
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.3, August 2011

18

Decentralized Handoffs in Heterogeneous Networks: A

Kernel Module Approach

S.V.Srikanth

C-DAC

India

Saratchandra Babu

C-DAC

India

Dileep K.P

C-DAC

India

Trilok Inakota

C-DAC

India

ABSTRACT
Our proposed solution is a Linux kernel module approach to

vertical handoff for heterogeneous networks. We develop a

kernel module that accomplishes the handoff process between
various network interfaces supporting IP. This addresses

seamless continuity, handoff decision & interface selection

problems faced during the vertical handoff. This module is

integrated into the Linux kernel and works for all the multimedia

networking applications running on Linux systems. The handoff
can be achieved at the client devices and there is no need of any

centralized handoff agents or servers required. Linux being the

fastest growing operating system for both wired & wireless

devices and the flexibility it offers for the developer makes it the

most suitable for the implementation of this solution. This paper
reviews how the proposed module running at the kernel level of

Linux operating system maintains seamless continuity in

heterogeneity.

Keywords

Heterogeneous Networks, vertical handoff, Linux Kernel

Module, WLAN, multimedia, seamless session continuity

1. INTRODUCTION
Today, mobile networks are expected to achieve a high degree

of inter-networking so that the mobile users can truly experience

ubiquitous access through switching between heterogeneous

networks. We mean that the device neither requires user
intervention nor does it disrupt the existing session during the

interface switching process. IP based networking is the key to

turn this vision into a reality. Future clientele devices tend to be

equipped with multiple network interfaces. So, there is a need to

switch between different network interfaces to achieve seamless
mobility [7]. Mobile devices that cater to one type of access

technology have the ability to roam among networks of the same

type are referred to as horizontal handoff. Seamless access to

services between various access technologies such as WLAN,

WCDMA, Cellular networks, WiMAX etc, irrespective of the
radio technology being used is referred as vertical handoff [4].

On most of the devices today wired and wireless LAN cards

have become basic components, apart from supporting other

radio access technologies such as Bluetooth, GPRS etc [7]. If

these devices are to connect to various networks and perform a
continuous data transmission whatever location they roam to,

while switching from one network to another, technique of

vertical handoff is very much needed.

2. PROBLEM
There are several key issues that are associated with the

implementation of vertical handoff 1) Seamless Continuity 2)

Handoff Decision & 3) Interface Selection. First, we have to
ensure that the device makes a switch between hardware

interfaces to connect to the best available network. In our case,

whenever a connection to Ethernet is available, we connect to it

and switch to the WLAN or cellular when there is mobility.

Next, the switching between the networks has to be transparent
to the user. The mobile user should not have to configure

anything for the switch to occur [11]. In the homogeneous

network handoff mechanism, the network infrastructure makes it

possible for devices to move without disrupting the existing

connection. Similarly, heterogeneous network switching should
also ensure that the ongoing session is maintained. We have to

make sure that the switching is fast enough so that the user

connection is kept intact at the TCP/UDP layer. Most of the

existing approaches for vertical handoff are centralized [3]. The

need of the hour is to develop a decentralized approach for
vertical handoff, which is significantly faster than currently

followed approaches.

3. ASSUMPTIONS
We restrict our experiments to have two different networks

interface cards i.e. Ethernet and WLAN. It is also assumed that

the proposed module architecture also suits different network

interface cards supporting IP. We use a 2.6.32 version of the

Linux Kernel that is suitable for running on a Laptop or an

embedded device.

4. RELATED WORK
There are various approaches to achieve seamless mobility in

heterogeneous networks. Some of the approaches are

generalized as follows.

One solution is to introduce handoff servers to realized vertical

handoff. In USHA [8] system, all mobile hosts connect to the

Internet with the help of a handoff server, which is equipped

with multiple network interfaces with heterogeneous physical

properties. Hence, mobile hosts can communicate with the

handoff server in various physical connections. The IP tunneling

technique (IP encapsulation) is used in USHA with the handoff

server functioning as one end and the mobile host as the other.

Upper layer communications are bounded to a virtual interface -

the tunnel interface, instead of physical interfaces. All data

packets are transmitted through this IP tunnel. When the handoff

event occurs, the underlying physical connection of the virtual

tunnel is automatically switched to the new physical interface.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2011

19

Now a days mobile devices support several interfaces although

the protocol stack used in each interface tends to be interface

specific at the lower layers. This limits the ability of a device to

switch back and forth between networks as need and opportunity

dictates. As a step towards providing a more flexible handover

infrastructure, this project addresses the issue of integrating

heterogeneous, mobile ad-hoc networks that use different MAC

layer protocols. The goal is to provide an end-to-end

communication abstraction that hides heterogeneity [2].

Currently, there is a significant trend toward using not only one

wireless network, but to utilize all carriers available on a mobile

device. In addition, for real-time applications like voice, it is

desired to make a seamless change of network without user

interaction. To keep track of this evolution, the use of

heterogeneous networks has gained focus. Instead of only using

one type of network, it is desired to utilize all carriers available

on a device, and hence choose the one best suited. Furthermore

it is proposed an application-layer handover scheme for session

continuity in heterogeneous networks. It is a centralized

approach consisting of SIP servers [3,5].

5. PROPOSED ARCHITECTURE
When a user is in roaming state and still wishes to maintain all

active sessions, an automatic handoff mechanism is needed to

change the communication flow and the physical interface in

use. Moreover, the handoff mechanism should be user unaware

and decentralized, so that the handoff process can be handled

smoothly and quickly [5].

Figure 1 provides a high-level view of the Linux network stack.

The upper layer is the application, which defines the

users/clients of the network stack. The next layer is the transport

layer, responsible for process-to-process communication. Below

this is the network layer, which is responsible for routing the

packets to their destinations. At the bottom of the stack is the

link layer. The link layer refers to the device drivers providing

access to the various physical layer mediums, such as Ethernet

devices or WLAN devices etc [9]. Now, depending on the active

device drivers the link layer chooses the network card through

which packets have to be transmitted. This card is bound till the

session is completed. The problem we face here is that during

the vertical handoff there needs to be a switching between

different NIC cards depending on the availability of the active

cards. Currently the Linux network stack doesn’t have a support

for vertical handoff [4].

Our proposed solution is development of Linux kernel module

to achieve vertical handoff for seamless continuity over

heterogeneous networks. We develop a kernel module that

integrates into the Linux kernel and accomplishes the handoff

process between various network interfaces supporting IP.

Fig 1: Proposed Architecture

This runs at the kernel level of the Linux operating system

between the network layer and the datalink layer. The proposed

module known as vertical handoff hook, always polls for the

interfaces and checks for the interfaces that are alive. It also

updates the network layer of the TCP/IP stack to maintain the

seamlessness alive between the mobile station and the server.

This architecture is well suited for all the multimedia

networking applications running.

6. IMPLEMENTATION
In this section we give a clear picture of Kernel Network

Structure and our proposed vertical handoff hook.

6.1 Kernel Network Structure

 The Linux Kernel Network Structure maintains a socket buffer

for packet management. This buffer consists of two data classes

Packet data and Manage data. Every network device registered

contains a structure named as net_device and all the net_device

structures are mapped by socket buffer.

If the network device was configured for the IP, then ip_ptr

points to a structure of the type in_device, which manages

information and configuration parameters of the relevant IP

instance and this is the data maintained at network layer.

When the first packet of a socket is ready and there is no route

present, then the function named ip_route_output () chooses a

route from route table named fib_table by using helper

functions. A fib_table structure forms the base structure for a

routing table. Linux kernel supports two configuration settings

for managing routing tables. If the kernel is configured with

CONFIG_IP_MULTIPLE_TABLE macro, it follows rule based

routing; otherwise it maintains two routing tables i.e. local table

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2011

20

Fig 2: Socket buffer Management

and main table. Once the device gets deactivated, a driver

specific function stop () is called and then, the kernel releases or

flushes routing information related to the specified registered

device.

6.2 Vertical Handoff Hook
Our proposed vertical handoff hook consists of two modules

namely route and device module.

Fig 3: Vertical Handoff Hook

6.2.1 Route Module
As shown, (see figure 3) route module lies at the network layer

of Linux network stack. This module plays a major role in

handling vertical handoff. It mainly updates the routing table

continuously by using RT netlink functions.

This module mainly checks for the first network device

registered and its configured IP from the route table i.e.

fib_table. Then, it immediately reads this configured IP and

writes the IP to all the network devices registered. After

configuring all the devices with the same IP, it then looks for

any gateway route address configured. It, then route adds all the

devices with this gateway address. This is done to keep the

session continuity alive, as we know that a single IP is bound for

a session. When the first network device becomes deactivated, it

instantly checks for the next network device registered to

continue the session. As the route module has already assigned

the same IP to all the network devices, the session will be intact

even though there is a change in the network interface.

6.2.2 Device Module

This module gets the status information of the registered

network devices from the structure net_device. Based on the

status information (active or dormant), this device module

invokes the route module for the route table updation and

change of network device, for keeping the session intact.

7. EXPERIMENTAL SETUP
This section details the complete experimental setup and the

hardware used. The basic experimental setup consists of a

Laptop running Linux Kernel version 2.6.32 [21] supporting two

interfaces Ethernet (eth0) & WLAN (wlan0), Linksys

WRT54G2 Accesspoint, Server running Ubuntu Linux 9.04 [22]

and an ACTi Camera [16].

Fig 4: Experimental Setup

As shown, (see figure 4) the whole setup is connected to LAN.

The initial step is to validate and configure the network cards by

using ifconfig. Once the configuration is done, then the next step

is check the communication between the mobile station and the

server for both the interfaces i.e. Ethernet & WLAN. When both

the interfaces are alive, Linux kernel chooses one of the

interfaces to transmit packets to the server. But when the chosen

interface is plugged out, Linux kernel doesn’t shift to the other

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2011

21

interface for communication with the server. It immediately

stops the session and waits for the chosen interface to get

plugged in. For example if ethX is chosen as interface to send

packets and is plugged out, Linux kernel doesn’t have the

mechanism to shift WLAN X to continue communication.

To solve this problem, we developed and implemented a vertical

handoff kernel hook. This module completely runs at the kernel

space of the Linux operation system. When this module is

inserted, it immediately checks the first registered device. For

example, if ethX is chosen as the first interface, it takes the IP

address of ethX and assigns the same IP address to all the

registered network devices shown in net_device. This allows the

session to be continued even if there is a change in the network

interface.

8. RESULTS
Experiments were conducted for centralized approaches using

SIP [3] and decentralized approaches using daemon [4] & kernel

module. The scope of the results is limited to kernel module and

a comparison chart of all the approaches is depicted at the end.

We have tested the functionality of our kernel module named

vertical handoff hook for all the 3 forms of media i.e. data, audio

& video. Open source Wireshark tool [20] is used to validate the

switching between the interfaces. The MAC ID of eth0 & wlan0

of mobile station are 00:24:bc: 43:1d:0c and 00:26:5c:f5: 39:89

respectively.

8.1 For Data:
We used Secured Copy (SCP), Secured Shell (SSH) and our in

house network applications to check the functionality of our

proposed vertical handoff hook.

8.1.1 Scenario 1: Switching from eth0 to wlan0
In this scenario, initially our mobile station will be connected to

both eth0 and wlan0. Now, when we start our network

application, packets flow from eth0 interface. Now, we insert

our proposed module, it takes the IP configured for eth0 and

writes the same IP to wlan0.

Once, when the eth0 interface is plugged off, immediately it

switches to wlan0 to keep the session alive. The experimental

results show that the switching between eth0 and wlan0 is

around ~0.0013 sec.

8.1.2 Scenario 2: Switching from wlan0 to eth0

This is in continuation to the above, the communication between

mobile station and server happens with wlan0 interface. But,

once when the eth0 interface is up and wlan0 interface is down,

immediately the network interface is shifted to eth0 making the

session alive. The experimental results show that the switching

from wlan0 to eth0 is around ~0.0034 sec

8.2 For Multimedia:
We also tested our developed kernel module on both HTTP and

RTCP based applications

8.2.1 HTTP Application:
To demonstrate the HTTP application we used VLC player [23]

as a medium to stream recorded video.

Server: vlc -vvv /home/Movies --sout

'#standard{access=http,mux=ogg,dst=192.168.51.16:1234}

Client: vlc http://192.168.51.16:1234

Initially, streaming was done on eth0 network

interface.

Fig 5: Communication with eth0 (HTTP)

As shown (see figure 6), when the Ethernet cable was plugged

out, it took around ~0.0071 seconds to shift to wlan0 and

continue the session.

Fig 6: Switching from eth0 to wlan0 (HTTP)

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2011

22

Similarly, we tested the case of switching from wlan0 to eth0

running the HTTP application and results are depicted in Table

1.

8.2.2 RTCP Application:
To demonstrate this application we used an ACTi camera and a

VLC player.

Client: vlc rtsp://user:user123@192.168.51.92:554/axis-

media/media.amp

Once the camera is started, our mobile station receives packets

from the wlan0 interface.

Fig 7: Communication with wlan0 (RTCP)

Now when we disable wlan0 interface, it instantly shifts to eth0

interface within a span of around ~0.023 sec

Fig 8: Switching from wlan0 to eth0 (RTCP)

Similarly, we tested the case of switching from wlan0 to eth0

running the RTCP application and the results are shown in Table

1.

Table 1. shows the complete average time taken for vertical

handoff between both the interfaces for data, Multimedia

(HTTP) & Multimedia (RTCP) for all the approaches

experimented.

Table 1. Vertical Handoff Average Time

Approach Medium
Vertical

Handoff

Average

Time

Centralized
Approach

(using SIP)

Data

eth0 to wlan0 ~2.0 sec

wlan0 to eth0 ~3.0 sec

Multimedia

(HTTP)

eth0 to wlan0 ~3.0 sec

wlan0 to eth0 ~4.0 sec

Multimedia

(RTCP)

eth0 to wlan0 ~3.0 sec

wlan0 to eth0 ~4.0 sec

Decentralized

Approach
(using

Daemon)

Data

eth0 to wlan0 ~0.203 sec

wlan0 to eth0 ~0.047 sec

Multimedia

(HTTP)

eth0 to wlan0 ~3.0 sec

wlan0 to eth0 ~1.0 sec

Multimedia

(RTCP)

eth0 to wlan0 ~3.0 sec

wlan0 to eth0 ~1.0 sec

Decentralized

Approach

(using Kernel
Module)

Data

eth0 to wlan0 ~0.0013 sec

wlan0 to eth0 ~0.0034 sec

Multimedia

(HTTP)

eth0 to wlan0 ~0.0071 sec

wlan0 to eth0 ~0.012 sec

Multimedia

(RTCP)

eth0 to wlan0 ~0.015 sec

wlan0 to eth0 ~0.023 sec

9. CONCLUSION & FUTURE WORK
The proposed decentralized vertical handoff kernel module was

implemented and tested for multimedia networking applications
successfully on Linux Operating System. It runs directly at the

client devices and there is no need of any handoff agents or

servers. This module is completely implemented at the kernel

level of the Linux operating system. This architecture works for

any network interface supporting IP. Currently, the work is
limited to Linux based operating system. In future, our focus

will be to design and develop kernel module for mobile

operating systems such as Android, Symbian to achieve

seamless continuity in heterogeneity.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2011

23

10. ACKNOWLEDGMENTS
We thank Centre for Development of Advanced Computing (C-

DAC) for giving us an opportunity to do R&D in the area of

heterogeneous networks and providing us with required

infrastructure.

11. REFERENCES
[1] Selim İckin (2010): Implementation Of Measurement

Module For Seamless Vertical Handover, Blekinge

Institute of Technology

[2] Patrick Stuedi and Gustavo Alonso (2008): Transparent

Heterogeneous Mobile Ad Hoc Networks, Swiss Federal

Institute of Technology (ETHZ)

[3] Mohit Malhotra, Pramod P. J and S. V Srikanth (2011):

Integration of IMS and 802.21 in a Heterogeneous
Environment: An empirical analysis, IEEE ICDC

[4] S.V.Srikanth, Dr. Sarat Chandra Babu, Dileep K Panjala, I

Trilok (2011): Seamless Multimedia Communication Over

Heterogeneous Networks: A Linux Daemon Approach,

Indian Journal of Computer Science and Engineering
(IJCSE)

[5] Hakon Eyde Kjuus (2007): Session Continuity in

Heterogeneous Networks: A SIP-based Proactive Handover

Scheme, University of Oslo

[6] Nikolaou, N.A., Vaxevanakis, K.G., Maniatis, S.I., and
Venieris, I..S., Zervos, N.A. (2002): Wireless Convergence

Architecture: A Case Study Using GSM and Wireless

LAN. Mobile Networks and Applications, pp. 259–267

[7] Wei-Cheng Xiao, Shih-Hsuan Tang, Ling-Jyh Chen, and

Cheng-Fu Chou, (2007): A Novel Seamless Vertical
Handoff Solution, IEEE Consumer Electronics

[8] L. J. Chen, Tony Sun, and Mario Gerla. (2005): USHA: A

Practical Vertical Handoff Solution. MSAN

[9] M. Tim Jones (2007): Anatomy of the Linux networking

stack from sockets to device drivers, Emulex Corp.

[10] Ashwin Kumar Chimata (2005): Path Of A Packet In The

Linux Kernel Stack, University of Kansas

[11] Mahesh K. Subramanian (2005): A Kernel-based solution

to seamless mobility in wireless networks

http://www.technology.asu.edu/files/documents/.../Mahesh
FinalReport_V6.pdf

[12] J. Ylitalo et al. (2003): Dynamic Network Interface

Selection in Multihomed Hosts, Proceedings of the 36th

Hawaii International Conference on System Sciences

(HICSS’03), pp. 315-324.

[13] Seok Joo Koh, Sang Wook Kim (2005): mSCTP for

Vertical Handover Between Heterogeneous Networks.

Human.Society@Internet, pp.28-36

[14] M. Williams (2006): Linux ethernet bonding driver

HOWTO

[15] Maria Rosa Frias Gonzalez (2009): Analysis of

Interworking Functions for Heterogeneous Networks,

Thesis, Aachen

[16] ACTi Camera, Available from http://www.acti.

[17] Stefan Aust, Jong-Ok Kim, Peter Davis, Akira Yamaguchi,
Sadao Obana (2006): Evaluation of Linux Bonding

Features, Communication Technology, ICCT '06

[18] L. J. Chen, Tony Sun, Benny Chen, Venkatesh Rajendran,

and Mario Gerla (2004): A Smart Decision M odel for

Vertical Handoff, ANWIRE

[19] Srikant Sharma, Inho Baek, Yuvrajsinh Dodia, and Tzi-

cker Chiueh. OmniCon (2004): A Mobile IP-based Vertical

Handoff System for Wireless LAN and GPRS Links.

IWNDA

[20] WireShark monitoring tool, Available from
www.wireshark.org

[21] Linux Kernel Archives, Available from

http://www.kernel.org/

[22] Ubuntu 9.04 Linux, Available from

http://www.ubuntu.com/

[23] VLC player, Available from http://www.videolan.org/vlc/

http://www.technology.asu.edu/files/documents/.../MaheshFinalReport_V6.pdf
http://www.technology.asu.edu/files/documents/.../MaheshFinalReport_V6.pdf
http://www.wireshark.org/
http://www.kernel.org/
http://www.ubuntu.com/
http://www.videolan.org/vlc/

