
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.11, August 2011

32

iFUM - Improved Fast Utility Mining

S. Kannimuthu
Assistant Professor

Sri Krishna College of Engineering
and Technology, Coimbatore, India

Dr. K. Premalatha
Professor

Bannari Amman Institute of
Technology, Sathyamangalam,

India

S. Shankar

Associate Professor
Sri Krishna College of Engineering
and Technology, Coimbatore, India

ABSTRACT

The main goals of Association Rule Mining (ARM) are to find

all frequent itemsets and to build rules based of frequent

itemsets. But a frequent itemset only reproduces the statistical

correlation between items, and it does not reflect the semantic

importance of the items. To overcome this limitation we go for a

utility based itemset mining approach. Utility-based data mining

is a broad topic that covers all aspects of economic utility in data

mining. It takes in predictive and descriptive methods for data

mining. High utility itemset mining is a research area of utility

based descriptive data mining, aimed at finding itemsets that

contribute most to the total utility. The well known faster and

simpler algorithm for mining high utility itemsets from large

transaction databases is Fast Utility Mining (FUM). In this

proposed system we made a significant improvement in FUM

algorithm to make the system faster than FUM. The algorithm is

evaluated by applying it to IBM synthetic database.

Experimental results show that the proposed algorithm is

effective on the databases tested.

General Terms
Algorithms, Performance, Process, Results.

Keywords
ARM, Data Mining, FUM, HUI, iFUM, UMining, Utility Based

Data Mining.

1. INTRODUCTION
Data mining can be regarded as an algorithmic process that takes

data as input and yields patterns, such as classification rules,

itemsets, association rules, or summaries, as output [9]. The

most significant tasks in data mining are the process of

discovering frequent itemsets and association rules [1].

Numerous efficient algorithms are available in the literature for

mining frequent itemsets and association rules. Incorporating

economic utility considerations in data mining tasks is gaining

popularity in recent years. The aim of utility-based data mining

is to integrate utility considerations in both predictive and

descriptive data mining tasks. Certain association rules enhance

the business value and the data mining community has

acknowledged the mining of these rules of interest since a long

time. Several business applications have been found to benefit

from the discovery of frequent itemsets and association rules

from transaction databases. The goal of Frequent Itemset Mining

is to find items that co-occur above a user given value of

frequency, in the transaction database. In the Frequent Itemset

Mining problem, the occurrence of each item in a transaction is

represented by a binary value without considering its quantity or

an associated weight such as price or profit [8]. However,

quantity and weight are significant for addressing real world

decision problems that require maximizing the utility in an

organization.

Interestingness measures can play an important role in

knowledge discovery. These measures are intended for selecting

and ranking patterns according to their potential interest to the

user [6]. In practice, the frequency of occurrence may not

express the semantics of applications, because the user's interest

may be related to other factors, such as cost, profit, or aesthetic

value.

Utility based data mining refers to allowing a user to

conveniently express his or her perspectives concerning the

usefulness of patterns as utility values and then finding patterns

with utility values higher than a threshold [7]. A pattern is of

utility to a person if its use by that person contributes to reaching

a goal

The remaining parts of the paper are organized as follows. In

section 2, high utility itemset mining process is described.

Existing algorithms were discussed in section 3. In section 4,

proposed iFUM algorithm is presented. In section 5,

experimental results were presented and analyzed. Section 6

concludes the paper

2. HIGH UTILITY ITEMSET MINING

PROCESS
A frequent itemset is a set of items that appears at least in a pre-

specified number of transactions. Formally, let

{ }mi,...,
2

i,
1

iI = be a set of items and

{ }nT,...,
2

T,
1

TDB = a set of transactions where every

transaction is also a set of items (i.e. itemset). Given a minimum

support threshold MST an itemset S is frequent iff:

MST
D

I}SD,TRTR,S|{TR
≥

⊆⊆⊆
 (1)

2.1 High Utility Itemsets (HUI)
An itemset with utility value greater than the minimum

threshold utility as specified by the user depending upon his

context of usage is called as the high utility itemset [11]. A well

known model for mining such high-utility itemset was defined

by Yao et al which is a generalization of the share-mining model

[2, 3]. The following is the set of definitions given by Yao et al

and is illustrated by a simple example.

A transaction independent numerical value say yp defined by the

user which reflects the importance or the profit value of an item

say ip is defined as the external utility of the item ip. External

utilities are stored in a utility table. For example, external utility

of item B in Table 2 is 10.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.11, August 2011

33

A transaction dependent numerical value say xp defined by the

user which reflects the quantity Q of an item say ip in a

transaction say T is defined as the internal utility of the item ip.

For example, internal utility of item E in transaction T5 is 2 as

mentioned in Table 1.

Utility function f is a function of two variables commonly

defined as the product of internal and external utility as given

below

pypxyxf ×:),((2)

Table 1 Database with 10 Transactions and 5 Distinct Items

TID A B C D E

1 0 0 18 0 1

2 0 6 0 1 1

3 2 0 1 0 1

4 1 0 0 1 1

5 0 0 4 0 2

6 1 1 0 0 0

7 10 0 0 1 1

8 3 0 25 3 1

9 1 1 0 0 0

10 0 6 2 0 2

Table 2 External Utilities of Items from Database given In

Table 1

Item A B C D E

Profit 3 10 1 6 5

The utility of item ip in transaction T is the quantitative measure

computed with utility function as defined above

(i.e.) TpipypxfTpiu ∈=),,(),((3)

For example: utility of item E in transaction T5 is 2 × 5 = 10.

The utility of itemset S in transaction T is defined as follows

 ∑
∈

=
s

p
i

SpiuSU),()((4)

For example: utility of itemset {C, E} in transaction T1 is

u({C,E} , T1) = u({C} , T1) + u({E} , T1) = 18 × 1 + 1 × 5 = 23.

On the basis of the above definitions, high utility itemset can be

defined as follows

Itemset S is of high utility if U(S) ≥ minUtil where minUtil is

user defined utility threshold in percents of the total utility of the

database. High utility itemset mining is the task of finding set H

defined as

{ }UtilSUISSH min)(,| ≥⊆= (5)

where ‘I’ is the set of items (attributes).

3. EXISTING ALGORITHMS

3.1 UMining Algorithm
One of the well known algorithm used for mining all high utility

itemsets is UMining [10]. Figure 1 briefly describes the

Umining algorithm.Further details of the Umining algorithm and

detailed description of the function Scan, CalculateAndStore,

Discover, Generate, and Prune can be found in [10].

Input : -database T

 -constraints minUtil

Output : -all high utility itemsets H

1. I = Scan(T);

2. C1= I;

3. k = 1;

4. Ck = CalculateAndStore(Ck ,T, f);

5. H = Discover(Ck, minUtil);

6. while (|Ck| > 0 and k <= K)

7. {

8. k = k + 1;

9. Ck = Generate(Ck-1, I);

10. Ck = Prune(Ck, Ck-1, minUtil);

11. Ck = CalculateAndStore(Ck,T, f);

12. H = H U Discover(Ck, minUtil);

13. }

14. return H;

Fig 1: Pseudo Code of the Umining Algorithm

3.2 FUM Algorithm
FUM [5] algorithm is used for mining all high utility itemsets.

Figure 2 briefly describes the FUM algorithm which generates

high utility itemsets using CombinationGenerator.

It is simpler and executes faster than Umining algorithm, when

large number of itemsets are identified as high utility itemsets

and as the number of distinct items increases in the input

database.

The CombinationGenerator(T) is a method which is used to

generate all the combinations of the items. It takes the Itemld

and the level as the input which is generally denoted by the

variable loop. The factorial computation method is defined in

this, to generate the factorial of a given number.

The combination generation is based on the concept proposed by

Kenneth H. Rosen, Discrete Mathematics and its applications

[4]. First the items for which the combination is to be generated

is put in the form of an array. Then the getNext() method is

called until there are no more combinations left. The getNext()

method returns an array of integers, which tells the order in

which to arrange the original array of letters.

Task: Discovery of High Utility Itemsets

Input: Database DB {Set of Transactions}

Transaction DBT ∈ Minimum Utility value threshold minUtil

Output: High Utility Itemsets H

1. Compute the utility value ∀ single itemset

2. For each DBT ∈

3. begin

4. if T ∉ S {where S ⊆ DB | S = [0 .. T-1]}

5. begin

6. Candidateset = CombinationGenerator(T)

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.11, August 2011

34

7. For each C ∈ CandidateSet

8. begin

9. if (HC ∉))min),((UtilTCU ≥∧

10. H.add (C);

11. end

12. end

13. end

14. return (H);

CombinationGenerator(T) - Generate all possible combinations

of itemset ∈ T

Fig 2: Pseudo code of the FUM algorithm

Let us consider Table 1 and Table 2 as input to the proposed

FUM algorithm. we compute the utility values of all single

itemsets say A, B, C, D and E in step 1(as explained in section

2). In step 2, we begin a loop for processing each and every

transaction present in the DB one by one. In step 4, the

algorithm generates the itemsets in the current transaction. For

e.g. In Table 1, the first transaction is represented as CE

according to FUM algorithm, since only those two items were

purchased in that transaction. FUM algorithm omits the

remaining items A, B and D. In a similar way, the remaining

transactions are processed. The algorithm also checks (step 4),

whether a transaction defined by an itemset purchased in it,

repeats its occurrence in a later transaction. If a later transaction

also contains same itemset purchased in any of the previous

transactions, then that transaction is ignored from processing. In

Step 6, the candidate itemsets are generated using the

CombinationGenerator(T) function, which takes itemset,

purchased in a particular transaction as input and generate the

various possible combinations of the itemset. In the consecutive

steps, the algorithm analyzes each candidate belonging to the

candidate itemsets generated. In step 9, the algorithm computes

the utility value of each and every candidate, U(C,T) as

described in section 2. If the utility value of a candidate is found

to be more than the minimum utility threshold, which is given as

input by the user, (say a sales manager) then that particular

candidate is added to the set of High Utility Itemsets {H} in step

10 of the algorithm. The condition C ∉ H in step 9 simply

ensures no duplicate high utility itemsets are generated.

4. PROPOSED iFUM ALGORITHM

The core step of FUM algorithm is CombinationGenerator(T)

which takes significant time to compute. In the existing system

FUM combination generation is performed for itemsets and its

subset without checking one important condition. This is

illustrated as follows,

A set X is a subset of a set Y if every element of X is also an

element of Y. Such a relation between sets is denoted by

YX ⊆

The CombinationGenerator output for itemset AB are

{ }ABB,A, and itemset ABC are { }ABCAC,BC,AB,C,B,A, . If

we have already computed the utility value for any of the

subsets of ABC and if any of the subset repeats itself as a later

transaction, then it is not necessary to generate the subsets again

(which is implemented in step [4]), say for AB and also not

necessary to calculate the utility value for the same. Existing

FUM algorithm fails to check this condition so it generates the

combinations for the already generated subset of the itemsets

too, if it repeats in a later transaction of the input database. Our

proposed algorithm avoids these extra computations and

enhances FUM efficiency. The proposed iFUM algorithm is

illustrated in Figure 3.

In step 1 of the iFUM algorithm, we compute the utility values

of all single itemsets. In step 2, we begin a loop for processing

each and every transaction present in the DB one by one. In step

4, the algorithm generates the itemsets in the current transaction.

The algorithm checks (step 4) whether a transaction defined by

an itemset purchased in it, repeats its occurrence in a later

transaction. If a later transaction also contains same itemset

purchased in any of the previous transactions, then that

transaction is ignored from processing and the condition also

checks if the utility value for any of the subsets is computed

already, then it is not necessary to generate the subsets again.

Remaining steps are the same as in FUM algorithm.

Task: Discovery of High Utility Itemsets

Input: Database DB {Set of Transactions}

Transaction DBT ∈

Minimum Utility value threshold minUtil

Output: High Utility Itemsets H

[1] Compute the utility value ∀ single itemset

[2] For each DBT ∈

[3] begin

[4] if)()(STST ⊄∧∉ {where S ⊆ DB | S = [0 .. T-1]}

[5] begin

[6] Candidateset = CombinationGenerator(T)

[7] For each C ∈ CandidateSet

[8] begin

[9] if UtilTCUHC min),(()(≥∧∉

[10] H.add (C);

[11] end

[12] end

[13] end

[14] return (H);

CombinationGenerator(T) - Generate all possible combinations

of itemset ∈ T

Fig 3: Pseudo code of the iFUM algorithm

5. EXPERIMENTAL RESULTS

We have evaluated the performance of our algorithm and

compared it with FUM and UMining algorithm. The

experiments were performed on a 1.86 GHz Intel Celeron M

CPU Processor with 1 GB RAM, and running on Windows XP.

The algorithms were implemented in Java language. The data

utilized in our experimental results is widely-accepted IBM

synthetic data called T10I4D100K which is obtained from IBM

dataset generator. This dataset contains 100,000 transactions and

1000 distinct items. T10I4D100K denotes the Average size of

the transactions (T), Average size of the maximal potentially

large itemsets (I) and the number of transactions (D). Utility

values for the items were assigned randomly in the profit table.

The experiments were conducted by varying the number of

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.11, August 2011

35

distinct items from 50 to 1000 that are totally available by

keeping the Minimum Utility Threshold at 1% throughout the

experiment and execution time was recorded for iFUM, FUM

and UMining algorithms (refer Table 3).

The proposed approach results in a significant reduction in the

execution time. The test results are illustrated through graph

(refer Figure 4). From the Figure 4 and Table 3, it is observed

that the execution time of iFUM is considerably less than the

existing FUM algorithm.

Table 3. Comparison of iFUM, FUM and UMining

Algorithms based on Number of Items

Number

of Items

Execution Time (Seconds)

iFUM FUM UMining

50 1176 1246 12268

100 1169 1244 *

200 1250 1364 *

500 1109 1249 *

1000 1112 1184 *

*Indicates that, we have to manually stop the system as it

hanged while executing the UMining algorithm. Hence the

execution time could not be measured for 100, 200, 500 and

1000 items respectively for Umining Algorithm.

Fig 4: Comparison of iFUM and FUM algorithms based on

number of items

Table 4. Comparison of execution time, High Utility Itemsets

(HUI) and Minimum Utility Threshold in iFUM and FUM

algorithms

Minimum

Utility

Threshold

iFUM FUM

HUI

Execution

Time

Seconds

HUI

Execution

Time in

Seconds

0.25 62122 1137 62122 1235

0.5% 13620 1133 13620 1221

1% 5134 1126 5134 1209

5% 489 1125 489 1191

10% 2 1109 2 1177

Fig 5: Comparison of Execution time, Minimum Utility

Threshold in iFUM and FUM Algorithms

The experiment was also conducted by varying Minimum Utility

Threshold (refer Table 4) by keeping 1000 distinct items as

fixed. It can be observed that execution time of iFUM algorithm

proved to be less than existing FUM algorithm as seen in Figure

5.

6. CONCLUSION

In this paper, existing UMining and FUM algorithms were

discussed. We proposed the improved version of FUM

algorithm, iFUM for mining all High Utility Itemsets. The

proposed algorithm is compared with existing popular

algorithms like UMining and FUM by using IBM synthetic data

set. The experimental result shows that iFUM algorithm is faster

than other existing algorithms in the literature. The iFUM

algorithm also scales well as the number of distinct items

increases in the input database as shown by the experimental

results obtained.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.11, August 2011

36

7. REFERENCES

[1]Agrawal R, Srikant R, “Fast algorithms for mining

association rules”, Proceedings of 20th International

Conference on Very Large Databases, Santiago, Chile, pp.

487-499, 1994.

[2]Carter C, Hamilton H J, Cercone N, “Share based measures

for itemsets”, Proceedings of First European Conference on

the Principles of Data Mining and Knowledge Discovery,

pp. 14-24, 1997.

[3]Hilderman R J Carter C L Hamilton H J Cercone N, “Mining

market basket data using share measures and characterized

itemsets”, Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pp. 159-170, 1998.

[4] Kenneth H. Rosen, "Discrete Mathematics and Its

applications", Mc Graw Hill., 4th edition, 298-300.

[5] S.Shankar, Dr.T.Purusothaman, S.Jayanthi “A Fast

Algorithm for Mining High Utility Itemsets”, IEEE

International Advance Computing Conference (IACC

2009) Patiala, India, 6-7 March 2009

[6] Shankar.S and T.Purusothaman, “A Novel Utility Sentient

Approach for Mining Interesting Association Rules”,

IACSIT International Journal of Engineering and

Technology Vol.1, No.5, December, 2009, ISSN: 1793-

8236

[7] S Shankar, T Purusothaman, “Discovering imperceptible

associations based on Interestingness: a utility-oriented data

mining approach”, Data Science journal, volume 9, 24

February 2010

[8] Shankar.S and T.Purusothaman, “Utility Sentient Frequent

Itemset Mining and Association Rule Mining: A Literature

Survey and Comparative Study”, International Journal of

Soft Computing Applications ISSN: 1453-2277 Issue 4

(2009), pp.81-95

[9] Yu-Chiang Li, Jieh-Shan Yeh, Chin-Chen Chang “Isolated

items discarding strategy for discovering high utility

itemsets”, Elsevier Journal, Data & Knowledge

Engineering 64 (2008) 198–217.

[10] Yao H and Hamilton J, “Mining itemset utilities from

transaction databases”, Data & KnowledgeEngineering, pp.

59: 603-626, 2006.

[11] Yao H, Hamilton H J, Butz C J, “A foundational approach

to mining itemset utilities from databases”, Proceedings of

the Third SIAM International Conference on Data Mining,

Orlando, Florida, pp. 482-486, 2004.

