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ABSTRACT                                  
Safety-critical systems have to be fault tolerant and also meet 

stringent temporal constraints. Various redundancy strategies are 

built into such mission-critical applications to ensure the overall 

success of the mission. This paper implements a fault tolerant 

scheduling scheme on a dual processor system, wherein the 

redundancy is made at the task level.  The system continues to 

function with graceful degradation under failure conditions. The 

redundancy management employed in the proposed scheme 

enhances the performance capability of the system. Based on 

this approach, the scheme is implemented with hardware 

simulation using LPC-2148 development boards.  This 

simulation when used for implementing any practical safety-

critical application can contribute to efficient utilization of 

computing resources and can prove to be highly cost effective as 

the number of processors increase. 

General Terms 

Fault-tolerance, Resource management, scheduling 

Keywords 

Redundancy, Multiprocessor, Fault-tolerance, Safety-critical  
 

1. INTRODUCTION  
Embedded systems often have significant energy constraints, 

and many are battery-powered. So, embedded systems use low 

power consuming processors with small memory size, to 

minimize costs and energy consumption. Some of the features 

that safety-critical embedded systems possess are fault-

tolerance, temporal deadlines, etc. In safety-critical applications, 

a compromise in the performance or a fault in the system cannot 

be tolerated. Fault-tolerant design, also known as fail-safe 

design, is a design that enables a system to continue operation, 

possibly at a reduced level (also known as graceful 

degradation)[1], rather than failing completely, when some part 

of the system fails. A fault-tolerant system has to tolerate fault 

like transient, intermittent or permanent hardware faults.  In this 

paper, we assume a permanent failure. A fault-tolerant design 

has to be such that, in case of faults, at least its minimal 

functionality should be maintained.  One approach to hardware 

fault recovery is the use of redundancy. Both software and 

hardware redundancy have been used for fault tolerance. One 

such approach, N-version programming, uses static redundancy 

in the form of independently written programs (versions) that 

perform the same functions, and their outputs are voted at 

special checkpoints. In a hardware redundancy, parallel 

resources employed like dual redundancy, triple modular 

redundancy, etc. are expected to make the system fault tolerant. 

Real-time systems like safety-critical systems have to meet 

stringent deadlines[4],[5]. Missing any deadlines can be 

catastrophic.  

The microcontroller chosen for the implementation of this fault 

tolerant multiprocessor system is the LPC 2148. The LPC2148 

microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU 

with real-time emulation and embedded trace support, that 

combines the microcontroller with embedded high speed flash 

memory ranging from 32 kB to 512 kB. A 128-bit wide memory 

interface and unique accelerator architecture enable 32-bit code 

execution at the maximum clock rate. For critical code size 

applications, the alternative 16-bit Thumb mode reduces code by 

more than 30 % with minimal performance penalty. Due to their 

tiny size and low power consumption, LPC2148 are ideal for 

applications where miniaturization is a key requirement, such as 

access control and point-of-sale. A blend of serial 

communications interfaces ranging from a USB 2.0 Full Speed 

device, multiple UARTs, SPI, SSP to I2Cs, and on-chip SRAM 

of 8 kB up to 40 kB, make these devices very well suited for 

communication gateways and protocol converters, soft modems, 

voice recognition and low end imaging, providing both large 

buffer size and high processing power. Various 32-bit timers, 

single or dual 10-bit ADC(s), 10-bit DAC, PWM channels and 

45 fast GPIO lines with up to nine edge or level sensitive 

external interrupt pins make these microcontrollers particularly 

suitable for industrial control and medical systems. 

 

2. MOTIVATION  
For applications that require very high dependability, the costs 

for providing high redundancy can be very prohibitive.   

Any strategy that can minimize the amount of computing 

resources leading to significant improvement in terms of 
reduction of size, weight, volume and power can be highly 

beneficial in aerospace applications. For example, it can mean 

decreased payloads in space vehicles. 

3. BACKGROUND 
Hardware redundancy may be provided in one of the following 

ways:One for One Redundancy, N + X Redundancy, Load 

Sharing 

One for One Redundancy: Every hardware module will haves a 

redundant hardware module[6]. The hardware module which 

performs the jobs under normal conditions is called Active and 

the redundant unit is called standby. 

http://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Failure
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N + X Redundancy:  In the scheme,  if N hardware modules are 

required to perform system functions, the system is configured 

with N + X hardware modules; typically X is much smaller than 

N. If any of the N modules fail, one of the X modules takes over 

its functions. Since health monitoring of N units by X units at all 

times is not practical, a higher level module monitors the health 

of N units. If one of the N units fails, it selects one of the X units 

(It may be noted that one for one is a special case of N + X) [9]. 

Load Sharing: In this scheme, under zero fault conditions, all the 

hardware modules that are equipped to perform system 

functions, share the load. A higher level module performs the 

load distribution. It also maintains the health status of the 

hardware units [12]. If one of the load sharing modules fails, the 

higher level module starts distributing the load among the rest of 

the units. There is graceful degradation in performance with 

hardware failure. Our scheme has used a similar strategy but 

modified. 

 

4. FRAMEWORK  
In the traditional dual redundant scheme, the hot standby takes 

over and becomes active, if the primary unit fails. In the 

proposed improved scheme, under normal conditions, the 

critical tasks are allocated in a duplicated manner in both 

processors while the non-critical tasks are shared between the 

two processors[2]. The slack available allows for additional 

flexibility for allocation of optional tasks[11]. If there is a 

failure, the improved scheme provides two modes, Mode 0 and 

Mode 1. 

Mode 0: All non-critical tasks of the failed system are 

reassigned and executed in the operating processor and no 

optional tasks are executed. 

Mode 1: Some non-critical tasks and optional tasks in the failed 

processor are dropped. In our paper we have chosen to 

implement the Mode 0. 

The critical tasks are duplicated in both the processors. This is to 

ensure that even when one of the processors fail, the most vital 

functions and those that affect the safety of the users and the 

device are carried out. In order to maintain the functionality of 

the system even under failure, the processors have to recognize 

the working condition of each other continuously. Therefore, we 

require a system with two serial ports. One port connects to the 

hardware facilitator and the other port connects to the second 

processor for mutual health check.  

 

5. IMPLEMENTATION 

5.1   Hardware Overview 
We implement our dual processor system using a prototype 

board with NXP LPC2148 ARM7TDMI processor and can be 

clocked up to 60 MHz. This processor has 40kB of RAM and 

512kB of internal flash. We chose the board because it is 

inexpensive and has hardware interfaces for the components we 

require. ARM is also a fairly simple architecture. Our prototype 

device is given in Figure 5.1. LPC2148 offers features like USB 

2.0 device, 2xUARTs, RTC, 2x10bit ADCs each with multiple 

channels, 1xDAC,2xI2C, 1xSPI, 1XSSP, 2x32-bit TIMERS, 

6XPWM, FAST I/0 support and WDT. It also supports In 

System Programming (ISP). It runs on µCOS-II, a highly 

portable real-time operating system and is expected to achieve 

very high speed   

5.2 System Components 
Figure 5.2   illustrates the actual implementation and the other 

requirements. The memory size required for our scheme is very 

small.  As illustrated, the system consists of three LPC 2148 

Processors mutually connected through serial cables. Switches 

are used to simulate the fault condition. An LED extension 

board is connected to the hardware facilitator to display a task 

set. The hardware facilities on a development board, as always, 

cannot be tailored according to our application specific 

requirements. The scheme requires that the resources are 

shared.ie, for example, if it is an automatic door operating 

system, both the processors have to monitor and operate the 

same door [8]. The drawback of the development boards is that 

there is only one connector to access each port. Moreover, the 

task hardware source, be it an LED or LCD display (these are 

only some examples that can be interfaced to the LPC2148) has 

to be connected to both the processors P1 and P2.  Hence we go 

for a hardware facilitator that will act as the   common resource     

to which both P1 and P2 can connect, to control the task 

hardware resource (LEDs). The LPC-2148 board possesses two 

serial ports (UART communication) and hence is best for the 

implementation of the simultaneous communication with the 

two other boards[10]. It also is portable with µCOS-II which is a 

real-time operating system. 

 
Figure 5.1. Embedded Board Integrating an 

ARM LPC 2148 

 
 

Figure 5. 2 Actual implementation 
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The block diagram has been shown in Figure 5.3. The processor 

in the middle is the hardware facilitator , which is connected to 

the LED extension board. The processor on the left and right 

were programmed as processor P1 and P2 respectively. The 

serial port connections serve as a means to do the ‘health-check’ 

of the processors. 

 

 

Figure 5.3. Block diagram 

 

5.3 System and Task Model: 

The proposed scheme is experimented with simulated task 

sets. A sample task set generated is given below: 

 

Task.No Ci(sec) Ti(sec) C / 

NC 

1 0.2 0.45 C 

2 0.5 0.12 C 

3 0.9 2.19 NC 

4 1.2 2.37 NC 

 

where C indicates critical tasks and NC indicates non-critical 

tasks. 

The tasks were taken as the blinking of four LEDs of an LED 

extension board(as the board does not have extra LEDs). The 

LPC 2148 microcontroller was programmed to utilize the five 

LEDs of an extension board which was connected to the 

facilitator so that every time either processor finishes scheduling 

of a particular task, it can execute the LED tasks. The serial port 

connections serve as a means to do the ‘health-check’ of the 

processors. 
 The two processors are running on the µCOS-II operating 

system. 

 The same version of the operating system is working in both 

the processors. 

 The processors have two serial ports (that can be used to 

check the health status of each other). 

μC/OS-II  provides many features such as the addition of a 

fixed-sized memory manager, user definable callouts on task 

creation, task deletion, task switch and system tick, supports 

TCB extensions, stack checking, etc. [7]μC/OS-II has developed 

portable versions for various of ARM CPUs such as 

ARM7TDMI, ARM9, Strong ARM and etc. It supports ARM 

kernel based CPUs produced by Atmel, Hynix, Intel, Motorola, 

Philips, Samsung, Sharp and etc. 

 

5.4 Approach  
5.4.1 Assumptions 

The two processors are identical and tightly coupled. 

1. All tasks considered are independent. 

2. All tasks are periodic and critical tasks are non-pre-

emptable. 

5.4.2 Operating scenarios: 

1. Fault free scenario 
In fault-free condition, the system offers the operation of both 

the processors in such a manner that the critical tasks are 

duplicated and the non-critical tasks are shared in between the 

two processors P1 and P2. The health status of the processors is 

mutually checked by each other. The processors schedule all the 

tasks and when the scheduling is over, an indication in the form 

of a UART transmission of a character is done to notify the 

hardware facilitator to execute the task.  

 

2. Fault condition 
The functioning status or ‘health-status’ of the processors is 

observed by continuous mutual check conducted by the 

processors on each other. When a fault occurs, the working 

processor includes some of the tasks from the taskset of the 

faulty processor into its own and executes the previous and new 

tasks as a whole taskset. Since the critical tasks were already 

included in the taskset(critical tasks duplicated), the system 

continues with safe operation . In this way the functionality of 

the system is maintained. This is done by continuously 

monitoring the UART transmission. 

 

6. ALGORITHM IMPLEMENTATION   
P indicates one of the processor P1,P2 or P3 where, P3  is the 

Hardware Facilitator. 

Algorithm for processors P1 and P2 : 

 

Begin    

A. If P = P1                  //for processor P1 

 

 Mutual Health Check 

If DATA SENT = ’B’ 

Schedule tasks of taskset. Transmit a character by 

UART in each task to enable P3 to identify the task 

Else 

Schedule tasks of taskset and some tasks of P2 

 Execute tasks in P3 

 

B. If P = P2                  //for processor P2 

 

 Mutual Health Check 

 

If DATA SENT = ’A’ 

Schedule tasks of taskset. Transmit a character by 

UART in each task to enable P3 to identify the task. 

Else 

Schedule tasks of taskset and some tasks of P2. 

 Execute tasks in P3. 

 

End 

Algorithm for the hardware facilitator: 

Begin 

 

P1 P2 

P3 
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 Check for reception of UART character from both P1 

and P2. 

 Identify the tasks from the UART character received. 

 Execute the task if the character is received from either 

P1 or P2.(critical tasks are scheduled in both). 

End 

 

7. RESULTS  
For, the total execution time in fault-free condition: 2.8ms, 

execution time in faulty condition: 2.1ms and therefore available 

time for execution for of more tasks (optional):0.7ms. The 

proposed scheme provides an efficient way to utilize the 

available resource while providing the required reliability and 

functionality. 

In the implementation given below, execution time of one 

processor in fault-free condition is 2.1ms which means that there 

is still scope for accepting more tasks. And hence, in case of 

occurrence of fault, the working processor, having more time 

available, can accommodate some of the tasks of the faulty-

processor, (upto 0.7ms)and hence maintaining the critical 

functionality of the system. 

8. CONCLUSION AND FUTURE WORK  
In this paper we have presented a dual processor system which 

can tolerate one processor fault. This scheme can be extended to 

an m-processor system with faults upto the level of m-1 

processor failures. The system provides fault tolerance as well as 

better resource utilization.  As future work, performance metrics 

can be measured to show the system capability.  This 

implementation can also be further extended to schedule 

aperiodic tasks . This can mean that this strategy  can be applied 

to any generic taskset for a real-time application like an 

automotive systems. 
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