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ABSTRACT 

Non – negative matrix factorization (NMF) was generally used 

to obtain representation of data using non – negativity 

constraints. It lead to parts – based (or) region based 
representation in the vector space because they allow only 

additive combinations of original data. NMF has been applied so 

far in image and text data analysis, audio signal separation, 

signal separation in bio-medical applications and spectral 

resolution. The original Lee and Seung „s NMF has to be 
modified for chemical analysis, based on the characteristics of 

that signal. In this paper, sparse NMF (sNMF) has been used for 

the deconvolution of overlapping chromatograms of chemical 

mixture. Before applying sNMF, the number of components in 

mixture was determined using Principal Component Analysis 
(PCA). The experimental overlapping chromatograms were 

obtained using Gas Chromatography –Flame Ionization Detector 

(GC-FID) for the chemical mixture of acetone and acrolein and 

they have been soundly resolved by sNMF algorithm. The 

proposed algorithm has also been tested with simulated two, 
three and four component chromatograms of severely 

overlapped and embedded peaks. Even though there are three or 

four components, the results are encouraging. The correlation 

coefficient is greater than 0.99 and signal to noise ratio is greater 

than 29dB always.  

  General Terms: Chemometrics; NMF. 
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1.  INTRODUCTION 
   Many resolution techniques are available to extract 

information from multivariate data. Evolving Factor Analysis 

(EFA) [1-2], Fixed Size Moving Window Evolving Factor 
Analysis (FSMW-EFA) [3], SIMPLe-to-use Interactive Self-

modeling Mixture Analysis (SIMPLISMA) [4], Multivariate 

Curve Resolution (MCR) [5-7], Iterative Target Transformation 

Factor Analysis (ITTFA)  [8-9] and Heuristic Evolving Latent 

Projections (HELP) [10-11] are some of the important 
techniques so far applied to many fields. All the above methods 

have their limitations in separation of overlapped 

chromatograms when they are severely overlapped [12]. Many 

methods have been developed further to improve the resolution. 

However, it is still difficult to resolve severely overlapping 
peaks accurately.   

    Lee and Seung Suggested Non-negative Matrix Factorization 
(NMF) in 1999 [13] and provided more algorithms in 2001 [14]. 

It has been generally applied to image and text data mining. 

Several works have been carried out in NMF for image analy sis 

[15-18], audio signal separation [19], spectral resolution [20] 

and signal separation in bio-medical application [21]. A 
chemometric application of the NMF method is proposed by Li 

et al. [22] to detect chemical compounds from a chemical 

substance represented through Raman spectroscopy. Hong-Tao 

Gao et al., (2005) applied NMF for two components overlapped 

spectrum resolution [20] in which NMF was applied after 
imposing   constraints based on unimodality, smoothness and 

sparseness of the data.    

    In this work, acetone and acrolein were mixed and analyzed 

using Gas Chromatography –Flame Ionization Detector (GC-

FID) and it gives overlapping chromatograms due to their closer 
retention times (i.e., 1.127 min for acetone and 1.187 min for 

acrolein). Hence, if any product that contains acetone and 

acrolein is analysed by Gas Chromatography –Flame Ionization 

Detector (GC-FID), it will be difficult to identify these 

components due to non-separated chromatograms. Certain 
experimental separation procedure has been proposed already 

which involves costly chemicals and lengthier separation time 

[23]. Hence, sNMF algorithm has been used in this work for 

separation of overlapped chromatograms obtained. The sNMF 

algorithm has been applied on experimental chromatograms.  
The results of sNMF are encouraging. The algorithm is also 

tested with simulated overlapped and embedded chromatograms 

of complex 4 components mixtures which were not done in [20].  

2. MATERIALS AND METHODS 

2.1 Experiments 
Initially the chromatograms for the acetone and acrolein 

standards were obtained using GC-FID by injecting the 

standards separately. Then the acetone and acrolein were mixed 

in 14 different concentrations. The mixture was vigorously 
stirred separately under ice cold condition for half an hour and 

0.2 µL of these mixtures were injected in GC-FID.  

2.1.1 Instrumental condition 
Chemito 8610 make Gas chromatography with Flame Ionization 
Detector was used with the detector temperature of 150º C. 

HPFFAP Capillary Column (30 m × 0.25 mm ID, BP5) was  

used with a temperature of 100 º C.  The Temperature was 

programmed as  40 º C for  2 min, 5º C/min, 68 º C for 2min, 10 

º C/min, 100 º C for 2min. Injector temperature was kept at 150 º 
c.  Nitrogen was used as a carrier gas at a flow rate of 90 

ml/min. The sample of 0.2µL volume was injected into the 

column for analysis. All the graphs were obtained in the 
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software provided by Iris 32 chromatography provided by 

chemito technologies pvt ltd., running on PC with Intel (R) 

Pentium4 CPU 2.00GHz and 512MB RAM.  The 
chromatographic data (i.e., retention time t and detector output) 

has been exported to an ASCII file through Iris 32 software and 

acquired through MATLAB R2008a software. For the above 

instrumental condition, the chromatograms obtained for seemed 

to be overlapping instead of separated peaks due to their closer 
retention times. It is difficult to identify the individual 

components in the overlapping chromatograms.  

2.2 Method 
  This section describes the sNMF algorithm   applied in this 

paper. The performance of the algorithm is discussed in the 

Results section. 

2.2.1 sparse NMF algorithm 
 NMF is a technique of decomposing a non-negative matrix A 

into two non-negative matrices W and H as shown in equation 1.  

            

mn mn mk kn

k

A   (WH)  = W    H   ---------      (1) ----------------               (1) 

                                                                                                                                         
   where k=1 to r  < min (m,n). 

Usually, r is the number of principal components. The 

decomposition is performed so that the product WH should 
compress and approximates the original data matrix A. W is  

called basis matrix whereas H is called encoding matrix, of 

which each column is in one-to-one correspondence with a 

column in A. Thus, the original data are represented as linear 

combinations of these basis vectors.  Usually r is chosen to be 
smaller than n or m, so that W and H are smaller than the 

original matrix A. This results in a compressed version of the 

original data matrix. NMF allows only additive operations to 

provide meaningful decomposition. While PCA is used for 

decomposition, the two factorized matrices will contain positive 
and negative entries simultaneously, and these negative 

components make the result often unacceptable in chemical 

meanings. Instead, NMF does not allow negative entries in the 

factorized matrices W and H, permitting each column of basis 

matrix H to represent chromatogram in this work. NMF 
extensions also exist which includes, projective NMF [24], 

shifted NMF [25], incremental NMF [26] and sparse higher 
order NMF [27]. Although NMF is successful in Matrix 

Factorization, the NMF model does not impose the sparse 

constraints. Therefore, it can hardly yield a factorization, which 
reveals local sparse features in the data A. Related sparse coding 

is proposed in the work of [28] for matrix factorization. Inspired 

by the original NMF and sparse coding, the aim of this work is 

to propose sparse Non-negative Matrix Factorization (sNMF) 

which imposes the sparse and nonnegative constraint, for 
chromatograms resolution.  Since NMF is an approximation 

factorization, we need to define the cost function to qualify this 

approximation. One natural way is to use the divergence 

function between A and WH. Hence, sNMF algorithm which is  

given in equation 2 has been applied in this paper to find the 
factors.  

m n k n
-12

ij ij ij ij ij qj

i=1 j=1 q=1 j=1

[A  log ((A+1e )  /  Y ) - A   + Y ] +α H             

                                                                     -----------------     (2) 

where Y =WH  and α obtained by experience was assumed a 

positive constant. 

A sparse solution to the above constrained minimization can be 
found by the following update rules of W and H suggested 

by Lee and Seung ( NIPS*2001)   :  

                              (i)Initialize matrices W and H randomly under 

nonnegative and non zero condition.  

                              (ii)       Calculate the new value of W using 
multiplicative update rule  
         

12
1 11 )( /( ) ) ) /( ( )T

iq iq ij ij iq i q iq

q

e
TW W A WH H B H

        

                                                                                         -------- (3) 
            for 1  i  m and 1  q  k. 

                              (iii)  Calculate the new value of H using 

multiplicative update rule 

                                

T -12
qj = qj j j qji i1eH (H *(W *((A+ ) /(WH) )) )/(1+α)

                                                                                      --------   (4) 

                               for 1  q  k and 1  j  n,  

                            
                              (iv)      Column normalization of W (Liu, 

Zheng, and Lu added  this  normalization step)   has been done 

during each iterations  by                           

  1* )/(iq iq i iq iq

q

W W B W       ---------    (5) 

Where   B i1 is the unit matrix of size m × 1  

 

                                    (v)   Calculate the objective function using 

new updated W    and H.  

Repeat from (ii) to (v) until convergence is achieved.  

     Element wise operation has been carried out in the iterative 

steps. 
   When NMF is introduced to resolve the chemical data matrix, 

it must be modified according to the characteristics of signal 

(i.e.,) smoothness, unimodality of chromatograms and 

sparseness of data. Based on that, constraints have to be imposed 

into the iterative procedure to get a reasonable and acceptable 
resolution [20]. 

In the present work,   unimodality and selectivity constraints 

were integrated into the iterative procedure additionally. The 

chromatograms taken for analysis are smooth and hence the 

curve smoothing constraint was not imposed. The algorithm can 
handle sparse data and hence sparseness constraint was not 

imposed. The maximum number of iterations has to be 

specified. It takes only very few seconds to converge. To speed 

up the convergence, SVD-based initialization [29] was tested. 
But the results were not reliable. Then the random initialization 

was done for all cases. 

 2.2.2 Procedure  
Step1: The chromatographic data were taken for acetone and 
acrolein mixtures of four different concentration ratios. The 

detector output (m) of each experiment has been taken as a 

column of matrix A and hence the size of A is   m × 4. It is 

proposed to use sNMF   algorithm to perform the deconvolution 

of a data matrix A.  
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  Step2: The size of matrix W is based on the number of 

components k in a mixture and it is determined by principal 

component analysis (PCA). 
 Step3: The W and H matrix, of size m × k and k × n  

respectively, have been initialized with random non negative  

and non zero values (using Matlab coding) and were updated 

with multiplicative step (Lee and Seung; NIPS*2001) as given 

in equation 3 , 4 and 5.  
Step 4: The sNMF algorithm is used to decompose the matrix A 

into W and H matrices. 

Step 5: After decomposition, each column of W  matrix gives the 

chromatogram of individual chemical present in the mixture.   

Step 6: The resolved components are compared with standard 
chromatograms and the correlation coefficients are calculated. 

The resolved signal power is calculated using the formula given 

in equation 6.  

                                      

2

i i

i

10 2

i i i i

i

(S  /  std(S ))

Pr (  dB) = 10  log
((S  /  std(S )) -  (R  /  std(R ))) ]  

 

                                                                                 ----------  (6) 
where   Si     - standard signal,  

             Ri    - resolved signal  

             Std  - standard deviation  

      Pr ( dB)  -- closeness of resolved signal power with  that of 

standard signal 
                 i  -- 1,2…n ; where n is the end point of every 

chromatogram.  

               r  = 1,2,…….number of components in the mixture.  

      The algorithm was tested on the simulated chromatograms of 

two cases, i.e., severely overlapped and embedded peaks. One 
dimensional, HPLC-FID data matrices of two, three and four 

component chromatograms were simulated using cross product 

multiplication of Gaussian functions. The components are 

strongly overlapping with almost equal retention times and 

widths. Due to that, their mixture appears as a single component 
chromatogram. The sNMF  algorithm of Equation (2) has been 

performed to deconvolute the data matrix A of simulated 

overlapping and embedded chromatograms. 

    Finally, the sNMF   algorithm was applied on the 

experimental severely overlapping chromatograms of acetone 

and acrolein mixtures. The experimental data were taken for 
mixtures of different concentration ratios. Due to that, the shape 

and area of the overlapped chromatograms are different. It 

makes it difficult to identify the shift in peak position and shape 

of the individual chromatograms. Hence, preprocessing was not 

applied. The efficiency of sNMF is evident from the good 
correlation coefficient of the resolved components with that of 

the standards. The main focus of this work is to resolve the 

overlapping components using sNMF . The results were unique 

when the matrix W  was initialized with the help of evolving 

factor analysis or with the initial estimate obtained from the 
standard chromatograms. If the W matrix was randomly 

initialized, the results were unique for a two and three 

components chromatogram. But, for the complex 

chromatograms (i.e., four and more components 

chromatograms), the resolved results were not unique always 
but they were in a narrow feasible region that are reasonable and 

acceptable.  

3. RESULTS AND DISCUSSION 

3.1 Simulated HPLC-FID data matrix 
  One dimensional, HPLC-FID chromatograms of an overlapped 

and embedded peaks were simulated using cross product 

multiplication of Gaussian functions. 

Two components system   
   One dimensional, HPLC-FID data matrices of a two 

component chromatograms of severely overlapped case were 

simulated. The sNMF algorithm was then applied on the 

overlapping peaks to resolve the individual components. The 

simulated severely overlapping peaks and resolved 
chromatograms are shown in Fig.1. The resolved components 

are compared with the standard chromatograms. The correlation 

coefficients are 0.9769 and 0.9541 for the first and second 

components respectively . The signal to noise ratio for the 

resolved components are 13.7608 dB and 10.7684 dB for the 
first and second components respectively . 
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Fig 1: S imulated severely  overlapped chromatogram of two components mixture and resolved chromatograms obtained using  
sNMF. 
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Fig 2: S imulated embedded chromatogram of two components mixture and resolved chromatograms obtained using  sNMF . 
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Fig 3:  S imulated severely overlapping chromatogram of four components mixture and resolved chromatograms obtained using  
sNMF.  

 

 

 

 
 

 

 

 

 

 

 

 

                          Fig 4: S imulated embedded chromatogram of four components mixture and resolved chromatograms obtained 

using  sNMF.  
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Fig 5: Real experimental severely overlapped chromatogram of acetone and acrolein  mixture ( 2 µl acrolein and 8 µl acetone) . 

Experimental condition: Gas chromatography-Flame Iionization Detector; Carrier gas: Nitrogen (90ml/min); Detector 
temperature: 150º C; Retention time of acetone 1.127min; Retention time of acrolein 1.187 min. 
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Fig 6:  Experimental severely overlapped chromatogram of acetone and acrolein mixture   and resolved chromatograms using 
sNMF (applied on 4 dataset). Experimental condition: Gas chromatography-Flame Iionization Detector; Carrier gas: Nitrogen 

(90ml/min); Detector temperature: 150º C; Retention time of acetone 1.127min; Retention time of acrolein 1.187 min. 
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Fig 7:  Objective function Vs number of iterations for sNMF implementation. 

 

 
   Two component chromatograms of embedded peaks were 

simulated. The sNMF algorithm was then applied on the 

chromatograms to resolve the individual components. The 

simulated embedded chromatogram and resolved 

chromatograms are shown in Fig.2. The resolved components 
are compared with the standard chromatograms. The correlation 

coefficients are 0.9950 and 1.0000 for the first and second 

components respectively. The signal to noise ratio for the 

resolved components are 20.5473 dB and 48.7652 dB for the 

first and second components respectively. 

Three and Four component  systems: 
        The simulated three components system has also been 

tested with sNMF algorithm. The results are encouraging. The 

correlation coefficient is greater than 0.99 and the signal to noise 

ratio is greater than 15dB always. 
      The sNMF algorithm was then applied on the simulated 

severely overlapping four components chromatograms. The 

simulated overlapped  chromatogram and resolved 

chromatograms using sNMF  are shown in Fig.3.The resolved 

components were compared with the simulated standard 
chromatograms and the correlation coefficients are 0.9269, 

0.9912, 0.9984 and  0.9807 for the first, second, third and fourth  

components respectively.  The signal to noise ratio for the 

resolved components are 8.4715 dB, 18.3927 dB, 25.4012dB 

and  14.5173 dB for the first, second, third and fourth 
components respectively. 

 

     The sNMF was then applied on the embedded peaks 

containing four components. The simulated embedded 

chromatogram and the resolved chromatograms using sNMF are 
shown in Fig.4. The resolved results were   compared with the 

simulated standard chromatograms and its correlation 

coefficients are 0.9747, 0.9796, 0.9860 and 0.9974for the first,  

 

 
second, third and fourth components respectively. The signal to 

noise ratio for the resolved components are    13.7881 dB,   

14.1252 dB, 15.6845 dB and    22.9471dB for the first, second, 

third and fourth components respectively.  

 
        Even though the degree of overlapping is very high, sNMF 

algorithm resolves the overlap efficiently with a correlation 

coefficient greater than 0.9 and signal to noise ratio greater than 

8 db. The chromatographic situation of the cases taken will be 

difficult for an analyst to get a reasonable resolution. But the 
solutions of sNMF   are reasonable and acceptable. 

  3.2 Real GC–FID experimental data 
    The overlapping chromatograms were obtained by GC-FID 

for acetone and acrolein mixture. It contains merging and tailing 

peaks. The experiments were conducted under condition 

mentioned in Section 2.1.1.The experimental chromatogram 
obtained for acetone and acrolein mixture  is shown in fig.5. The 

individual components in the chromatogram can be qualitatively 

identified with the help of calibration standards. However, there 

were overlapping peaks due to acetone and acrolein mixture 

which have almost nearer retention times. (i.e., 1.127 min and 
1.187 min respectively).If these overlapping peaks were not 

resolved, the chromatogram of mixtures measured could not get 

a good match with that of a pure component in the database.  

        Hence, sNMF algorithm was applied on the chromatograms 

obtained to resolve acetone and acrolein. Before applying 
sNMF, the number of components k in the data A was  

determined using PCA, which identified two components. 

Initially, sNMF was applied on A matrix formed from 4 datasets 

of acetone and acrolein mixture of 4 different concentrations.  

 
      The standard chromatograms of acetone and acrolein, 

overlapped chromatogram of acetone and acrolein mixture and 
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the resolved chromatograms are shown in Fig.6. The correlation 

coefficients were obtained by comparing the resolved results 

with the standard chromatograms and those coefficients are 
1.0000 and 0.9993 for acetone and acrolein respectively. The 

signal to noise ratio for the resolved acetone and acrolein are   

49.8145 dB and 29.4805dB respectively. The algorithm works 

well with random initial matrices of W and H.  The resolving 

power of sNMF had been tested with different size of A matrix 
by varying n. Initially, the algorithm was tested only with 2 

experiments. i.e., n was taken as 2. The result shows that there 

was reliable resolution even with 2 datasets. The algorithm was 

then tested by increasing n as three and then as four. The result 

shows that the signal recovery is higher when the number of 
datasets taken was increased.  

   The sNMF algorithm for chromatographic resolution is  

effective. The correlation coefficient is greater than 0.99 and 

signal to noise ratio is greater than 29 dB. When 

chromatographic profiles of two compounds mixture of similar 
peak-height and almost of the same retention time are analysed, 

it is quite a troublesome issue for analysts. But the solutions of 

sNMF are reasonable and acceptable.Fig.7 shows the 

minimization of objective function Vs  number of iterations for 

sNMF. It shows that the objective function has come to 
minimum error in less than 100 iterations.  

 

4.  CONCLUSION  
In this paper, sparse NMF algorithm was applied to resolve 

simulated data of two, three and four components mixtures of 

severely overlapped as well as embedded peaks. The algorithm 
was also tested on experimental overlapped chromatograms of 

acetone and acrolein mixture. The results are encouraging. The 

efficiency is checked from the correlation coefficient of the 

resolved components with standards which is always greater 

than 0.99 and the signal to noise ratio which is always greater 
than 29dB. 
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