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ABSTRACT  

The present study introduce the notion of (ψ, ϕ)-Contractive 

maps in weak non-Archimedean fuzzy metric spaces to derive 

a common fixed point theorem which complements and 

extends the main theorems of [C.Vetro, Fixed points in weak 

non-Archimedean fuzzy metric spaces, Fuzzy Sets and System, 

162(2011), 84-90] and [D.Mihet, Fuzzy ψ-contractive 

mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets 

and System, 159(2008) 739-744]. We support our result by 

establishing an application to product spaces. 
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1. INTRODUCTION 

The concept of fuzzy metric space was introduced by different 

authors (see, for example, [12]) in different ways and further, 

using these different concepts, various authors ([9, 10, 12]) 

proved theorems which assure the existence of a fixed point. 

Here, we use the notion of fuzzy metric space established by 

George and Veeramani. Recently, Mihet [13] and Vetro [19] 

introduced the concept of ψ-contractive maps in non-

Archimedean and weak non-Archimedean fuzzy metric spaces 

respectively and proved a fuzzy version of the Banach 

contraction principlein these settings. 

The main reason of our interest in fuzzy metric spaces is their 

application in engineering problems, in information systems 

and in quantum particle physics, particularly in concern with 

both string and E-infinity theory which were given and studied 

by El-Naschie [3-7]. Recently, fuzzy metrics have been applied 

to color image filtering, improving some filters when replacing 

some classical metrics [14-16]. 

 Also, fixed point theorems play a central role also in the proof 

of existence of general equilibrium in market economics as 

developed in the 1950’s by noble prize winners in economics 

Gerard Debrew and Kenneth Arrow. In fact, an equilibrium 

price is a fixed point in a stable market.  

In the last two decades, many researchers explored the 

existence of weaker contractive conditions or extended 

previous results under relatively weak hypotheses on metric 

spaces. The starting point of our paper is to follow this trend by 

introducing the definition of (ψ, ϕ)-contractive maps in weak 

non-Archimedean fuzzy metric spaces. Then, we utilize this 

new concept to investigate the existence of a common fixed 

point for a pair of maps satisfying generalized contractive 

conditions. Our result extends and complements the main 

results of Mihet [13] and Vetro [19]. Our result also fuzzifies 

some results in the literature (see [1, 2, 17, 20] and the 

references therein). We will show an application of our 

theorem in product spaces.    

2. PRELIMINARIES 

In what follows, we collect some relevant definitions, results, 

examples for our further use.  

Definition 1.1 A fuzzy set A in X is a function with domain X 

and values in [0, 1].  

Definition 1.2 A continuous t-norm ([18]) is a binary operation 

T on [0,1] satisfying the following conditions: 

      (i) T is commutative and associative; 

     (ii) T(a, 1) = a for all a∈ [0,1]; 

    (iii) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d (a, b, c, d∈ 

[0,1]); 

    (iv) T is continuous. 

Remark 1.1 The following are classical examples of 

continuous t-norm 

     (i) TM(a, b) = min{a, b},  

                            Minimum t-norm; 

    (ii) TH(a,b) =  

                            Hamacher product; 

    (iii) TP(a, b) = ab,  

                       Product t-norm; 

   (iv) TN(a, b) =  

                      Nilpotent minimum; 

   (v) TL(a, b) = max{a +  b – 1, 0},    

                      Lukasiewicz t-norm; 

  (vi) TD(a, b) =  

                      Drastic t-norm. 

The minimum t-norm is the pointwise largest t-norm and the 

drastic t-norm is the pointwise smallest t-norm, that is, TM(a, b) 

≥ T(a, b) ≥ TD(a, b) for any t-norm t with a, b∈ [0,1]. 
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Definition 1.3 A fuzzy metric space ([12]) is a triple (X, M, ∗), 

where X is a nonempty set, ∗ is a continuous t-norm and M is a 

fuzzy set on X2× [0, +∞) such that the following properties 

hold: 

  (KM-1) M(x, y, 0) = 0, for all x, y∈ X; 

  (KM-2) M(x, y, t) = 1,for all t > 0 iff x = y; 

  (KM-3) M(x, y, t) = M(y, x, t), for all x, y∈ X, t > 0; 

(KM-4) M(x, y, ∙) : [0, +∞) → [0, 1]is left continuous, for all 

x, y∈ X; 

   (KM-5) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s),for all x, y, z∈ 

X and s, t > 0. 

We will refer to these spaces as KM-fuzzy metric spaces. 

         In the above definition, if the triangular inequality (KM-

5) is replaced by the following: 

  (NA) M(x, z, max{t, s}) ≥ M(x, y, t) ∗ M(y, z, s), for all x, y, 

z∈ X and s, t > 0, 

then the triple (X, M, ∗) is called a non-Archimedean fuzzy 

metric space. It is easy to check that the triangle inequality 

(NA) implies (KM-5), that is, every non-Archimedean fuzzy 

metric space is itself a fuzzy metric space. 

If, in the definition above, M is a fuzzy set on X2× (0,+∞) and 

(KM-1), (KM-2),(KM-4) are replaced, respectively with (GV-

1), (GV-2), (GV-4) below, then (X, M, ∗) is called a fuzzy 

metric space in the sense of George and Veeramani[8]. 

  (GV-1) M(x, y, t) > 0, for all x, y∈ X; 

  (GV-2) M(x, x, t) = 1 for all t > 0 and if      M(x, y, t) = 1 for 

some  t > 0, then  x =  y; 

  (GV-4) M(x, y, ∙): (0, +∞) → (0, 1]is continuous, for all x, y∈ 

X; 

Example 1.1([19]) Let X = [0, +∞), ∗ be such that a∗ b ≤ ab for 

every a, b∈ [0, 1] and d be the usual metric. Also define  

               M(x, y, t) = , then(X, M, ∗) is a non-

Archimedean fuzzy metric space. Clearly, (X, M, ∗) is also a 

fuzzy metric space. 

In Definition 1.3, if the triangular inequality 

  (KM-5) is replaced by the following: 

  (WNA) M(x, z, t) ≥ max{M(x, y, t) ∗ M(y, z, ), M(x, y, 

) ∗ M(y, z, t)} 

for all x, y, z ∈ X and t > 0, then the triple is called a weak 

non-Archimedean fuzzy metric space. Obviously every non-

Archimedean fuzzy metric space is itself a weak non-

Archimedean fuzzy metric space.  

Remark 1.1([19]) Condition (WNA) does not imply that M(x, 

y, ∙) is non-decreasing and thus a weak non-Archimedean fuzzy 

metric space is not necessarily a fuzzy metric space. If M(x, y, 

∙) is non-decreasing, then a weak non-Archimedean fuzzy 

metric space is a fuzzy metric space. 

Example 1.2 ([19]) Let X = [0, +∞), ∗be such that a∗b = ab for 

every a, b∈ [0, 1]. Also define M(x, y, t) by: M(x, y, 0)=0,M(x, 

x, t) = 1 for all t > 0, M(x, y, t) = t for x ≠ y and 0 < t ≤ 1, M(x, 

y, t)=t/2 for x ≠ y and 1 < t ≤ 2, M(x, y, t) = 1 for x ≠ y and t > 

2.Then (X, M, ∗) is a weak non-Archimedean fuzzy metric 

space, but it is not a fuzzy metric space. 

In [19], Vetro introduced the topology induced by a weak non-

Archimedean fuzzy metric space and proved the following 

propositions. 

Proposition 1.1Let (X, M, ∗) be a weak non-Archimedean 

fuzzy metric space, then every open ball is an open set. 

Proposition 1.2 Every weak non-Archi-medean fuzzy metric 

space (X, M, ∗) is Hausdorff. 

Proposition 1.3 Let (X, M, ∗) be a weak non-Archimedean 

fuzzy metric space. A sequence {xn} in a weak non-

Archimedean fuzzy metric space (X, M, ∗) is convergent to x∈ 

X if and only if M(xn, x, t) = 1, for all t > 0. 

Definition 1.4 ([19]) Let (X, M,∗) be a weak non-Archimedean 

fuzzy metric space. A sequence {xn} in X is called a Cauchy 

sequence, if for each ε ∈ (0, 1) and t > 0 there exists n(ε) ∈ ℕ 

such that M(xn, xm, t) > 1- ε for all m, n ≥ n(ε). 

  In [9] Grabiec called the sequence G-Cauchy if M(xn, 

xn+m, t) = 1 for each m ∈ ℕ and t > 0. A weak non-

Archimedean fuzzy metric space (X, M, ∗) is called complete 

(G-complete) if every Cauchy (G-Cauchy) sequence is 

convergent. 

In [10], Gregori and Sapena gave the following definition. 

Definition 1.5 Let (X, M, ∗) be a fuzzy metric space in the 

sense of George and Veeramani. A map f: X →X is called 

fuzzy contractive if  

 – 1 ≤ k  

for each x, y∈ X and t > 0, where k is fixed in (0, 1). In this 

case, k is called the contractive constant of f. 

3. MAIN RESULT 

In this section, we prove a fixed point theorem for (ψ, ϕ)-

contractive maps in weak non-Archimedean fuzzy metric 

spaces. 

   Let ψ: [0, 1] →[0, 1] and ϕ: [0, 1] → (0, 1] be such that 

        (1) ψ is continuous monotone non-decreasing with ψ(t) > 

t for all t ∈ (0, 1) and ψ(1) = 1. 

        (2) ϕ is lower semi-continuous with ϕ(t) = 1 if and only if 

t = 1. 

Definition 2.1Let X be a nonempty set, M be a fuzzy set on X2 

× [0, +∞) and f, g: X → X. We say that (f, g) is a pair of (ψ, ϕ)-

contractive maps if there exist two functions ψ and ϕ, defined 

as above, such that for every t > 0, x, y ∈ X, with x ≠ y and 

M(x, y, t) > 0, the following condition holds: 

        (i) ψ(M(fx, gy, t)) ≥  

                   ψ(m(x, y, t)) + ϕ(m(x, y, t)), 

where 

        (ii) m(x, y, t) = min{M(x, y, t),  

                                 M(fx, x, t), M(gy, y, t)}. 
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Fix x0 ∈ X and define the sequence {xn} by 

x1 = fx0, x2 = gx1, . . . , x2n + 1= fx2n, x2n + 2 = gx2n + 1, …   . 

We call {xn}, a (f, g)-sequence of initial point x0. 

Theorem 2.1 Let (X, M, ∗) be a complete weak non-

Archimedean fuzzy metric space and let f, g: X → X. Assume 

that (f, g) is a pair of (ψ, ϕ)-contractive maps and that for all x, 

y ∈ X, with x ≠ y, there exists t > 0 suchthat 0 < M(x, y, t) < 1. 

If there exists x0∈ X such that M(x0, fx0, t) > 0 for all t > 0, 

then f and g have a unique common fixed point. 

Proof: We prove the theorem in several steps. 

Step-1Let x0 ∈ X such that M(x0, fx0, t) > 0 for all t > 0.We 

showthat M(xn, xn – 1, t) →1 as n →+∞. 

   Suppose that n is an even number. Substituting x = xn and y = 

xn – 1 in (1) and using the properties of the functions ψ and ϕ, 

we obtain 

      ψ(M(xn + 1,xn, t)) = ψ(M(fxn, gxn – 1, t)) 

           ≥ ψ (m(xn, xn – 1, t)) + ϕ(m(xn, xn – 1, t) 

           ≥ ψ (m(xn, xn – 1, t)). 

Using the monotone property of the function ψ, we get 

(3)              M(xn + 1,xn, t) ≥ m(xn, xn – 1, t). 

Now, from (2) we have 

        m(xn, xn – 1, t) = min{M(xn, xn – 1, t), M(fxn, xn, t), M(gxn – 

1, xn – 1, t)} 

            = min{M(xn, xn – 1, t), M(xn + 1, xn, t), M(xn, xn – 1, t)}. 

 

If  M(xn + 1, xn, t) < M(xn, xn – 1, t), then m(xn, xn – 1, t) = M(xn + 

1, xn, t), it furthermore implies that 

          ψ(M(xn + 1, xn, t)) ≥ ψ (M(xn + 1, xn, t)) + ϕ(M(xn + 1, xn, 

t)). 

which is a contradiction. 

So, we have 

(4)    M(xn + 1,xn, t) ≥ m(xn, xn – 1, t) 

        = M(xn, xn – 1, t) ≥ M(x0, fx0, t) > 0. 

     Similarly, we can obtain the inequality (4) also in the case 

that n is an odd number. Therefore, the sequence {M(xn + 1,xn, 

t)}is monotone non-decreasing and bounded and so 

      M(xn + 1, xn, t) = m(xn, xn – 1, t)   

                                      = r, where 0 < r  ≤ 1. 

We claim that M(xn + 1, xn, t)) = r = 1. Infact, if 0 < r < 1 

then, as ϕ is lower semi-continuous, from 

        ψ(M(xn + 1, xn, t)) ≥ ψ (m(xn, xn – 1, t)) + ϕ(m(xn, xn – 1, t)), 

for n → +∞, we get  

ψ (r) ≥ ψ (r) + ϕ(r), 

which is a contradiction since ϕ(r) > 0. Hence,  

(5) M(xn + 1, xn, t)) = 1.   

Step-2 Next we prove that the (f, g)-sequence {xn} of initial 

point x0 is a Cauchy sequence. For this it is sufficient to show 

that the subsequence {x2n} is a Cauchy sequence. Suppose that 

{x2n} is not a Cauchy sequence. Then there exists ε> 0 for 

which we can find subsequences {x2m(k)} and {x2n(k)} such that 

n(k) is the smallest index for which n(k) > m(k) > k,                   

         M(x2m(k), x2n(k), t) ≤1 – ε.  

This implies that  

         M(x2m(k), x2n(k) - 2, t) >1 – ε. 

From (2) and (WNA) we have 

        1 – ε ≥ M(x2m(k), x2n(k), t)  

                                  ≥ M(x2m(k), x2n(k) - 2, t) ∗        

                                     M(x2n(k) - 2, x2n(k) - 1, )   ∗ M(x2n(k) - 1, 

x2n(k), ) 

                 > (1–ε) ∗M(x2n(k) - 2, x2n(k) - 1, ) ∗M(x2n(k) - 1, x2n(k), ). 

 

Letting k → +∞and using (5) we conclude that 

(6)         M(x2m(k), x2n(k), t) =1 – ε. 

Moreover, from 

       M(x2m(k), x2n(k) + 1, t) ≥ M(x2m(k), x2n(k), t) ∗ M(x2n(k), x2n(k) + 

1, ) 

and 

    M(x2m(k), x2n(k), t) ≥ M(x2m(k), x2n(k) + 1, t) ∗ M(x2n(k) + 1, x2n(k) 

, ), 

letting k → +∞, we obtain 

M(x2m(k), x2n(k) + 1, t) ≥ 1 – ε 

and 

  1 – ε ≥ M(x2m(k), x2n(k) + 1, t). 

It implies that  

(7)    M(x2m(k), x2n(k) + 1, t) =1 – ε. 

 

Analogously, one can show that  

(8)    M(x2m(k) - 1, x2n(k) + 1, t)   

            = M(x2n(k), x2m(k) - 1, t) =1 – ε. 

Now, putting x = x2m(k) – 1, y = x2n(k) in (1) we have 

       ψ(M(x2m(k), x2n(k) + 1, t))  

                              = ψ(M(fx2mk - 1, gx2n(k), t))  

                              ≥ ψ(m(x2mk - 1, x2n(k), t))  

                              + ϕ(m(x2mk - 1, x2n(k), t)). 

Finally, as ϕ is lower semi-continuous, letting k →+∞ we get 

ψ(1 – ε) ≥ ψ(1 – ε) + ϕ(1 – ε), 

which is a contradiction. Thus the (f, g)-sequence {x2n} is a 

Cauchy sequence and hence also the (f, g)-sequence {xn} is 

Cauchy. Since the weak non-Archimedean fuzzy metric space 
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X is complete, therefore there exists x such that xn → x as n 

→+∞. 

Step-3 Let us now prove that x is a common fixed point of f 

and g, i.e., x = fx = gx. If fx ≠ x, then there exists t > 0 suchthat 

0 < M(x, fx, t) < 1. From (2), we have 

        m(x, x2n – 1, t) = min{M(x, x2n – 1, t),  

                    M(fx, x, t), M(gx2n – 1, x2n – 1, t)}         

          = min{M(x, x2n – 1, t),  M(fx, x, t), M(x2n, x2n – 1, t)}. 

Letting the limit as n →+∞, we obtain 

m(x, x2n – 1, t) = M(fx, x, t). 

Now, from 

       ψ(M(fx, x2n, t)) = ψ(M(fx, gx2n - 1, t))  

                                ≥ ψ(m(x, x2n - 1, t))  

                                + ϕ(m(x, x2n - 1, t)) 

Taking the limit as n →+∞, we obtain 

       ψ(M(fx, x, t)) ≥ ψ(M(fx, x, t))  

                             + ϕ(M(fx, x, t)). 

which is a contradiction and therefore fx = x. 

Analogously, we obtain that gx = x and thus x is a common 

fixed point of f and g. 

Step-4 We prove the uniqueness of the common fixed point of 

f and g. 

Assume that x, y ∈ X are two distinct common fixed points of f 

and g, then 

        ψ(M(x, y, t)) = ψ(M(fx, gy, t))  

                             ≥ ψ(m(x, y, t))  

                             + ϕ(m(x, y, t)) 

which is a contradiction as m(x, y, t) = M(x, y, t) and therefore 

x = y. 

As consequence of Theorem 2.1, we state the following result. 

Corollary 2.1 Let (X, M, ∗) be a complete weak non-

Archimedean fuzzy metric space and let f: X → X. Assume that 

(f, f) is a pair of (ψ, ϕ)-contractive maps and that for all x, y ∈ 

X, with x ≠ y, there exists t > 0 such that 0 < M(x, y, t) < 1. If 

there exists x0∈ X suchthat M(x0, fx0, t) > 0 for all t > 0, then f 

has a unique fixed point. 

4. APPLICATION  
In this section, we give an application of our main result to the 

product space X × X.  

Theorem 3.1Let (X, M, ∗) be a complete weak non-

Archimedean fuzzy metric spaces and let F, G: X × X→ X. 

Assume that (F(∙,y), G(∙,y)) is a pair of (ψ, ϕ)-contractive maps 

for each y ∈ X and (F(z(y),y), G(z(y),y)) is a pair of (ψ, ϕ)-

contractive maps for each z: X → X. Suppose also that for each 

x, y, u, v ∈X suchthatF(x, y) ≠ G(u, v) and t > 0, the following 

condition holds: 

(9) ψ(M(F(x, y), G(u, v), t)) ≥ ψ(m(x, u, t))   + ϕ(m(x, u, t)),                                   

where 

(10)  m(x, u, t) = min{M(x, u, t), M(F(x, y), x, t), M(G(u, v), u, 

t)}. 

Then there exists exactly one point w in X, such that F(w, w) = 

w = G(w, w). 

Proof: Fix y = v ∈ X. Let f, g : X → X  be such that fx=F(x, y) 

and gu=G(u, y), for all x, u ∈ X. Then, condition (9) reduces to 

condition (1) and so, by Theorem 2.1, the pair (f, g) has a 

unique common fixedpoint z(y), thatis f(z(y)) = z(y) = g(z(y)). 

Now, we can applyTheorem 3.1 to the self-mappings F(z(y),y) 

and G(z(y),y) on X  and so we deduce that there exists a unique 

point w  such that F(z(w),w) = G(z(w),w) = z(w) = w.  

Thiscompletes the proof. 

5. CONCLUSIONS 
In this work we have dealt with a new class of contractive maps 

in fuzzy metric spaces. We considered these maps in a more 

general setting called weak non-Archimedean fuzzy metric 

space. Moreover, we proved that if the space is complete, 

everypair of (ψ, ϕ)-contractive mapshas a uniquecommon 

fixedpoint. The future scope is to weaken the contractive 

condition and the hypotheses on the space. 
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