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ABSTRACT 

Over the last decade, evolutionary and meta-heuristic algorithms 

have been extensively developed and used as search and 

optimization tools in various problem domains, including 
science, commerce, and engineering. Their broad applicability, 

ease of use, and global perspective may be considered as the 

primary reason for their success. The honey-bees mating process 

may also be considered as a typical swarm-based approach to 

optimization, in which the search algorithm is inspired by the 
process of real honey-bees mating. In this paper we present an 

alternative approach for navigational path plan of multi robot 

using HBMO algorithm. We reveal that this proposed 

optimization scheme outperforms other Evolutionary algorithms 

like Particle swarm optimization, Differential Evolutionary 
algorithm in the task of navigation.  
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1. INTRODUCTION 
Robot navigational path planning has been cited as a vital 

promenade of research in the field of Robotics. There are 
numerous scenarios in which large groups of robots are required 

to navigate around shared environment. Some specific examples 

in this era could be delivery robots in an office, a warehouse, a 

shipping yard, or a mines, or even virtual armies in a computer 

war game [1]. In all the cases, there are several robots with 
independent goals that must decussate the shared environment 

without colliding with other static or dynamic members present 

in its runway. Robot navigation has been accustomed to be 

solution to three fundamental questions: (1) Where am I? (2) 

Where are other places in affinity to me? (3) How can I 
locomote from one place to another? [2] In multi-robot scenario, 

with insinuation to the given world map, the path planning 

problem ascertains the trajectory motion of the robot from a 

given starting point to a given destination in addition it also 

avoids the collisions with obstacles as well as the other robots 
that comes along its runway. The basic path planning problem 

has several extensions and classifications as indicated below. 

One common classification of the problem includes local and 

global planning [3], [4]. In a local path planning a robot 

navigates through the world map with obstacles in steps and 
delineate it‟s next position towards the goal, satisfying one or 

more predefined constraints on path-, time-, energy-optimality 

[5], [6].  In global planning, the entire navigation path is planned 

by the robot prior to its movement towards the goal. This type of 

global planning is referred to as offline planning in literature [7]. 
Whereas Local path planning includes navigation and online 

planning, this is referred to as navigation only in literature. The 

phrase, „motion planning‟ deals with the location of the robot on 

a planned trajectory in a given workspace.  Motion planning 

thus takes care of planning the path with some resource 
management or constraints over time. 

Over the last three decades, significant progress has been 

attained on single robot motion planning in mobile robotics. 

Fuzzy obstacle avoidance and motion planning algorithms , 

evolutionary algorithms  and some classical approaches such as 
quad-tree [5],[6], graph based algorithms, heuristic algorithms 

such as real time A* [8], neural algorithm [9], are some of the 

well known techniques for the path planning as evident from the 

literature. In a Multi-robot path planning problem each robot has 

a predefined starting and destination locale in the given world 
map and the robots owe to plan their itinerary either locally or 

globally without hitting any of its teammates or obstacles that 

come across its runway and also attempt to minimize the 

traversal of the robots. The encumbrance that comes in the path 

of the robot can be stationary or dynamic. However this paper 
deals with stationary obstacles given in the world map for the 

robots. Robot path planning is part of a larger class of problems 

pertaining to scheduling and routing, and is known to be NP-

hard (NP-complete) [10]. The path planning problem is known 

to be PSPACE hard [11]. This means that the complexity of the 
path planning problem increases exponentially with the 

dimension of the configuration space. The configuration space is 

the space of all complete specifications of the position of every 

point of a robot system. 

The concept of swarm intelligence as an optimization technique 
is projected for finding collision  free paths in work space 

containing differently shaped and distributed and centralized 

encumbrance. Therefore the problem of path planning is hence 

assumed to be an optimization technique, where the paths free 

from collisions receive higher fitness value in correspondence to 
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those problems resulting in collision with an obstacle path 

planning problem. Honey Bees Mating Optimization Algorithm 

(HBMO) can be accustomed to be a typical swarm based 
approach of optimization. The algorithm is stimulated by the 

behavior of social insects, which are characterized by three main 

features: cooperation among adults in brood care and nest 

construction, overlapping of at least two generations and 

reproductive division of labor.  

In this paper, we realiz e the mult i-agent motion-planning 

problem by the HBMO algorithm. Naturally, for the 

centralized approach we need to construct a fitness function for 

the HBMO to determine the next position of all the robots that 

lie on optimal trajectories leading towards respective goals. 
The fitness function has two main components: 1) the 

objective function describing the selection of next position 

on an optimal trajectory and 2) the constant representing 

collision avoidance with peers and static obstacles. 

Rest of the article is organized as follows: in section 2 we 
describe the formulation of the multi-robot motion planning 

problem Section 3 describes structure of Honey Bees colony, as 

they are in nature and HBMO. The pseudo-code for solving the 

given constrained optimization function is scripted in Section 4. 

Experimental results and the computer simulation are depicted 
in Section 5. Finally we conclude with section 6 by comparing 

other swarm intelligence techniques like DE and PSO and 

further possibilities of improvement. 

2. PROBLEM FORMULATION 
The conceptualization speculates the evaluation of the next 

position of the robot in its workspace thereby avoiding collision 

with other robots and the static hindrances in its runway from 

the current locality of the robot in the workspace. The following 
are the presuppositions made to validate the multi-robot path 

planning problem:  

 The current and the destination locale of each robot is  

known prior with respect to a given reference co-ordinate 
system. 

 Among a fixed set of actions for motion the robot has to 

select only one action at a time.  

 The path planning problem hence incurs a number of steps 
until all the robots reach their respective destination. 

The following principles are used satisfying the assumptions. 

 The robot first ascertains the next position in order to co-

ordinate itself with the destination and constructs a path to 
that location. 

 If more than one robot occupies the same next locale then 

this calibration may result in possible collision with its 

teammates. This collision may occur with a static obstacle 
as the position is occupied by a static hindrance. To avoid 

such collision a new next position is to be resolved for 

which the robot has to be rotated left or right by certain 

angle. 

 The robot will move to the calculated next position if it can 
align itself towards its goal location without any collision. 

 If turning left or right requires the same angle of rotation of 
the robot about z-axis, the tie towards goal is arbitrarily 

broken. 

According to principle (1) each robot first determines its next 

position towards its goal.  

 
 

 

 

 

 

 
Fig 1: Current and next position of the i th robot 

Let, 

 At time instant t the current position of robot  is ( )   

 At time instant (t+1) the next position of robot is ( )     

 The goal position of the robot  (  

 The angle of rotation of robot is  to align itself towards 

its goal position 

 The velocity of robot  is   
 

So from Fig. 1, we have 

 (1) 

 (2) 
 

For =1 sec, above equations are reduced to 

  (3) 

  (4) 
 

According to principle (3), if the determined next position of 

robot , ( ) is not occupied by any other robot or static 

obstacle,  should move to ( ) and then ( ) will become 
its current position. According to principle (2) if determined 

( ) results in a collision, this ( ) has to be abandoned 

and new ( ) is calculated so that the line joining ( ), 

( ) and ( ), (  do not touch the static obstacle as 

shown in Fig. 2.  

 

 

 

      

  

 

 

Fig 2: Selection of (
ix ,

iy ) from (
ix ,

iy ) to avoid collision 

In order to reach the goal position ( the parameters 

which must be taken care are given as follows. 

Total distance traversed by robot  from current position 

( ) to next position ( ) and from next position ( ) to 

goal position ( , which is given as 
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+

     (5) 

Substituting the values of   and  from (3) and (4) we have for 
all n robots 

2 2{ (( cos ) ( sin ) )}

1

n
Dist v x v x y v yi i i i ig i i i ig

i

 (6) 

Minimization of Dist confirms that the robots will follow the 

shortest paths. The distance between next position of robot  

and all other teammates is given as . In order to avoid 

collision of i-th robot with j-th robot we have to consider the 

constraint  where r is radius of the robot  

Let the distance between next position of robot  and static 

obstacle is given as . The optimization problem here 

includes an objective function f, concerning minimization of 

Euclidian distance between the current positions of the robots 
with their respective goal positions, constrained by obstacles and 

teammates on the path. The objective function for the proposed 

optimization problem is given by 

    

2 2{ (( cos ) ( sin ) )}
1

n
f v x v x y v yi i i i ig i i i ig

i

+ 

     
( 1)/2

2(min(0,( 2 ))) /
' '' ' 1

n n
f d r f dsti jdp i obsi j

 (7) 

Where (>0) and (>0) are scale factors. In our experiments, 

we used =5000 and =100. 

3. HONEY BEE MATING OPTIMIZATION 

ALGORITHM 
The honey bee is a social insect that can survive only as a 
member of a community, or colony. The colony inhabits an of 

different drone's sperm in her spermatheca, she can use parts of 

the honey bee community consists of three structurally different 

forms: The queen (reproductive female), the drones (male) and 

the workers (no reproductive female). These castes are 
associated with different functions in the colony; each caste 

possesses its own special instincts geared to the needs of the 

colony. The HBMO Algorithm combines a number of different 

steps and the main steps of HBMO are depicted in figure 3.  

 

Fig 3: Steps of HBMO. 

Each of them corresponds to a different phase of the mating 

process of the honey bee. A drone mates with a queen 

probabilistically using an annealing function as: 

Prob(D) = exp(-D(f)/S(t))   (8) 

where Prob (D) is the probability of adding the sperm of drone 

D to the spermatheca of the queen (that is, the probability of a 

successful mating), D(f) is the absolute difference between the 

fitness of D and the fitness of the queen (for complete 
description of the calculation of the fitness function see below) 

and S(t) is the speed of the queen at time t. The probability of 

mating is high when the queen is with the high speed level, or 

when the fitness of the drone is as good as the queen's. After 

each transition in space, the queen's speed decreases according 
to the following equations: 

S (t +1) = α. S (t)    (9) 

E (t+1) = . E (t)   (10) 

Where α and  are a factors such that  (0, 1) and are the 

amount of speed and energy reduction after each transition and 

each step respectively. Initially, the speed of the queen is  

generated at random. A number of mating flights are realized. At 

the start of a mating flight drones are generated randomly and 
the queen selects a drone using the probabilistic rule in Eq. (8).  

If the mating is successful (i.e., the drone passes the 

probabilistic decision rule), the drone's sperm is stored in the 

Queen‟s spermatheca. By using the crossover of the drone's and 

the queen's genotypes, a new brood (trial solution) is generated, 
which can be improved later by employing workers to conduct 

local search. In real life, the role of the workers is restricted to 

brood care and for this reason the workers are not separate 

members of the population and they are used as local search 

procedures in order to improve the broods produced by the 
mating flight of the queen. If the new brood is better than the 

current queen, it takes the place of the queen. If the brood fails  

to replace the queen, then in the next mating flight of the queen 

this brood will be one of the drones. 

4. SOLVING CONSTRAINED 

OPTIMIZATION USING HBMO 
In this section we propose a solution to the centralized version 

of the multi-robot motion planning problem using HBMO. The 

proposed scheme presumes current position of n-robots and their 

speed, and determines next position of each  robot by optimizing 

the given constrained single-objective function. Here angles of 
rotation of n robots are considered to be parameters of each 

solution. An algorithm outlining the scheme is discussed below: 

Pseudo Code: 

Input: Initial position ( ii yx , ), goal position ( igx , igy ) and 

velocity iv  for n  robots where ni1  and a threshold 

value . 

Output: Trajectory of motion iP  for each robot iR  from 

( ii yx , ) to (( , )ig igx y  
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Begin  

Set for all robot i  

iicurr xx ; iicurr yy ; 

For robot 1i to N  

   Repeat 

Call HBMO ( icurricurr yx , ,, pos-vector) 

// pos-vector denotes current position of all robots // 

Move-to ( icurricurr yx , ); 

Until 
iGicurr

 

  // icurr  = ( icurricurr yx , ), Gi = (
igx ,

igy )// 

End For; 

End. 

 

Procedure HBMO ( ,   pos-vector) 

Begin 

Initialize all the bees (initial population); 

Initialize problem parameters as well as algorithm parameters 
like 

 D No. of Drones; 

 B No. of Broods; 

 W No. of worker bees; 

 C Capacity of Spermatheca; 

 Smax Maximum speed of Queen at starting of mating 
flight; 

 Smin Minimum speed of Queen; 

 Emax Maximum Energy of Queen at the starting of 

mating flight; 

 γ Energy reduction schema; 

 α Speed reduction schema; 

  Evaluate the fitness ( ) of the population; 

  Set the bee with highest fitness as Queen and set 

; 

  For Iter=1 to Maxiter do 

    Begin 

      While is NOT full do 

      Begin 

Select a drone depending on  depending on 

Prob (  as in equation (8); 

Store the drone  in queen‟s spermatheca; 

Update as in equation (9); 

   End While. 

       For i=1 to B do 

          Begin 

          
      End For.  

      For i=1 to W do 

        Begin 

             Improve the broods by local search; 

      End For.  

      Select the  with highest fitness; 

      If  

         Then  

                  ; 

      End If.  

End For.  
    Update: 

            ; 

             

Return; 

End 

 

5. EXPERIMENT AND COMPUTER 

SIMULATION 
The multi-robot path planning was implemented in C on a 

Pentium processor. The experiment was performed with input 

parameters as shown inTable1, alongside 10 similar soft-bots of 

circular cross section. The radius of robot was 6 pixels. For each 

robot the starting and the goal points are pre-defined prior to 
initiating the experiment. The experiments were performed with 

2,4,6,8 and 10 differently shaped obstacles. 

Table 1.Input parameters values 

Input Parameters Initialized values  

No. of population 10 

D 9 

B 9 

W 5 

C 9 

Smax 1 

Smin 0.2 

Emax 1 

α 0.93 

γ 0.93 

While performing the experiments, old obstacles were retained 

and new obstacles were added. The experiments were conducted 

with equal velocities for all the robots in a given run of the 
program; however, the velocities were adjusted over different 

runs of the same program. 

One of our experimental world-maps is shown in Fig. 4. Fig. 

4(a) demonstrates an initial configuration of the world map with 

4 dark obstacles, and the starting and the goal positions of 6 
circular soft-bots. The steps of movement of the robots are 

shown in Fig. 4(b).  

 
Fig4 (a): Initial configuration of the world map with 4 

obstacles. 
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Fig 4(b): Final configuration of the world map.  

To analyze the performance of the proposed multi-robot motion-

planning problem, we measured the following two parameters. 

5.1 Average total path deviation (ATPD) 
Let Pik be a path from the starting point Si to the goal point Gi 

generated by the program for robot Ri in the kth run. If Pi1, 

Pi2,…, Pik are the paths generated over k runs then the average 

path traversed (APT) by robot Ri is given by  and the 

average path deviation for this robot is evaluated by measuring 

the difference between APT and the ideal shortest path between 

Si  to Gi (with minimum threshold spacing with each obstacle). 

The threshold in our experiment was considered to be one pixel.  

If the ideal path for robot Ri obtained geometrically is Pi-ideal, 

then the average path deviation is given by  Pi-ideal -  

Therefore for n robots in the workspace the average total path 

deviation (ATPD) is . 

5.2 Average Uncovered Target Distance  
Given a goal position Gi and the current position Ci of a robot on 

a 2-dimensional workspace, where Gi and Ci are 2-dimensional 

vectors, the uncovered distance of robot i is 

 || Gi- Ci ||, where ||.|| denotes Euclidean norm. 

For n robots, uncovered target distance (UTD) is the sum of || 

Gi- Ci || i.e., UTD=  

Now, for k runs of the program, we evaluate the average of 

UTDs and call it the average uncovered target distance (AUTD). 

For all experiments conducted in this study, we considered k=5. 

The experiment was conducted using the centralized version of 
the algorithm, where we used (8) as the fitness function to 

determine the next position of each robot from the current 

position. The algorithm is iterated until all the robots reach their 

respective goal positions. Let the number of robots be n and the 

number of obstacles m. the experiment was performed by setting 
same velocity for all the robots in a given program run and 

AUTD readings versus the number of steps were noted for each 

run. The experiment was then repeated by changing velocities of 

the robots in each run.  

Fig. 5 shows that with decrease in velocity, AUTD takes a 
longer time to attain zero value. Similar observations also follow 

for the number of robots n, as a variable in the AUTD versus 

number of steps plot (Fig. 6). 

Fig. 5 also shows that the AUTD gradually diminishes with 

iterations. Further, it is noted that the larger the velocity settings 

of the robots in program run, the faster is the fall off in the 
AUTD profile. 

The fall-off in AUTD over program steps for a given n is  

demonstrated in Figs. 6 where we see that the larger the number 

of robots, the slower the convergence. Slower convergence, in 

turn, causes a delayed fall-off in AUTD. 

 
 

Fig 5: AUTD vs. Number of steps with velocity as variable 

for number of obstacle=5 (constant). 

 

Fig. 6. AUTD vs. Number of steps with number of robots as 

variables for number of obstacle=8 (constant). 
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Fig. 7(a). ATPD vs. Number of Robots with number of 

obstacles as variables for velocity =16 unit (constant). 

We note from Fig. 7(a) that ATPD is a non-decreasing function 
of n for a constant m.  An intuitive interpretation of this 

phenomenon is that with increase in n, robots face more 

constraints to plan local trajectories, thereby increasing ATPD. 

It is also noted from Fig. 7(a) that for a constant n, an increase in 

m causes more spatial restrictions in trajectory planning, thereby 
increasing ATPD. The same observations follow from Figure 

7(b). 

 

Fig 7(b): ATPD vs. number of obstacles with no. of robots as 

variables for velocity=16 unit (constant). 

The fall-off in AUTD over time for a given n is demonstrated in 

Fig 8(a) where we see that the larger the number of robots, the 

slower the convergence. Slower convergence, in turn, causes a 

delayed fall-off in AUTD. Also we note from Fig. 8(b) that for a 
constant n, an increase in m causes more spatial restrictions in 

trajectory planning, thereby increasing time required to reach the 

goal position. 

 
Fig 8(a): AUTD vs. time with number of robots as variables 

for velocity=16 unit (constant). 

 
Fig 8(b): AUTD vs. time with number of robots as obstacles 

for velocity=16 unit (constant). 

The relative performance of DE, PSO and HBMO can be 

studied through error estimation as indicated in Fig. 9(a)-(c). In 

these figures, we plotted the average of total path traversed 

(ATPT) obtained from classical DE-, PSO- and HBMO - based 
experiments, corresponding to each value of n. We also 

evaluated the error in ATPT by taking the difference of ATPT 

values obtained from DE and HBMO as shown in Fig. 9(b) and 

also from PSO and HBMO as shown in Fig. 9(c). Let Ei be the 

error for the i-th sample data. Since the errors for different 
sample data are all positive, indicating a superiority of HBMO 

over DE and PSO, a measure of the relative goodness of HBMO 

over DE and PSO can be defined as the root mean square error 

Er.m.s= 28.58386384 and Er.m.s= 107.3231872 respectively. 

This shows HBMO as having an advantage over DE and PSO 
for the multi-robot motion planning problem. Of course, the root 

mean square error (28.58386384 and 107.3231872 respectively) 

at the sample points being insignificantly less than the root mean 

square value (1091.754129 and 1136.364117 respectively) of 

the averaged ATPT profiles for DE, PSO and HBMO - based 
simulations. 
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Fig 9(a): Average total path traversed vs. Number of robots.  

 

Fig 9(b): Average (dotted line) and the difference (solid line) 

of ATPT vs. Number of robots obtained from the Fig. 9(a). 

In Fig. 10, we plotted the average of total path deviation 

(ATPD) obtained from classical DE-, PSO- and HBMO - based 
experiments, corresponding to each value of n. From the figure 

it has been noted that path deviation incurred in case of HBMO-

based simulation is less than that of classical DE and PSO- 

based simulations.  

From Fig. 11, it has been noted that AUTD takes more time to 
attain a zero value in case of classical DE and PSO- based 

simulations than HBMO-based simulation 

 
Fig 9(c): Average (dotted line) and the difference (solid line) 

of ATPT vs. Number of robots obtained from the Fig. 9(a). 

 

Fig 10: Average total path deviation vs. Number of robots . 

 

Fig 11: Average uncovered target distance vs. Number of 

steps. 

The relative performance of HBMO, DE and PSO-based can be 

studied through the plot of average values of uncovered target 

distance (AUTD), total path traversed (ATPT) and total path 
deviation (ATPD) obtained from HBMO-, DE- and PSO-based 

experiments and also by observing the number of steps required 

for the robots to reach their goals with HBMO, DE and PSO 

based algorithm as shown in Fig. 12(a)-12(c). HBMO seems to 

have marginally outperformed classical DE and PSO 
considering all the cases.  

 
Fig 12(a): Final configuration of the world map after 

execution of the HBMO- based simulation with 6 robots and 
4 obstacles requiring 35 steps. 
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Fig 12(b): Final configuration of the world map after 

execution of DE- based simulation for 6 robots and 4 

obstacles requiring 37 steps. 

 

Fig 12(c): Final configuration of the world map after 

execution of PSO based- simulation for 6 robots and 4 

obstacles requiring 38 steps. 

6. CONCLUSION 
The paper introduced a new technique for multi-robot path-

planning in a given environment with an ultimate objective to 

select the shortest path length of all the robots without hitting 

any obstacles in the world map. The HBMO algorithm has been 

employed here for local path-planning of the individual robots. 
Experiments reveal that the proposed scheme outperforms the 

PSO- and DE-based path-planning scheme at least with respect 

to two well-known metrics: ATPT and AUTD. 
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