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ABSTRACT 

In this paper an EP and PSO based optimization algorithms have 
been proposed for solving optimal power flow problems with 

multiple objective functions. These algorithms take into 

consideration all the equality and inequality constraints.  The 

improvement in system performance is based on reduction in 

cost of power generation and active power loss. The proposed 
algorithms have been compared with the other methods reported 

in the literature. Simulation studies have been carried out for the 

optimal solutions of the IEEE 14-bus and IEEE 30-bus systems.  
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1. INTRODUCTION 
The main objective of electric power utilities is to provide high 
quality reliable supply to the consumers at the lowest possible 

cost while operating to meet the limits and constraint imposed 

on the generating units. This formulates the well-known 

Economic Load Dispatch (ELD) problem for finding the optimal 

combination of the output power of all online generating units 
that minimizes the total fuel cost, while satisfying all constraints 

[1]. 

The Optimal Power Flow (OPF) is an important criterion in 

today’s power system operation and control due to scarcity of 

energy resources, increasing power generation cost and ever 
growing demand for electric energy. As the size of the power 

system increases, load may be varying. The generators should 

share the total demand plus losses among themselves. The 

sharing should be based on the fuel cost of the total generation 

with respect to some security constraints. Generally, most of the 
approaches apply sensitivity analysis and gradient-based 

optimization algorithms by linearizing the objective function 

and system constraints around an operating point. Unfortunately, 

the problems of OPF are highly nonlinear and a multi model 

optimization problems, i.e. there exist more than one local 
optimum. Therefore, conventional optimization methods that 

make use of derivatives and gradients are, in general, not able to 

locate or identify the global optimum [7].  

ELD is solved traditionally using mathematical 

programming based on optimization techniques such as lambda 
iteration, gradient method and so on. Economic load dispatch 

with piecewise linear cost functions is a highly heuristic, 

approximate and extremely fast form of economic dispatch. 

Complex constrained ELD is addressed by intelligent methods. 

Among these methods, some of them are genetic algorithm (GA) 
and, evolutionary programming (EP), dynamic programming 

(DP), tabu search, hybrid EP, neural network (NN), adaptive 

Hopfield neural network (AHNN), particle swarm optimization 

(PSO) etc. For calculation simplicity, existing methods use 

second order fuel cost functions which involve approximation 
and constraints are handled separately, although sometimes 

valve-point effects are considered [13][15].  

Intelligent methods are iterative techniques that can search not 

only local optimal solutions but also a global optimal solution 

depending on problem domain and execution time limit. They 
are general-purpose searching techniques based on principles 

inspired from the genetic and evolution mechanisms observed in 

natural systems and populations of living beings. These methods 

have the advantage of searching the solution space more 

thoroughly. The main difficulty is their sensitivity to the choice 
of parameters. Among intelligent methods, PSO is simple and 

promising. It requires less computation time and memory. It  has 

also standard values for its parameters. In this, the Particle 

Swarm Optimization (PSO) is proposed as a methodology for 

economic load dispatch [2].  
 

2. OPF BY EVOLUTIONARY 

COMPUTATION TECHNIQUES  

2.1 Evolutionary Programming (EP) 

Evolutionary Programming (EP) is an optimization technique 

based on the natural generation. It involves random number 

generation at the initialization process. The generated random 

numbers represent the parameters responsible for the 
optimization of the fitness value. In addition, EP also involves  

statistics, fitness calculation, mutation and the new generation 

will be bred by mode of selection. EP is a global optimization 

technique that starts with the population of randomly generated 
candidate solution and evolves a better solution over a number 

of generations or iterations. It is more suitable to effectively 

handle non-continuous and non-differentiable function. The 

main stage of this technique includes initialization, mutation, 

competition and selection [13]. 

EP Algorithm  
i. An Initial population of Np parent vectors is considered as the 

trial solution 
ii.  From these parents off springs are created by mutation, hence      

Np off springs are obtained 

iii.  By combining the parents and off springs, 2Np solutions are 

obtained 

iv.  Through competition and selection, first Np optimal 
solutions are selected 
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v. The selected solutions are considered as parents for the next 

iteration 

vi.  After the required number of iterations, the best optimal 
solution is obtained. 

 

2.2 Particle Swarm Optimization 
PSO shares many similarities with evolutionary computation 

techniques such as Genetic Algorithms (GA). The system is 

initialized with a population of random solutions and searches 

for optima by updating generations. However, unlike GA, PSO 

has no evolution operators such as crossover and mutation [3]. 
Velocity of each agent can be modified by the following 

equation:  
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The current position (searching point in the solution space) can 
be modified by the following equation 
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PSO Algorithm 

Step 1: Generation of initial condition of each agent. Initial 

searching points (
0

is ) and velocities (
0

iv ) of each agent are 

usually generated randomly within the allowable range. The 

current searching point is set to pbest for each agent. The best 

evaluated value of pbest is set to gbest, and the agent number 

with the best value is stored.  

Step 2: Evaluation of searching point of each agent. The 
objective function value is calculated for each agent. If the value 

is better than the current pbest of the agent, the pbest value is 

replaced by the current value. If the best value of pbest is better 

than the current gbest, gbest is replaced by the best value and the 

agent number with the best value is stored.  
Step 3: Modification of each searching point. The current 

searching point of each agent is changed using eqns. (2.1), (2.2), 

and (2.3).  

Step 4: Checking the exit condition. The current iteration 

number reaches the predetermined   maximum iteration number, 
then exits. Otherwise, the process proceeds to step 2. 

3. MATHEMATICAL FORMULATION 

OF OPF PROBLEM 
The OPF problem is to optimize the steady state 

performance of a power system in terms of an objective function 

while satisfying several equality and inequality constraints. 
Mathematically, the OPF problem can be formulated as given 

[4][5] 

Min ),( uxF
  

    (3.1) 

Subject to 0),( uxg     (3.2) 

0),( uxh       (3.3) 

Where x is a vector of dependent variables consisting of slack 

bus power 
1GP , load bus voltages 

LV , generator reactive power 

outputs 
GQ , and the transmission line loadings 

lS , Hence, x can 

be expressed as given  
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Where NL,NG and nl are number of load buses, number of 

generators and number of transmission line respectively. 

u is the vector of independent variables consisting of generator 

voltages VG, generator real power outputs 
GP  except at the slack 

bus 
1GP , transformer tap settings T, and shunt VAR 

compensations 
CQ . Hence u can be expressed as given  

]...,...,...,...[
121 1 NCNGNG CCNTGGGG

T QQTTPPVVu
 

(3.5) 

Where NT and NC are the number of the regulating transformers  
and shunt compensators, respectively. F is the objective function 

to be minimized. g is the equality constraints that represents 

typical load flow equations and h  is the system operating 

constraints  

Objectives 
The objectives considered for minimization are as follows.  

Objective Function 1: Fuel cost of generating units (
1f
) 

Objective Function 2: Active power loss (
2f ) 

Objective Function 3: Weighted multi objective function (
3f

) 
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Constraints 

The OPF problem has two categories of constraints:  

Equality Constraints: These are the sets of nonlinear power flow 

equations that govern the power system, i.e.  
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where   

GiP  and 
GiQ are the real and reactive power outputs injected at 

bus- i respectively, the load demand at the same bus is  

represented by 
DiP and 

DiQ , and elements of the bus admittance 

matrix are represented by 
ijY  and 

ij
. 

Inequality Constraints: These are the set of constraints that 

represent the system operational and security limits like the 

bounds on the following:  

1) Generators real and reactive power outputs  

     
GGiGiGi NiPPP ,,1,maxmin                  (3.11) 

     
GGiGiGi NiQQQ ,,1,maxmin                        (3.12) 

2) Voltage magnitudes at each bus in the network  

     NLiVVV iii ,,1,maxmin                           (3.13) 

3) transformer tap settings  

     NTiTTT iii ,,1,maxmin                          (3.14) 

4) Reactive power injections due to capacitor banks  

     CSiQQQ CiCiCi ,,1,maxmin                       (3.15) 

5) Transmission lines loading  

     nliSS ii ,,1,max                                            (3.16) 

6)  Voltage stability index  
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     NLiLjLj ii ,,1,max                                 (3.17)

  

Handling of Constraints: There are different ways to handle 

constraints in evolutionary computation optimization algorithms. 
In this thesis, the constraints are incorporated into fitness 

function by means of penalty function method, which is a 

penalty factor multiplied with the square of the violated value of 

variable is added to the objective function and any infeasible 

solution obtained is rejected.  
To handle the inequality constraints of state variables  

including load bus voltage magnitudes and output variables with 

real power generation output at slack bus, reactive power 

generation output, and line loading, the extended objective 

function can be defined as:  
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where  

pK , 
qK , 

vK ,
sK  are penalty constants for the real power 

generation at slack bus, the reactive power generation of all 
generator buses or PV buses and slack bus, the voltage 

magnitude of all load buses or PQ buses, and line or transformer 

loading, respectively. )( 1GPh , )( GiQh , )( iVh , )( iSh  are the 

penalty function of the real power generation at slack bus, the 
reactive power generation of all PV buses and slack bus, the 

voltage magnitudes of all PQ buses, and line or transformer 

loading, respectively. NL is the number of PQ buses. The 

penalty function can be defined as:  

2

max )()( xxxh , if maxxx  

        = 
2
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where )(xh is the penalty function of variable x  , 
maxx  and 

minx  are the upper limit and lower limit of variable x , 

respectively. 

 
In this section i describe the dataset and how it  is used to detect 

intrusions. I first examine what type of data was present in the 

dataset, what intrusion types were represented and what features 

were extracted. 

4. COMPUTATIONAL PROCEDURE  
Step 1: Input the system data for load flow analysis 

Step 2: Run the power flow  

Step 3: At the generation Gen =0; set the simulation parameters 
of EP/PSO parameters and randomly initialize k    individuals 

within respective limits and save them in the archive.  

Step 4: For each individual in the archive, run power flow to 

determine load bus voltages, angles, load bus  voltage stability 

indices, generator reactive power outputs and calculate line 
power flows.  

Step 5: Evaluate the penalty functions 

Step 6: Evaluate the objective function values and the 

corresponding fitness values for each indiv idual.  

Step 7: Find the generation local best xlocal and global best 
xglobal and store them. 

Step 8: Increase the generation counter Gen = Gen+1.  

Step 9: Apply the EP/PSO operators to generate new k 

individuals 

Step 10: For each new individual in the archive, run power flow 
to determine load bus voltages, angles, load bus voltage stability 

indices, generator reactive power outputs and calculate line 

power flows.  

Step 11: Evaluate the penalty functions 

Step 12: Evaluate the objective function values and the  
corresponding fitness values for each new individual.  

Step 13: Apply the selection operator of EP/PSO and update the 

individuals. 

Step 14: Update the generation local best xlocal and global best 

xglobal and store them. 
Step 15: If one of stopping criterion have not been met, repeat 

steps 4-15. Else go to step 16 

Step 16: Print the results 

There are two stopping criterion for the optimization algorithm. 

The algorithm can be stopped if the maximum number of 
generations is reached (Gen = Genmax) or there is no solution 

improvement over a specified number of generations. The first 

criterion is used in this paper. 

5. SIMULATION RESULTS 
The proposed EP and PSO algorithms for solving 

optimal power flow problems are tested on standard IEEE 14 & 

IEEE 30-bus test systems. The EP and PSO parameters used for 

the simulation are summarized in Table 1  
Table 1 Optimal parameter settings for EP and PSO 

Parameter EP PSO 

Population size 

Number of iterations 

Cognitive constant, c1 

Social constant, c2 
Inertia weight, W 

20 

250 

- 

- 
- 

20 

150 

2 

2 
0.3-0.95 

 

5.1 IEEE 14-bus system results  
Figures 1 shows the convergence characteristics of the three 
objective functions. It can be observed that the EP converge to 

lower values than PSO during initial evolutions and the PSO 

converge to a minimum value than EP after 20 iterations.  
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Fig 1 Convergence of multiple objective functions by EP and 

PSO 
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Table 2 Optimal settings of control variables 

Control 

variables 

Objective function-1 Objective function-2 Objective function-

3 

EP PSO EP PSO EP PSO 

P G1 

P G2 

P G3 

P G4 

P G5 

1.1242 
0.7000 

0.2783 

0.2605 

0.2778 

1.1279 
0.7000 

0.2749 

0.2613 

0.2746 

0.2485 
0.7000 

0.8000 

0.5424 

0.3163 

0.6138 
0.3889 

0.8000 

0.5019 

0.3049 

1.1191 
0.7000 

0.2728 

0.2746 

0.2734 

1.1278 
0.7000 

0.2748 

0.2627 

0.2739 

QG1 

QG2 

QG3 

QG4 

QG5 

0.0100 

0.1108 

0.1760 
0.1283 

0.0995 

-0.0929 

0.0534 

0.0373 
0.0924 

0.1459 

0.0741 

0.0506 

0.1786 
0.0044 

0.0505 

0.1796 

-0.1906 

-0.0342 
0.1807 

0.0628 

-0.0789 

0.1838 

0.1688 
0.0322 

0.1177 

-0.0936 

0.0574 

0.0370 
0.1177 

0.1782 

V1  

V2  

V3  

V4  

V5  

1.0700 

1.0567 

1.0275 

1.0137 
1.0480 

1.0700 

1.0621 

1.0389 

1.0598 
1.0688 

1.0700 

1.0644 

1.0541 

1.0491 
1.0326 

1.0700 

1.0541 

1.0425 

1.0309 
1.0387 

1.0700 

1.0609 

1.0321 

1.0564 
1.0571 

1.0715 

1.0621 

1.0387 

1.0520 
1.0784 

T1  

T2  

T3  

0.9543 
1.0879 

1.0157 

1.0322 
0.9000 

0.9922 

1.0260 
0.9665 

0.9669 

1.0064 
0.9360 

1.0473 

1.0331 
0.9017 

0.9617 

1.0118 
0.9201 

1.0004 

Qsh1 

Qsh2 

Qsh3 

Qsh4 

Qsh5 

0.0521 
0.0975 

0.0191 

0 

0.0306 

0.0260 
0.0500 

0.0351 

0.0500 

0.0500 

0.0016 
0.0105 

0.0389 

0.0824 

0.0787 

0.0183 
0.0098 

0.0348 

0.0178 

0.0399 

0.0369 
0.1000 

0.0658 

0.0364 

0.0551 

0.0500 
0.0500 

0.0218 

0.0208 

0 

Cost 

($/hr) 

840.114 839.0662 1105.4 1072.1 839.70 839.27 

Loss 

p.u.MW 

0.0509 0.0488 0.0583 0.0194 0.0499 0.0493 

CPU 

Ti me  

63.0150 35.5470 60.9060 39.7190 62.969 41.469 

The above table presents the optimal settings of the control-

variables with the three objective functions. From the Table 2, it 

was found that all the state variables satisfy their lower and 

upper limits. 
It can be observed that the PSO algorithm is able to reduce the 

cost of generation less than that of the cost of generation 

obtained by the EP method. It is also evident from the results 

that particle swarm optimization technique outperforms in 

achieving minimum of the specified objective under different 
network contingencies when compared with evolutionary 

programming method. 

 

 objective function-1
 

objective function-2
 

objective function-3
 

L-indices
 

 
  

Line loadings
 

 
  

Load voltages 

 
 

 
Fig 2 L-indices, Line loadings and Load voltages of 14 bus by EP and PSO for multiple objective functions

 
 
Figures 2 shows the percentage line loadings, load bus voltages  

and voltage stability indices after the optimization by EP and 

PSO methods with the three objective functions.  

5.2 IEEE 30-bus system results  
The proposed PSO algorithm was applied to find the optimal 

scheduling of the power system for the base case loading 

condition to minimize specified objective functions. Generator 
active-power outputs, generator terminal voltages, transformer 

tap settings and shunt reactive power compensating elements 

were taken as control variables. The control variables are 

represented as floating point numbers in the population. The 

upper and lower voltage limits of load buses were taken as 1.06 
and 0.95 respectively. 
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Fig 3 Convergence of multiple objective functions by 

EP and PSO 
Figure 3 shows the convergence characteristics of the three 

objective functions. It can be observed that the EP converge to 

lower values than PSO during initial evolutions and the PSO 

converge to a minimum value than EP after 20 iterations.  
Table 3 Optimal settings of control variables    

Contro
l 

variabl
es 

Objective 
function-1 

Objective 
function-2 

Objective 
function-3 

EP PSO EP PSO EP PSO 

PG1 

PG2 

PG3 

PG4 

PG5 

PG6 

1.7814 
0.4990 
0.1961 

0.1200 
0.2242 
0.1206 

1.7616 
0.4885 
0.2207 

0.1217 
0.2150 
0.1200 

0.5304 
0.7940 
0.3500 

0.3000 
0.5000 
0.4000 

0.9421 
0.6868 
0.2480 

0.1768 
0.4870 
0.3405 

1.7778 
0.4985 
0.2008 

0.1167 
0.2277 
0.1200 

1.7618 
0.4884 
0.2212 

0.1220 
0.2151 
0.1200 

QG1 

QG2 

QG3 

QG4 

-0.196 
0.1451 

0.3189 
0.1496 

-0.162 
0.1268 

-0.012 
0.2631 

- 0.186 
0.1183 

0.3264 
0.0022 

-0.056 
-0.0017 

0.1036 
0.1485 

   -0.143 
   0.1859 

   0.2465 
   0.0308 

   -0.200 
   0.0698 

   0.0956 
   0.2648 

QG5 

QG6 
0.4744 
0.1218 

0.0988 
0.2056 

0.3885 
0.0912 

0.0538 
0.2138 

0.4489 
0.2000 

0.0889 
0.4472 

V1 

V2 

V3 

V4 

V5 

V6 

1.0500 
1.0364 
1.0284 

1.0649 
1.0148 
1.0634 

1.0500 
1.0379 
1.0189 

1.1000 
1.0109 
1.0768 

1.0500 
1.0500 
1.0444 

1.0330 
1.0349 
1.0571 

1.0500 
1.0418 
1.0282 

1.0538 
1.0209 
1.0432 

   1.0500 
1.0345 
1.0175 

1.0375 
1.0080 
1.0577 

1.0500 
1.0385 
1.0196 

1.1000 
1.0121 
1.1000 

T1 

T2 

T3 

T4 

1.0331 
0.9327 

0.9891 
0.9611 

1.0049 
0.9591 

1.0064 
0.9592 

1.0115 
0.9544 

1.0041 
0.9842 

1.0000 
0.9964 

1.0473 
0.9616 

 
0.9769 
1.0058 

1.0240 
0.9812 

0.9956 
0.9819 

1.1000 
0.9755 

Qsh1 

Qsh2 

Qsh3 

Qsh4 

Qsh5 

Qsh6 

Qsh7 

Qsh8 

Qsh9 

0.0054 
0.0057 
0.0127 

0.0641 
0.1000 
0.0581 
0.0507 

0.0495 
0.0275 

0.0282 
0.0443 
0.0365 

0.0414 
0.0389 
0.0415 
0.0339 

0.0500 
0.0326 

0.0154 
0.0237 
0.0605 

0.0560 
0.0461 
0.0913 
0.0410 

0.0243 
0.0283 

0.0166 
0.0239 
0.0259 

0.0321 
0.0168 
0.0378 
0.0205 

0.0269 
0.0257 

0.0342 
0.0238 
0.0709 

0.0415 
0.0491 
0.0544 
0.0419 

0.0200 
0.0761 

    0 
0.0231 
0.0495 

0.0447 
0.0336 
0.0500 
0.0234 

0.0500 
0.0500 

Cost 
($/hr) 

806.3633 801.9525 968.6317
 

899.1088 806.619   
 
802.268 

Loss         

(p.u.MW) 
0.1703 0.0936 0.0494 0.0472 0.1075     0.0944 

CPU 

Time  

    145 92.172 134.0320 129.6410 120.263 90.9330 

Table 3 presents the optimal settings of the control-variables  

with the three objective functions. From the Table 3, it was 

found that all the state variables satisfy their lower and upper 

limits.  

From the Table 5.3, it can be observed that the PSO algorithm is  
able to reduce the cost of generation less than that of the cost of 

generation obtained by the EP method. It is also evident from 

the results that particle swarm optimization technique 

outperforms in achieving minimum of the specified objective 

under different network contingencies when compared with 
evolutionary programming method. 

 objective function-1
 

objective function-2
 

objective function-3
 

L-indices
 

   

Line 

loadings
 

   

Load 

voltages 

   

Fig 4 L-indices, Line loadings and Load voltages of 14 bus by EP and PSO for multiple objective functions
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Figure 4 shows the percentage line loadings, load bus voltages  

and voltage stability indices after the optimization by EP and 

PSO methods with the three objective functions.  
The comparison of fuel cost of the proposed methods with those 

of the methods reported in the literature for IEEE 30-bus system 

is given in Table 4. It can be seen from the Table 5.4 that the 

PSO algorithm gives less cost of generation compared with the 

cost of generation obtained with other methods. 
 

Table 4 Comparison of fuel costs 

Method      Fuel Cost ($/hr) 

EP [13] 802.9070 

TS [13] 802.5020 

TS/SA [13] 802.7880 

ITS [13] 804.5560 

IEP [13] 802.4650 

SADE_ALM [15] 802.4040 

OPFPSO [14] 800.4100 

MDE-OPF [16] 802.3760 

Genetic Algorithm [17] 803.05  

Gradient method [18] 802.43  

PSO (proposed) 801.9525 

 

Here an IEEE-30 bus system is considered. Evolutionary 

programming (EP) method has been applied on the IEEE-30 bus  

system. Here we have considered three objective functions. 
Objective function1 is the cost objective function. Objective 

function 2 is the loss objective function. Objective function 3 is 

the multi objective function i.e. both cost and losses are taken as  

objectives. The fitness function is taken as the reciprocal of the 

objective function.  

6. CONCLUSION 

An EP and PSO based optimization algorithms have been 

proposed for solving optimal power flow problems with 

different objective functions. These algorithms take into 

consideration all the equality and inequality constraints.  The 

improvement in system performance is based on reduction in 

cost of power generation and active power loss. The proposed 

algorithms have been compared with the other methods reported 

in the literature. Simulation studies have been carried out for the 

optimal solutions of the IEEE 14-bus and IEEE 30-bus systems. 

It was observed that the results obtained by the proposed 

algorithms can be implemented in real life power systems for 

operation and analysis. 

Based on the overall observations from the results obtained on 

various IEEE test systems, it can be concluded that the proposed 

methods for optimal solutions are suitable for implementing in 

modern power system operation. 
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