
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.2, August 2011

28

Hardware Implementation of an Improved Resource

Management Scheme for Fault Tolerant Scheduling of

a Multiprocessor System

Sherin Abraham
Amrita Vishwa Vidyapeetham

Coimbatore, India

Sivraj .P
Amrita Vishwa Vidyapeetham

Coimbatore, India

Radhamani Pillay
Amrita Vishwa Vidyapeetham

Coimbatore, India

ABSTRACT
Safety-critical systems have to be fault tolerant and also meet

stringent temporal constraints. Various redundancy strategies are

built into such mission-critical applications to ensure the overall

success of the mission. This paper implements a fault tolerant

scheduling scheme on a dual processor system, wherein the

redundancy is made at the task level. The system continues to

function with graceful degradation under failure conditions. The

redundancy management employed in the proposed scheme

enhances the performance capability of the system. Based on

this approach, the scheme is implemented with hardware

simulation using LPC-2148 development boards. This

simulation when used for implementing any practical safety-

critical application can contribute to efficient utilization of

computing resources and can prove to be highly cost effective as

the number of processors increase.

General Terms

Fault-tolerance, Resource management, scheduling

Keywords

Redundancy, Multiprocessor, Fault-tolerance, Safety-critical

1. INTRODUCTION
Embedded systems often have significant energy constraints,

and many are battery-powered. So, embedded systems use low

power consuming processors with small memory size, to

minimize costs and energy consumption. Some of the features

that safety-critical embedded systems possess are fault-

tolerance, temporal deadlines, etc. In safety-critical applications,

a compromise in the performance or a fault in the system cannot

be tolerated. Fault-tolerant design, also known as fail-safe

design, is a design that enables a system to continue operation,

possibly at a reduced level (also known as graceful

degradation)[1], rather than failing completely, when some part

of the system fails. A fault-tolerant system has to tolerate fault

like transient, intermittent or permanent hardware faults. In this

paper, we assume a permanent failure. A fault-tolerant design

has to be such that, in case of faults, at least its minimal

functionality should be maintained. One approach to hardware

fault recovery is the use of redundancy. Both software and

hardware redundancy have been used for fault tolerance. One

such approach, N-version programming, uses static redundancy

in the form of independently written programs (versions) that

perform the same functions, and their outputs are voted at

special checkpoints. In a hardware redundancy, parallel

resources employed like dual redundancy, triple modular

redundancy, etc. are expected to make the system fault tolerant.

Real-time systems like safety-critical systems have to meet

stringent deadlines[4],[5]. Missing any deadlines can be

catastrophic.

The microcontroller chosen for the implementation of this fault

tolerant multiprocessor system is the LPC 2148. The LPC2148

microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU

with real-time emulation and embedded trace support, that

combines the microcontroller with embedded high speed flash

memory ranging from 32 kB to 512 kB. A 128-bit wide memory

interface and unique accelerator architecture enable 32-bit code

execution at the maximum clock rate. For critical code size

applications, the alternative 16-bit Thumb mode reduces code by

more than 30 % with minimal performance penalty. Due to their

tiny size and low power consumption, LPC2148 are ideal for

applications where miniaturization is a key requirement, such as

access control and point-of-sale. A blend of serial

communications interfaces ranging from a USB 2.0 Full Speed

device, multiple UARTs, SPI, SSP to I2Cs, and on-chip SRAM

of 8 kB up to 40 kB, make these devices very well suited for

communication gateways and protocol converters, soft modems,

voice recognition and low end imaging, providing both large

buffer size and high processing power. Various 32-bit timers,

single or dual 10-bit ADC(s), 10-bit DAC, PWM channels and

45 fast GPIO lines with up to nine edge or level sensitive

external interrupt pins make these microcontrollers particularly

suitable for industrial control and medical systems.

2. MOTIVATION
For applications that require very high dependability, the costs

for providing high redundancy can be very prohibitive.

Any strategy that can minimize the amount of computing

resources leading to significant improvement in terms of
reduction of size, weight, volume and power can be highly

beneficial in aerospace applications. For example, it can mean

decreased payloads in space vehicles.

3. BACKGROUND
Hardware redundancy may be provided in one of the following

ways:One for One Redundancy, N + X Redundancy, Load

Sharing

One for One Redundancy: Every hardware module will haves a

redundant hardware module[6]. The hardware module which

performs the jobs under normal conditions is called Active and

the redundant unit is called standby.

http://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Graceful_degradation
http://en.wikipedia.org/wiki/Failure

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.2, August 2011

29

N + X Redundancy: In the scheme, if N hardware modules are

required to perform system functions, the system is configured

with N + X hardware modules; typically X is much smaller than

N. If any of the N modules fail, one of the X modules takes over

its functions. Since health monitoring of N units by X units at all

times is not practical, a higher level module monitors the health

of N units. If one of the N units fails, it selects one of the X units

(It may be noted that one for one is a special case of N + X) [9].

Load Sharing: In this scheme, under zero fault conditions, all the

hardware modules that are equipped to perform system

functions, share the load. A higher level module performs the

load distribution. It also maintains the health status of the

hardware units [12]. If one of the load sharing modules fails, the

higher level module starts distributing the load among the rest of

the units. There is graceful degradation in performance with

hardware failure. Our scheme has used a similar strategy but

modified.

4. FRAMEWORK
In the traditional dual redundant scheme, the hot standby takes

over and becomes active, if the primary unit fails. In the

proposed improved scheme, under normal conditions, the

critical tasks are allocated in a duplicated manner in both

processors while the non-critical tasks are shared between the

two processors[2]. The slack available allows for additional

flexibility for allocation of optional tasks[11]. If there is a

failure, the improved scheme provides two modes, Mode 0 and

Mode 1.

Mode 0: All non-critical tasks of the failed system are

reassigned and executed in the operating processor and no

optional tasks are executed.

Mode 1: Some non-critical tasks and optional tasks in the failed

processor are dropped. In our paper we have chosen to

implement the Mode 0.

The critical tasks are duplicated in both the processors. This is to

ensure that even when one of the processors fail, the most vital

functions and those that affect the safety of the users and the

device are carried out. In order to maintain the functionality of

the system even under failure, the processors have to recognize

the working condition of each other continuously. Therefore, we

require a system with two serial ports. One port connects to the

hardware facilitator and the other port connects to the second

processor for mutual health check.

5. IMPLEMENTATION

5.1 Hardware Overview
We implement our dual processor system using a prototype

board with NXP LPC2148 ARM7TDMI processor and can be

clocked up to 60 MHz. This processor has 40kB of RAM and

512kB of internal flash. We chose the board because it is

inexpensive and has hardware interfaces for the components we

require. ARM is also a fairly simple architecture. Our prototype

device is given in Figure 5.1. LPC2148 offers features like USB

2.0 device, 2xUARTs, RTC, 2x10bit ADCs each with multiple

channels, 1xDAC,2xI2C, 1xSPI, 1XSSP, 2x32-bit TIMERS,

6XPWM, FAST I/0 support and WDT. It also supports In

System Programming (ISP). It runs on µCOS-II, a highly

portable real-time operating system and is expected to achieve

very high speed

5.2 System Components
Figure 5.2 illustrates the actual implementation and the other

requirements. The memory size required for our scheme is very

small. As illustrated, the system consists of three LPC 2148

Processors mutually connected through serial cables. Switches

are used to simulate the fault condition. An LED extension

board is connected to the hardware facilitator to display a task

set. The hardware facilities on a development board, as always,

cannot be tailored according to our application specific

requirements. The scheme requires that the resources are

shared.ie, for example, if it is an automatic door operating

system, both the processors have to monitor and operate the

same door [8]. The drawback of the development boards is that

there is only one connector to access each port. Moreover, the

task hardware source, be it an LED or LCD display (these are

only some examples that can be interfaced to the LPC2148) has

to be connected to both the processors P1 and P2. Hence we go

for a hardware facilitator that will act as the common resource

to which both P1 and P2 can connect, to control the task

hardware resource (LEDs). The LPC-2148 board possesses two

serial ports (UART communication) and hence is best for the

implementation of the simultaneous communication with the

two other boards[10]. It also is portable with µCOS-II which is a

real-time operating system.

Figure 5.1. Embedded Board Integrating an

ARM LPC 2148

Figure 5. 2 Actual implementation

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.2, August 2011

30

The block diagram has been shown in Figure 5.3. The processor

in the middle is the hardware facilitator , which is connected to

the LED extension board. The processor on the left and right

were programmed as processor P1 and P2 respectively. The

serial port connections serve as a means to do the ‘health-check’

of the processors.

Figure 5.3. Block diagram

5.3 System and Task Model:

The proposed scheme is experimented with simulated task

sets. A sample task set generated is given below:

Task.No Ci(sec) Ti(sec) C /

NC

1 0.2 0.45 C

2 0.5 0.12 C

3 0.9 2.19 NC

4 1.2 2.37 NC

where C indicates critical tasks and NC indicates non-critical

tasks.

The tasks were taken as the blinking of four LEDs of an LED

extension board(as the board does not have extra LEDs). The

LPC 2148 microcontroller was programmed to utilize the five

LEDs of an extension board which was connected to the

facilitator so that every time either processor finishes scheduling

of a particular task, it can execute the LED tasks. The serial port

connections serve as a means to do the ‘health-check’ of the

processors.
 The two processors are running on the µCOS-II operating

system.

 The same version of the operating system is working in both

the processors.

 The processors have two serial ports (that can be used to

check the health status of each other).

μC/OS-II provides many features such as the addition of a

fixed-sized memory manager, user definable callouts on task

creation, task deletion, task switch and system tick, supports

TCB extensions, stack checking, etc. [7]μC/OS-II has developed

portable versions for various of ARM CPUs such as

ARM7TDMI, ARM9, Strong ARM and etc. It supports ARM

kernel based CPUs produced by Atmel, Hynix, Intel, Motorola,

Philips, Samsung, Sharp and etc.

5.4 Approach
5.4.1 Assumptions

The two processors are identical and tightly coupled.

1. All tasks considered are independent.

2. All tasks are periodic and critical tasks are non-pre-

emptable.

5.4.2 Operating scenarios:

1. Fault free scenario
In fault-free condition, the system offers the operation of both

the processors in such a manner that the critical tasks are

duplicated and the non-critical tasks are shared in between the

two processors P1 and P2. The health status of the processors is

mutually checked by each other. The processors schedule all the

tasks and when the scheduling is over, an indication in the form

of a UART transmission of a character is done to notify the

hardware facilitator to execute the task.

2. Fault condition
The functioning status or ‘health-status’ of the processors is

observed by continuous mutual check conducted by the

processors on each other. When a fault occurs, the working

processor includes some of the tasks from the taskset of the

faulty processor into its own and executes the previous and new

tasks as a whole taskset. Since the critical tasks were already

included in the taskset(critical tasks duplicated), the system

continues with safe operation . In this way the functionality of

the system is maintained. This is done by continuously

monitoring the UART transmission.

6. ALGORITHM IMPLEMENTATION
P indicates one of the processor P1,P2 or P3 where, P3 is the

Hardware Facilitator.

Algorithm for processors P1 and P2 :

Begin

A. If P = P1 //for processor P1

 Mutual Health Check

If DATA SENT = ’B’

Schedule tasks of taskset. Transmit a character by

UART in each task to enable P3 to identify the task

Else

Schedule tasks of taskset and some tasks of P2

 Execute tasks in P3

B. If P = P2 //for processor P2

 Mutual Health Check

If DATA SENT = ’A’

Schedule tasks of taskset. Transmit a character by

UART in each task to enable P3 to identify the task.

Else

Schedule tasks of taskset and some tasks of P2.

 Execute tasks in P3.

End

Algorithm for the hardware facilitator:

Begin

P1 P2

P3

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.2, August 2011

31

 Check for reception of UART character from both P1

and P2.

 Identify the tasks from the UART character received.

 Execute the task if the character is received from either

P1 or P2.(critical tasks are scheduled in both).

End

7. RESULTS
For, the total execution time in fault-free condition: 2.8ms,

execution time in faulty condition: 2.1ms and therefore available

time for execution for of more tasks (optional):0.7ms. The

proposed scheme provides an efficient way to utilize the

available resource while providing the required reliability and

functionality.

In the implementation given below, execution time of one

processor in fault-free condition is 2.1ms which means that there

is still scope for accepting more tasks. And hence, in case of

occurrence of fault, the working processor, having more time

available, can accommodate some of the tasks of the faulty-

processor, (upto 0.7ms)and hence maintaining the critical

functionality of the system.

8. CONCLUSION AND FUTURE WORK
In this paper we have presented a dual processor system which

can tolerate one processor fault. This scheme can be extended to

an m-processor system with faults upto the level of m-1

processor failures. The system provides fault tolerance as well as

better resource utilization. As future work, performance metrics

can be measured to show the system capability. This

implementation can also be further extended to schedule

aperiodic tasks . This can mean that this strategy can be applied

to any generic taskset for a real-time application like an

automotive systems.

9. REFERENCES
[1] Avizienis, et al. Dependable Computing and Fault-Tolerant

Systems Vol. 1: The Evolution of Fault-Tolerant

Computing. Vienna: Springer-Verlag.

[2] Radhamani Pillay, Sasikumar Punnekkat, C Senthilkumar

“Optimizing Resources in Real-time Scheduling for Fault

Tolerant Processors. INDICON2009,India,2009

[3] Bushnell, M. L., Agrawal, V. D.: Essential of Electronic

Testing for Digital, Memory & Mixed-Signal Circuits.

Springer, 2000, 712 p., ISBN 0-7923-7991-8.

[4] Cheng,A.M.K.:Real-TimeSystems:Scheduling,Analysis, and

Verification. Wiley, 2002, 552 p., ISBN 0-471-18406-3.

[5] Cottet, F., Delacroix, J., Kaiser, C., Mammeri, Z.:

Scheduling in Real-Time Systems. John Wiley & Sons,

2002, 266 p., ISBN 0470847662.

[6] Kandasamy N., Hayes, J. P., Murray, B. T.: Time-

Constrained Failure Diagnosis in Distributed Embedded

Systems: Application to Actuator Diagnosis. IEEE

Transactions on Parallel and Distributed Systems, 16(3),

pp. 258 270.

[7] Micrium: Micrium.com: Embedded Software Components.

Available on-line at <http://www.micrium.com

[8] J. Nieh and M. Lam. The Design of SMART: A Scheduler

for Multimedia Applications. Technical Report CSL-TR-

96-697, Computer Systems Laboratory, Stanford

University,June 1996.

[9] Rupe, D., Kenny, J., R.: Two Competitive FPGA

Methodologies for Run-Time Reconfiguration. Technology

Feature. 4 p., 2008.

[10] Rushby, J.: A Comparison of Bus Architectures for Safety-

Critical Embedded Systems. NASA/CR-2003-212161

Contractor Report, 63 p., 2003.

[11] Rubel, P., Gillen, M., Loyall, J., Gokhale, A.,

Balasubramanian, J., Paulos, A., Narasimhan, P., Schantz,

R.: Fault-Tolerant Approaches for Distributed Real-Time

and Embedded Systems. In: Proceedings of Military

Communication Conference, 2007, 8 p. ISBN 1 4244-1513-

06.

[12] Strnadel, J.: Testability Analysis and Improvements of

Register-Transfer Level Digital Circuits, In: Computing

and Informatics, 25(5), 2006, Bratislava, pp. 441-464,

ISSN 1335-9150.

