaction. 

The algorithm checks (step 4) whether a transaction defined by 

an itemset purchased in it, repeats its occurrence in a later 

transaction. If a later transaction also contains same itemset 

purchased in any of the previous transactions, then that 

transaction is ignored from processing and the condition also 

checks if the utility value for any of the subsets is computed 

already, then it is not necessary to generate the subsets again. 

Remaining steps are the same as in FUM algorithm. 

 

Task: Discovery of High Utility Itemsets  

Input: Database DB {Set of Transactions}  

Transaction DBT ∈   

Minimum Utility value threshold minUtil 

Output: High Utility Itemsets H  

[1] Compute the utility value ∀  single itemset 

[2] For each DBT ∈  

[3]   begin 

[4]   if )()( STST ⊄∧∉ {where S ⊆ DB |  S = [0 .. T-1]}    

[5]      begin 

[6]        Candidateset  = CombinationGenerator(T) 

[7]        For each C ∈  CandidateSet 

[8]          begin 

[9]   if UtilTCUHC min),(()( ≥∧∉   

[10]     H.add (C); 

[11]        end 

[12]     end 

[13]   end 

[14]   return (H); 

CombinationGenerator(T) - Generate all possible combinations 

of itemset ∈  T 

 

Fig 3: Pseudo code of the iFUM algorithm 

5. EXPERIMENTAL RESULTS 

We have evaluated the performance of our algorithm and 

compared it with FUM and UMining algorithm. The 

experiments were performed on a 1.86 GHz Intel Celeron M 

CPU Processor with 1 GB RAM, and running on Windows XP. 

The algorithms were implemented in Java language. The data 

utilized in our experimental results is widely-accepted IBM 

synthetic data called T10I4D100K which is obtained from IBM 

dataset generator. This dataset contains 100,000 transactions and 

1000 distinct items. T10I4D100K denotes the Average size of 

the transactions (T), Average size of the maximal potentially 

large itemsets (I) and the number of transactions (D). Utility 

values for the items were assigned randomly in the profit table. 

The experiments were conducted by varying the number of 
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distinct items from 50 to 1000 that are totally available by 

keeping the Minimum Utility Threshold at 1% throughout the 

experiment and execution time was recorded for iFUM, FUM 

and UMining algorithms (refer Table 3). 

The proposed approach results in a significant reduction in the 

execution time. The test results are illustrated through graph 

(refer Figure 4). From the Figure 4 and Table 3, it is observed 

that the execution time of iFUM is considerably less than the 

existing FUM algorithm. 

 

Table 3. Comparison of iFUM, FUM and UMining 

Algorithms based on Number of Items 

 

Number 

of Items 

Execution Time (Seconds) 

iFUM FUM UMining 

50 1176 1246 12268 

100 1169 1244 * 

200 1250 1364 * 

500 1109 1249 * 

1000 1112 1184 * 

*Indicates that, we have to manually stop the system as it 

hanged while executing the UMining algorithm. Hence the 

execution time could not be measured for 100, 200, 500 and 

1000 items respectively for Umining Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Comparison of iFUM and FUM algorithms based on 

number of items 

 

 

 

Table 4. Comparison of execution time, High Utility Itemsets 

(HUI) and Minimum Utility Threshold in iFUM and FUM 

algorithms 

Minimum 

Utility 

Threshold 

iFUM FUM 

HUI 

Execution 

Time 

Seconds 

HUI 

Execution 

Time in  

Seconds 

0.25 62122 1137 62122 1235 

0.5% 13620 1133 13620 1221 

1% 5134 1126 5134 1209 

5% 489 1125 489 1191 

10% 2 1109 2 1177 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Comparison of Execution time, Minimum Utility 

Threshold in iFUM and FUM Algorithms 

 

The experiment was also conducted by varying Minimum Utility 

Threshold (refer Table 4) by keeping 1000 distinct items as 

fixed. It can be observed that execution time of iFUM algorithm 

proved to be less than existing FUM algorithm as seen in Figure 

5. 

6. CONCLUSION 

In this paper, existing UMining and FUM algorithms were 

discussed. We proposed the improved version of FUM 

algorithm, iFUM for mining all High Utility Itemsets. The 

proposed algorithm is compared with existing popular 

algorithms like UMining and FUM by using IBM synthetic data 

set. The experimental result shows that iFUM algorithm is faster 

than other existing algorithms in the literature. The iFUM 

algorithm also scales well as the number of distinct items 

increases in the input database as shown by the experimental 

results obtained.  
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