
8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

31

Constructing Java Code for Specification – based

Approach for Implementing Atomic Read/ Write Shared

Memory in Mobile Ad Hoc Networks Using Fuzzy Logic

 Sherif El-Etriby Reham Shihata

 Faculty of Computers and Information, Faculty of Science, Math's. Dept.,

 Computer Science Dept., Menoufiya University, Egypt. Menoufiya University, Egypt.

ABSTRACT
In this paper we construct java code for specification phase of

the Geoquorum approach: implementing atomic read/ write

shared memory in mobile ad hoc networks using fuzzy logic.

This code is based on graphical user interface and is considered

a tool to determine the specification of the communication

protocol based on asynchronous real time distributed system

using java language. This code satisfies the accuracy and

determines the requirements of the specification phase using

fuzzy logic of our suggested application.

General Terms

Software Lifecycle, Wireless Network, Java Language.

Keywords

Specification Phase, Mobile Ad Hoc Network, Fuzzy Logic,

Java.

1. INTRODUCTION
A software system is viewed as a set of components that are

connected to each other through connectors. A software

component is an implementation of some functionality, available

under the condition of a certain contract, independently

deployable and subject to composition. In the specification

approach, each component has a set of logical points of

interaction with its environment. The logic of a component

composition (the semantic part) is enforced through the

checking of component contracts. Components may be simple or

composed [1] [11]. A simple component is the basic unit of

composition that is responsible for certain behavior. Composed

components introduce a grouping mechanism to create higher

abstractions and may have several inputs and outputs.

Components are specified by means of their provided and

required properties. Properties in this specification approach are

facts known about the component. A property is a name from a

domain vocabulary set and may have refining sub-properties

(which are also properties) or refining attributes that are typed

values [1]. The component contracts specify the services

provided by the component and their characteristics on one side

and the obligations of client and environment components on the

other side. Most often the provided services and their quality

depend on the services offered by other parties, being subject to

a contract. A component assembly is valid if it provides all

individual components are respected. A contract for a

component is respected if all its required properties have found a

match. The criterion for a semantically correct component

assembly is matching all required properties with provided

properties on every flow in the system [11]. In this specification

approach, it is not necessary that a requirement of a component

is matched by a component directly connected to it. It is

sufficient that requirements are matched by some components

that are presented on the flow connected to the logical point;

these requirements are able to propagate. A property consists of

a name describing functionality and attributes that are either

type values or fuzzy terms. The names used for the properties

and for the attributes are established through a domain-specific

vocabulary[2][11] .Such a restriction is necessary because a

totally free-text specification makes the retrieval difficult,

producing false- positive or false-negative matching due to the

use of a non-standard terminology[2][11]. In this work, the

domain specific vocabulary must also describe the domains of

the fuzzy attributes (linguistic variables) for each property as

well as the membership functions for the fuzzy terms. The

membership functions for all linguistic variables are considered

of triangular shape as shown in Fig.1.

 …….

 Fig.1 the Shape of the Membership Function

(D
eg

re
e

m
em

b
er

-s
h

ip
)

0 a1 a2 a3 an am

Term_n Term 2 Term 1

Domain

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

32

For each linguistic variable, first the number and the names of

the terms of its domain must be declared, and after that the

values of the parameters a1, a2… an must be specified. Also, we

should define a java as a tool which is used in the specification

phase of our suggested application. On a timesharing system,

users sit at "terminals" where they type commands to the

computer, and the computer types back its response. Early

personal computers also used typed commands and responses,

except that there was only one person involved at a time. This

type of interaction between a user and a computer is called a

command-line interface [3]. Today, of course, most people

interact with computers in a completely different way. They use

a Graphical User Interface, or GUI. The computer draws

interface components on the screen. The components include

things like windows, scroll bars, menus, buttons, and icons.

Usually, a mouse is used to manipulate such components.

Assuming that you have not just been teleported in from the

1970s, you are no doubt already familiar with the basics of

graphical user interfaces. Computer users today expect to

interact with their computers using a graphical user interface

(GUI). Java can be used to write GUI programs ranging from

simple applets which run on a Web page to sophisticated stand-

alone applications [3]. GUI programs differ from traditional

"straight-through" programs. One big difference is that GUI

programs are event-driven. That is, user actions such as clicking

on a button or pressing a key on the keyboard generate events,

and the program must respond to these events as they occur.

And of course, objects are everywhere in GUI programming.

Events are objects. Colors and fonts are objects. GUI

components such as buttons and menus are objects. Events are

handled by instance methods contained in objects. In Java, GUI

programming is object-oriented programming. A lot of GUI

interface components have become fairly standard. That is, they

have similar appearance and behavior on many different

computer platforms including Macintosh, Windows, and Linux.

Java programs, which are supposed to run on many different

platforms without modification to the program, can use all the

standard GUI components. They might vary a little in

appearance from platform to platform, but their functionality

should be identical on any computer on which the program runs.

Now, Java actually has two complete sets of GUI components.

One of these, the AWT or Abstract Windowing Toolkit, was

available in the original version of Java. The other, which is

known as Swing, is included in Java version 1.2 or later, and is

used in preference to the AWT in most modern Java programs

[4]. Also, try to get some feel about how object-oriented

programming and inheritance are used here. Note that all the

GUI classes are subclasses, directly or indirectly, of a class

called JComponent, which represents general properties that are

shared by all Swing components. Two of the direct subclasses of

JComponent themselves have subclasses. The classes JTextArea

and JTextField, which have certain behaviors in common, are

grouped together as subclasses of JTextComponent. Similarly

JButton and JToggleButton are subclasses of JAbstractButton,

which represents properties common to both buttons and

checkboxes. (JComboBox, by the way, is the Swing class that

represents pop-up menus.)[4]. Just from this brief discussion,

perhaps you can see how GUI programming can make effective

use of object-oriented design. In fact, GUI's, with their "visible

objects," are probably a major factor contributing to the

popularity of OOP.

2. ATOMIC READ/WRITE SHARED

MEMORY IN MOBILE AD HOC

NETWORK
 In this paper the Geoquorum approach has presented for

implementing atomic read/write shared memory in mobile ad

hoc networks. This approach is based on associating abstract

atomic objects with certain geographic locations. It is assumed

that the existence of Focal Points, geographic areas that are

normally "populated" by mobile nodes. For example: a focal

point may be a road Junction, a scenic observation point. Mobile

nodes that happen to populate a focal point participate in

implementing a shared atomic object, using a replicated state

machine approach. These objects, which are called focal point

objects, are prone to occasional failures when the corresponding

geographic areas are depopulated [5]. The Geoquorum algorithm

uses the fault-prone focal point objects to implement atomic

read/write operations on a fault-tolerant virtual shared object.

The Geoquorum algorithm uses a quorum- based strategy in

which each quorum consists of a set of focal point objects. The

quorums are used to maintain the consistency of the shared

memory and to tolerate limited failures of the focal point

objects, which may be caused by depopulation of the

corresponding geographic areas. The mechanism for changing

the set of quorums has presented, thus improving efficiency.

Overall, the new Geoquorum algorithm efficiently implements

read/write operations in a highly dynamic, mobile network. In

this study the basic idea for the proposed approach is an ad hoc

network uses no pre-existing infrastructure, unlike cellular

networks that depend on fixed, wired base stations. Instead, the

network is formed by the mobile nodes themselves, which co-

operate to route communication from sources to destinations [5].

Ad hoc communication networks are by nature, highly dynamic.

Mobile nodes are often small devices with limited energy that

spontaneously join and leave the network. As a mobile node

moves, the set of neighbors with which at can directly

communicate may change completely. The nature of ad hoc

networks makes it challenging to solve the standard problems

encountered in mobile computing, such as location management

using classical tools. The difficulties arise from the lack of a

fixed infrastructure to serve as the backbone of the network [5]

[6]. Atomic memory is a basic service that facilitates the

implementation of many higher level algorithms. For example:

one might construct a location service by requiring each mobile

node to periodically write its current location to the memory.

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

33

Alternatively, a shared memory could be used to collect real –

time statistics, for example: recording the number of people in a

building here, a new algorithm for atomic multi writes/multi-

reads memory in mobile ad hoc networks. The problem of

implementing atomic read/write memory is explained as we

define a static system model, the focal point object model that

associates abstract objects with certain fixed geographic locales.

The mobile nodes implement this model using a replicated state

machine approach [5] [6]. In this way, the dynamic nature of the

ad hoc network is masked by a static model. Moreover, it should

be noted that this approach can be applied to any dynamic

network that has a geographic basis. The implementation of the

focal point object model depends on a set of physical regions,

known as focal points. The mobile nodes within a focal point

cooperate to simulate a single virtual object, known as a focal

point object. Each focal point supports a local broadcast service,

LBcast which provides reliable, totally ordered broadcast. This

service allows each node in the focal point to communicate

reliably with every other node in the focal point. The focal

broadcast service is used to implement a type of replicated state

machine, one that tolerates joins and leaves of mobile nodes. If a

focal point becomes depopulated, then the associated focal point

object fails [5]. (Note that it doesn't matter how a focal point

becomes depopulated, be it as a result of mobile nodes failing,

leaving the area, going to sleep. etc. Any depopulation results in

the focal point failing). The Geoquorum algorithm implements

an atomic read/write memory algorithm on top of the geographic

abstraction, that is, on top of the focal point object model. Nodes

implementing the atomic memory use a Geocast service to

communicate with the focal point objects. In order to achieve

fault tolerance and availability, the algorithm replicates the

read/write shared memory at a number of focal point objects. In

order to maintain consistency, accessing the shared memory

requires updating certain sets of focal points known as quorums.

An important aspect of our approach is that the members of our

quorums are focal point objects, not mobile nodes [5] [6]. The

algorithm uses two sets of quorums (I) get-quorums (II) put-

quorums with property that every get-quorum intersects every

put-quorum. There is no requirement that put-quorums intersect

other put-quorums, or get-quorums intersect other get-quorums.

The use of quorums allows the algorithm to tolerate the failure

of a limited number of focal point objects. Our algorithm uses a

Global Position System (GPS) time service, allowing it to

process write operations using a single phase, prior single-phase

write algorithm made other strong assumptions, for example:

relying either on synchrony or single writers [5][6]. This

algorithm guarantees that all read operations complete within

two phases, but allows for some reads to be completed using a

single phase: the atomic memory algorithm flags the completion

of a previous read or write operation to avoid using additional

phases, and propagates this information to various focal paint

objects. As far as we know, this is an improvement on previous

quorum based algorithms. For performance reasons, at different

times it may be desirable to use different times it may be

desirable to use different sets of get quorums and put-quorums

see the following illustration table; Tab 1. Notations Used in the

Geoquorum Algorithm. A read/write object has the following

variable type as it can be seen in Tab.2 in Put/Get Variable type .

Tab. 1: Notations Used in the Geoquorum Algorithm.

Tab.2: Put/Get Variable type

I The totally- ordered set of node identifiers.

I0 є I A distinguished node identifier in I that is smaller than

all order identifiers in I.

S The set of port identifiers, defined as N 0× OP×I,

Where OP= {get, put, confirm, recon- done}.

O The totally- ordered, finite set of focal point identifiers.

T The set of tags defined as R ≥0 × I.

U The set of operation identifiers, defined as R ≥0 × S.

X

The set of memory locations for each x є X: Vx the set

of values for x , v0,x є Vx , the initial value of X.

M A totally-ordered set of configuration names

C0 є M A distinguished configuration in M that is smaller than

all other names in M.

C Totally- ordered set of configuration identifies, as

defined as: R ≥0 ×I ×M

L Set of locations in the plane, defined as R× R

STATES Config-id  C, initially< 0, i0, c0>

 Confirmed-set C T, initially Ø

 Recon-ip, a Boolean, initially false

OPERATIONS Put (new-tag, new-value, new-Config-id)

 Config-id ← new-config-id

 Recon-ip ← true

 Return put-Ack (Config-id, recon-ip)

 Get (new-config-id)

 If (new-config-id >Config-id) then

Config-id ← new-Config-id

 Confirmed ← (tag  confirmed-set)

 Return get-ack (tag, value, confirmed,

Config-id, recon-ip)

 Confirm (new-tag)

 Confirmed-set ←confirmed –set U {new-

tag}

 Return confirm-Ack

 Recon –done (new-Config-id)

If (new-Config-id=Config-id) then

Recon-ip ←false

Return recon-done-Ack ()

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

34

2.1 Operation Manager
In this section the Operation Manger (OM) is presented, an

algorithm built on the focal/point object Model. As the focal

point Object Model contains two entities, focal point objects and

Mobile nodes, two specifications is presented , on for the objects

and one for the application running on the mobile nodes. This

automaton receives read, write, and recon requests from clients

and manages quorum accesses to implement these operations

(see fig. 2). The Operation Manager (OM) is the collection of all

the operation manager clients (OMi, for all i in I).It is composed

of the focal point objects, each of which is an atomic object with

the put/get variable type [5] [6]:

Operation Manager Client Transitions

Input write (Val) i

Current-port-number

Current-port-number +1

Op < write, put, <clock, i>, Val, recon-ip, <0, i0,

c0>, Ø>

Output write-Ack ()i

Precondition:

Conf-id=<time-stamp, Pid, c>

If op .recon-ip then

√ C/  M, э P put-quorums(C/): P C op. acc

Else

Э P put-quorums(C): P C Op. acc

Op .phase=put

Op. type=write

Op. phase idle

Confirmed confirmed U {op. tag}

Input read ()i

Current-port-number

Current-port-number +1

Op < read, get, ┴, ┬, recon-ip, <0, i0, c0>, Ø>

Output read-ack (v) i

Precondition:

Conf-id=<time-stamp, Pid, c>

If op. recon-ip then

√ C/  M, э G get-quorums(C/): G C op. acc

Э G get-quorums(C): G C op. acc

Op. phase=get

Op. type=read

Op. tag confirmed

v= op. value

Op .phase idle

Internal read-2()i

Precondition:

Conf-id=<time-stamp, Pid, c>

√ C/  M, э G get-quorums(C/): G C op. acc

Э G get-quorums(C): G C op. acc

Op. phase=get

Op. type=read

Op. tag  confirmed

Current-port-number

Current-port-number +1

Op. phase put

Op. Recon. ip recon-ip

Op. acc Ø

Output read-Ack (v)i

Precondition:

Conf-id=<time-stamp, Pid, c>

If op. recon-ip then

√ C/  M, э P put-quorums(C/): P C op. acc

Э P put-quorums(C): P C op. acc

Op. phase=put

Op. type=read

v=op. value

Op. phase idle

Confirmed confirmed-set U {op. tag}

Input recon (conf-name)i

Conf-id <clock, i, conf-name>

Recon-ip true

Current-port-number

Current-port-number +1

Op < recon, get, ┴, ┴, true, conf-id, Ø>

Internal recon-2(cid)i

Precondition

√ C/  M, э G get-quorums(C/): G C op. acc

√ C/  M, э P put-quorums(C/): P C op. acc

Op. type=recon

Op. phase=get

Cid=op. recon-conf-id

Current-port-number

Current-port-number +1

Op. phase put

Op. acc Ø

Output recon-Ack(c) i

Precondition

Cid=op. recon-conf-id

Cid= <time-stamp, Pid, c>

Э P put-quorums(C): P C op. acc

Op. type=recon

Op. phase=put

If (conf-id=op. recon-conf-id) then

Recon-ip false

Op. phase idle

Input geo-update (t, L) i

Clock 1

Fig .2 Operation Manager Client Read/Write/Recon and

Geo-update Transitions for Node

2.2 Focal Point Emulator Overview
The focal point emulator implements the focal point object

Model in an ad hoc mobile network. The nodes in a focal point

(i.e. in the specified physical region) collaborate to implement a

focal point object. They take advantage of the powerful LBcast

service to implement a replicated state machine that tolerates

nodes continually joining and leaving .This replicated state

machine consistently maintains the state of the atomic object,

ensuring that the invocations are performed in a consistent order

at every mobile node [5]. In this section an algorithm is

presented to implement the focal point object model. the

algorithm allows mobile nodes moving in and out of focal

points, communicating with distributed clients through the

geocast service, to implement an atomic object (with port set

q=s)corresponding to a particular focal point.. The FPE client

has three basic purposes. First, it ensures that each invocation

receives at most one response (eliminating duplicates).Second, it

abstracts away the geocast communication, providing a simple

invoke/respond interface to the mobile node [6]. Third, it

provides each mobile node with multiple ports to the focal point

object; the number of ports depends on the atomic object being

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

35

implemented. When a node enters the focal point, it broadcasts a

join-request message using the LBcast service and waits for a

response. The other nodes in the focal point respond to a join-

request by sending the current state of the simulated object using

the LBcast service. As an optimization, to avoid unnecessary

message traffic and collisions, if a node observes that someone

else has already responded to a join-request, and then it does not

respond. Once a node has received the response to its join-

request, then it starts participating in the simulation, by

becoming active. When a node receives a Geocast message

containing an operation invocation, it resends it with the Lbcast

service to the focal point, thus causing the invocation to become

ordered with respect to the other LBcast messages (which are

join-request messages, responses to join requests, and operation

invocations).Since it is possible that a Geocast is received by

more than one node in the focal point ,there is some

bookkeeping to make sure that only one copy of the same

invocation is actually processed by the nodes[5][6]. There exists

an optimization that if a node observes that an invocation has

already been sent with LBcast service, then it does not do so.

Active nodes keep track of operation invocations in the order in

which they receive them over the LBcast service. Duplicates are

discarded using the unique operation ids. The operations are

performed on the simulated state in order. After each one, a

Geocast is sent back to the invoking node with the response.

Operations are completed when the invoking node with the

response. Operations complete when the invoking node remains

in the same region as when it sent the invocation, allowing the

geocast to find it. When a node leaves the focal point, it re-

initializes its variables. A subtle point is to decide when a node

should start collecting invocations to be applied to its replica of

the object state. A node receives a snapshot of the state when it

joins. However by the time the snapshot is received, it might be

out of date, since there may have been some intervening

messages from the LBcast service that have been received since

the snapshot was sent. Therefore, the joining node must record

all the operation invocations that are broadcast after its join

request has been broadcast but before it receives the snapshot

.this is accomplished by having the joining node enter a

"listening" state once it receives its own join request message;

all invocations received when a node is in either the listening or

the active state are recorded, and actual processing of the

invocations can start once the node receives the snapshot and

has the active status. A precondition for performing most of

these actions happens when the node is in the relevant focal

point. This property is covered in most cases by the integrity

requirements of the LBcast and Geocast services, which imply

that these actions only happen when the node is in the

appropriate focal point [5][6].

3. THE SPECIFICATION OF THE

GEOQUORUM APPROACH USING

FUZZY LOGIC

A component repository contains several implementations of

components that have the functionality of the application,

specified with the provided property reading / writing in mobile

ad hoc networks. Let us considered two different components,

C1 and C2, specified as follows:

Component C1:

Property reading / writing with attributes:

Read/ write_ ACK _ rate = Crisp (0.2)

Read/ write_ ACK _ rate = Crisp (0.4)

Occurrence = fuzzy (connect, about right, Almost no –connect)

Component C2:

Property reading / writing with attributes:

Read/ write _ ACK _rate = Crisp (0.6)

Read/ write _ ACK _ rate = Crisp (0.8)

Occurrence = fuzzy (connect, about right, Almost no connect)

Each of these attributes is defined as a linguistic variable with

these terms as follows:

Domain (read/ write _ ACK status) = {ACK_ response, no

change is needed, Almost no response}

Domain (occurrence) = {connect, about right, almost no

connect}

 For each linguistic variable set of the parameters a1, a2, a3

defining the shape of the membership functions are defined. In

our application, in case of the attribute reading / writing, these

values are (a1 = 0.2), (a2 = 0.4), (a3 = 0.6), (a4 = 0.8), and

random values are (a5 = 0.1), (a6 = 0.3).It is important to note

that a linguistic variable that characterizes an attribute can have

different meanings in the context of different properties. The

domain and the shape of a linguistic variable can be redefined in

the context of different properties.

3.1 Generation of Fuzzy Rules

A new property matching mechanism is defined. In general, a

requirement as: Requirement property P with attributes A1 = V1

and A2 = V2 and An = Vn is handled in the following manner:

First, the basic functionality is ensured, matching properties

names according to the classical reading / writing strategy.

Usually several solutions result from this first step. Second, the

preliminary solutions are selected and hierarchies according to

the degree of attribute matching [7] [8] [11]. This is done by

fuzzy logic. The given requirement is translated into the

corresponding rule:

If A1= V1 and A2 = V2 and … An = Vn then decision = select

The generation of the fuzzy rules is done automatically starting

from the requirements. Very often, the required attributes are not

values, but rather are required to be at least (or at most) a given

value, A = V or A =V. In general, a requirement containing

the attribute expression A =V will be translated into a set of I

rules, for all Vi V: If A= Vi then decision = select

 3.2 Extension of the Fuzzy Rules

 Several rules are generated from one requirement. In order to

relax the selection, it is considered a match even if one of the

linguistic variables in the premises matches only a neighbor of

the requested value (the predecessor or the successor) [7] [8]

[11]. In this case the decision of selection is a weak one. In the

case that more than one linguistic variable in the premise

matches only neighbor values (while the rest match the

requested fuzzy terms); the decision is a weak reject. In the

extreme case that all linguistic variables in the premises match

neighbor values, the decision is a weak reject [7]. In all the other

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

36

cases, the decision is a strong reject. For example, in the case of

a requirement containing two attributes, A1= V1 and A2=V2,

the complete set of generated rules is [7] [8] [11]:

The directly generated rule is:

 If A1=V1 and A2=V2 then decision=strong_ select

The rules generated if one of the linguistic variables in the

premises matches only a neighbor of the requested value are

(maximum 4 rules) [7] [8] [11]:

If A1 = pred (V1) and A2=V2 then decision = weak _ select

If A1 = succ (V1) and A2= V2 then decision =weak _select

If A1 = V1 and A2 = pred (V2) then decision = weak _ select

If A1 = V1 and A2 = succ (V2) then decision =weak _select

 In this case there are a maximum number of four generated

rules [9] [10]. If neither V1 nor V2 are extreme values of their

domains, if a value is the first value in the domain it has no

predecessor, if it is the last value in the domain it has no

successor [11] [12] [13]. The rules generated if more than one of

the linguistic variables in the premises matches only a neighbor

of the requested value are (maximum 4 rules):

If A1= pred (V1) and A2 = pred (V2) then decision =weak_

reject

If A1= succ (V1) and A2 = pred (V2) then decision =weak_

reject

If A1= pred (V1) and A2 = succ (V2) then decision =weak_

reject

If A1= succ (V1) and A2 = succ (V2) then decision =weak_

reject

For all the rest of possible combinations of values of A1and A2

the decision is strong-reject [11].

3.3 Specifying the Application using Fuzzy

Rules

The rules generated for one different neighbor are:

[R1] If read/ write_ Ack_ status = Almost_ no response and

occurrence = about right then decision = weak_ select.

[R2] If read/ write_ Ack_ status = Ack_ response and

occurrence = about right then decision = weak_ select.

[R3] If read/ write_ Ack_ status = Ack_ response and

occurrence = Almost no_ connect then decision = weak_ select.

[R4] If read/ write_ Ack_ status = no change need and

occurrence = connect then decision = weak_ select

The rules generated for two different neighbors are:

[R5] If read/ write_ Ack_ status =Almost_ no response and

occurrence = almost no- connect then decision = weak_ reject.

[R6] If read/ write_ Ack_ status = Ack_ response and

occurrence = almost no_ connect then decision = weak_ reject.

[R7] If read/ write_ Ack_ status = Almost no response and

occurrence = connect then decision =weak_ reject.

[R8] If read/ write_ Ack_ status = Ack_ response and

occurrence = connect then decision = strong _ select. Fig 3 -8(a,

b, c, d) illustrate how each of the generated rules is composed

with the fact represented by the specification of component c1

(with read/ write- Ack- rate= 0.1, 0.3, 0.2, 0.4, 0.8, 0.6 and

occurrence= Almost no connect).

Fig (3-a): Rule: If read/ write- Ack- status = (Almost- no-

response) and occurrence= (almost- no- connect) then

decision = weak- reject. Facts: read/ write- ack- rate= 0.1,

occurrence= Almost no- connect.

Fig (3-b): Rule: If read/ write- Ack- status = Almost no-

response and occurrence= about right then decision= weak-

reject. Facts: read/ write- Ack- rate= 0.1 occurrence=

Almost no- connect.

Fig (3-C): Rule: If read/ write- Ack- status = no change

needed and occurrence= Almost no- connect then decision=

weak- reject facts: read/ write- ack- rate= 0.1, (occurrence=

Almost no- connect).

Fig (3-d): Rule: If read/ write- Ack – status = no change

needed and occurrence= about right then decision= weak –

reject. Facts: read/ write- Ack- rate= 0.1, occurrence=

almost no- connect.

1

Read/ write- ack-
status = Almost

no- response

0-1

Occurrence= Almost no-
connect

1

0

Read/ write- ack-
status= Almost no-

response

0.1

Occurrence= about right

0.1

0.5

1

0

Read/ write- ack-

status = no change

needed

0-1

Occurrence= Almost no-

connect

0-1

Read/ write- ack
status = (no change

needed)

0.1 0.1

0.4

Occurrence= about right

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

37

Fig (4-a): Rule: If read/ write- Ack – status = (Almost no-

response) and occurrence= Almost no- connect then

decision= weak – reject Facts: read/ write- Ack- rate= 0.3,

occurrence= almost no- connect

Fig (5-b): Rule: If read/ write- Ack – status = (Almost no-

response) and occurrence= about right then decision= weak

– reject. Facts: read/ write- Ack- rate= 0.6, occurrence=

almost no- connect

Fig (4-b): Rule: If read/ write- Ack – status = (Almost no-

response) and occurrence= about right then decision= weak

– select. Facts: read/ write- Ack- rate= 0.3, occurrence=

almost no- connect

Fig (4-c): If read/ write- Ack – status= no change needed and

occurrence= Almost no- connect then decision= weak–reject.

Facts: read/ write- Ack- rate= 0.3, occurrence= almost no-

connect

Fig (4-d): Rule: If read/ write- Ack – status = no change needed and

occurrence= about right then decision= strong- select .Facts: read/

write- Ack- rate= 0.3, occurrence= almost no- connect

Fig (5-a): Rule: If read/ write- Ack – status = (Almost no-

response) and occurrence= Almost no- connect then

decision= weak – reject Facts: read/ write- Ack- rate= 0.6,

occurrence= almost no- connect.

Fig (5-c): Rule: If read/ write- Ack – status = no change

needed and occurrence= Almost no- connect then decision=

weak – reject facts: read/ write- Ack- rate= 0.6, occurrence=

almost no- connect

Fig (5-d): Rule: If read/ write- Ack – status = no change

needed and occurrence= about right then decision= weak –

select. Facts: read/ write- Ack- rate= 0.6, occurrence= almost

no- connect

Fig (6-a): Rule: If read/ write- Ack – status= (Almost no-

response) and occurrence= almost no- connect then

decision= weak – reject Facts: read/ write- Ack- rate= 0.2,

occurrence= almost no- connect

Fig (6-b): Rule: If read/ write- Ack – status= (Almost no-

response) and occurrence= about right then decision= weak

– select. Facts: read/ write- Ack- rate= 0.2, occurrence=

almost no- connect

0.3 0.3

1 Read/ write- ack-

status= (almost- no-

response)

Occurrence= (almost-

no- connect)

0.3 0.3

0.4

Read/ write- ack-
status = (almost- no-

response)

Occurrence= about right

Read/ write- ack-
status = (no change

needed)

0.3 0.3

Occurrence= almost no-

connect

Read/ write- ack-

status = (no

change needed)

0.3 0.3

0.4

Occurrence= about right

0.6

1 Read/ write- ack-

status = (almost-

no- response)

Occurrence= (almost- no-

connect)

0.4

0.6

0.6

Read/ write- ack-

status = (almost-

no- response)

Occurrence= about right

Read/ write- ack-

status = (no

change needed)

0.6

Occurrence= almost

no- connect

Read/ write- ack-

status = (no
change needed)

0.6 0.6

0.4

Occurrence= about right

0.2 0.2

1 Read/ write- ack-

status = (almost-

no- response)

Occurrence= (almost-

no- connect)

0.2 0.2

0.4

Read/ write- ack-

status = (almost-

no- response)

Occurrence= about right

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

38

Fig (6-c): Rule: If read/ write- Ack – status = no change

needed and occurrence= Almost no- connect then decision=

weak – reject Facts: read/ write- Ack- rate= 0.2, occurrence=

almost no- connect

Fig (6-d): Rule: If read/ write- Ack – status = no change

needed and occurrence= about right then decision= weak –

select. Facts: read/ write- Ack- rate= 0.2, occurrence= almost

No- connect

Fig (7-a): Rule: If read/ write- Ack – status= (Almost no-

response) and occurrence= Almost no- connect then

decision= weak – reject facts: read/ write- Ack- rate= 0.4,

occurrence= almost no- connect

Fig (7-b): Rule: If read/ write- Ack – status = (Almost no-

response) and occurrence= about right then decision= weak -

reject. Facts: read/ write- Ack- rate= 0.4, occurrence=

almost no- connect

Fig (7-c): Rule: If read/ write- Ack – status = no change

needed and occurrence= Almost no- connect then decision=

weak – reject Facts: read/ write- Ack- rate= 0.4, occurrence=

almost no- connect

Fig (7-d): Rule: If read/ write- Ack – status = no change

needed and occurrence about right then decision= strong-

select. Facts: read/ write- Ack- rate= 0.4, occurrence= almost

no- connect

Fig (8-a): Rule: If read/ write- Ack – status= (Almost no-

response) and occurrence= Almost no- connect then

decision= weak – select Facts: read/ write- Ack- rate= 0.8,

occurrence= almost no- connect

Fig (8-b): Rule: If read/ write- Ack – status= (Almost no-

response) and occurrence= about right then decision= weak

– select. Facts: read/ write- Ack- rate= 0.8, occurrence=

almost no- connect

Fig (8-c): Rule: If read/ write- Ack – status= no change
needed and occurrence= Almost no- connect then decision=
weak – select Facts: read/ write- Ack- rate= 0.8, occurrence=
almost no- connect

Fig (8-d): Rule: If read/ write- Ack – status = no change

needed and occurrence= about right then decision= weak –

reject. Facts: read/ write- Ack- rate= 0.8, occurrence=

almost no- connect

Read/ write- ack-

status = (no

change needed)

0.2 0.2

Occurrence= almost no-
connect

Read/ write- ack-
status = (no

change needed)

0.2 0.2

0.4

Occurrence=

about right

0.4 0.4

Read/ write- ack-

status= (almost-

no- response)

Occurrence=

(almost- no-

connect)

0.3
0.4

0.4

Read/ write- ack-

status = (almost-

no- response)

Occurrence= about right

Read/ write- ack-

status= (no
change needed)

0.4 0.4

Occurrence= (almost- no-

connect)

0.3
0.4

0.4

Occurrence=about right

Read/ write- ack- status

= no change needed

0.8

Read/ write- ack- status =

(almost- no- response)
Occurrence= almost- no connect

0.6

0.8

0.8

Read/ write- ack-

status = (almost- no-

response)

Occurrence= about right

Read/ write- ack- status=

(no change needed)

0.8 0.8

Occurrence= almost

no- connect

Read/ write- ack- status

= (no change needed)

0.8

0.4

0.8

Occurrence= about right

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

39

4. PERFORMANCE EVALUATION FOR

IMPLEMENTING ATOMIC READ/

WRITE SHARED MEMORY IN MOBILE

AD HOC NETWORK USING FUZZY

LOGIC.
Let us consider these assumptions as follow:

1-Input status word descriptions:

Almost no- connect

About right

Connect

2- Output action word descriptions:

Ack- response

No change needed

Almost no- response

3- Rules:

Translate the above into plain English rules (Called linguistic

Rules). These rules will appear as follow:

Rule 1: If the status is connect then Ack – response.

Rule 2: If the status is about right, then no change need

Rule 3: If the status is almost no- connect then Almost no-

response.

4- The next (3 steps) use a charting technique, one function of

the charting technique is to determine “The degree of

membership” of: Almost no- connect, about right and connect

triangles for a given values (see fig.9).

5- Associating the above inputs and outputs as causes and

effects with rules charts, as in the next fig.10 below (the cause –

effect), the chart is made of triangles, the use of which will be

explained. Triangles work just fine and are easy to work with

width of the triangles can vary [14] [15]. Narrow triangles

provide tight control when operating conditions are in the area.

Wide triangles provide looser control. Narrow triangles are

usually used in the center, at the set point (the target value).

6- Drawing “effect” (output determining) triangles with their

value (h=3 b/s or 4 b/s) is determined. The triangles are drawn

by the previous rules. Since the height doesn’t intersect with

connect, so we don’t draw it in the following (Figure 11- (a)

(b)). This “effect” triangle will be used to determine the

controller output. The result is affected by the width we have

given the triangles and will be calculated. Note that the no

change need state has a height of 0.2, 0.6 and the Almost no-

response state has a height of 0.8, 0.4 because these were the

intersect points for their matching “cause” triangles.

The output as seen in fig (11-a) is determined by calculating the
point at which balance the two triangles, as follow:
The area of no change need triangle is ½ × 0.2 × 5=0.5

The area of Almost No- response triangle is ½ × 0.8 × 2=0.8

We are looking for the balance point; find the balance point with

the following calculation:

Equation1: 0.8× D1 = 0.5 × D2

(D1 is the fulcrum distance form X1 and, D2 is the fulcrum

distance from Y1)

Equation2: D1 + D2 = 2.5  D1 = 2.5-D2

So, by substituting (2-5- D2) for D1 in equation1 gives D2

0.8× (2.5- D2) = 0.5 D2

2-0.8 D2 = 0.5 D2

2=1.3 D2  D2= 1.5


 D1 =1

The output as seen in fig (11-b) is determined by calculating the

point at which balance the two triangles, as follow:

The area of no change need triangle is ½ × 6 × 0.6= 1.8

The area of Almost No- response triangle is ½ × 3 × 0.4=0.6

0

1

Almost

no-

connect

 (a1)

About

right

(a2)

Connect

 (a3)

a1&a2 a2&a3

 Width (D
eg

re
e

m
em

b
er

-s
h

ip
)

Shoulders

Centers

(Engineering units typically b/s)

Almost

no-

connect

About

right

Connect

Measured value 3 b/s intersect

about right at 0.2, intersect at

almost no connect at 0.8.

1 2 3 4 5 6 7 8 9

10  (B/s)

Measured value 4 b/s

intersect about right at

0.6, intersect at almost

no connect at 0.4.

Almost

no-

respon

se

No change

needed

1 2 3 4 5 6 7 8

9 10
X1 D1 D2 Y1

Controller

Output 0.8

0.2

Almost no-

response

No change

needed

1 2 3 4 5 6 7 8

9 X2 D1 D2 Y2

1y2

Controller output

0.4

0.6

Fig.9 Membership Functions

Fig (11-b): Determination of Controller Output.

Fig. (11-a): Determination of Controller Output.

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

40

We are looking for the balance point; find the balance point with

the following calculation:

Equation1: 0.6× D1 = 1.8 × D2

(D1 is the fulcrum distance form X2 and, D2 is the fulcrum

distance from y2)

Equation2: D1 + D2 = 3.5  D1 = 3.5- D2

So, by substituting (3.5- D2) for D1 in equation1 gives D2

0.6× (3.5- D2) = 1.8 D2

2.1- 0.6 D2 = 1.8 D2

2.1=1.8 D2 +0.6 D2

2.1=2.4 D2  D2 ≈ 0.9

 D1 =2.6

Note, we are only discussing samples at instant values with a

resulting controller output; the controller is sampling several

times each second with a resulting “correction” output following

each sample.

5. JAVA CODE FOR SPECIFICATION

PHASE OF THE GEOQUORUM

APPROACH

The java code for Specification Phase of the Geoquorum

Approach for Implementing Atomic Read /Write Shared

Memory in Mobile Ad Hoc Networks is considered GUI which

determines specification phase code, this code will be illustrated

in fig.12 and see(Appendix-A).

Fig.12 Specification phase of the Geoquorum Approach in

Java

6. CONCLUSIONS

First, in this paper the results of the previous figures which are

done by fuzzy logic can be concluded as follow : the status of

read/write operation in our application is always (almost no

response or no change needed of the connection in the network),

the future occurrence of the connection is always (almost no

connect or about right of the connection in the network).Also, in

these figures we have always two facts that the current status of

occurrence is almost no connect and according to the fuzzy logic

we assume X values which are determined at the range from 0 to

1. So the results of the connection by the network are either

weak reject or weak select decision. Finally, at X is nearly

equals 0.5 and the read/write Ack status is no change needed and

the future occurrence of the connection is about right the result

of the connection by the network is may be strong select

decision. Second, we construct a java code for the specification

phase of the geoquorum approach which is considered a

communication protocol based on asynchronous real time

distributed systems. This code is a tool to guarantee the accuracy

and the validation of some phases of software lifecycle of this

application as specification phase. This code is illustrated and

building by GUI in java language.

7. REFERENCES

[1] Felix Bachman, Len Bass, C Buhman, S Comella-Dorda, F

Long, J Robert, R Seacord, Kurt Wallnau," Technical

concepts of component-based software engineering,"

Technical Report CMU/SEI-2000-TR-008, Carneggie

Mellon Software Engineering Institute, 2000

[2] Kendra Cooper, Joao Cangusu, Rong Lin, Ganesan

Sankaranarayanan, Ragouramane Soundararadjane, Eric

Wong," An Empirical Study on the Specification and

Selection of Components Using Fuzzy Logic," in

Proceedings of 8th International Symposium on CBSE, St.

Louis, USA, May 2005.

[3] Y.Daniel Liang: Introduction to Java Programming. 6th

Edition. USA: Pearson Prentice Hall, 2004.

[4] C.Snook, R.Harrison," Experimental Comparison of the

Compressibility of a Z Specification and Its

Implementation in Java", In: Proceeding Of Information

and Software Technology 46(2004), PP: 955-971.

[5] Dolv, S., Gilbert, S.Lynch, N.A., Shvartsman, A.A., Welch,

A.Loran.J.L:"Geoquorums: Implementing Atomic Memory

in Mobile Ad Hoc Networks ".In: Proceedings of the 17th

International Conference on The Distributed Computing,

PP: 306-319 (2005).

[6] Haas, Z.J., Liang, and B.A, D.Wjghs. "Ad Hoc Mobile

Management with Uniform GeoQuorums Systems", In:

Proceeding of IEEE/ACM Transactions on Mobile ad hoc

Networks 7(2), PP: 228-240(2004).

[7] Murat Koyuncu, Adnan Yazici," A Fuzzy Knowledge-Based

System for Intelligent Retrieval," in IEEE Transactions on

Fuzzy Systems, Vol. 13, No. 3, June 2005, pp. 317-330

[8] Ioana Sora, Pierre Verbaeten, Yolande Berbers," A

Description Language for Composable Components, in

Fundamental Approaches to Software Engineering",

Lecture Notes in Computer Science LNCS No. 2621,

Springer, 2003, pp. 22-37

[9] Ioana Sora, Vladimir Cretu, Pierre Verbaeten, Yolande

Berbers, "Automating decisions in component composition

based on propagation of Requirements, in Fundamental

Approaches to Software Engineering," Lecture Notes in

Computer Science LNCS No. 2984, Springer, 2004, pp.

374-388

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

41

[10] Ioana Sora, Vladimir Cretu, Pierre Verbaeten, Yolande

Berbers," Managing Variability of Self-customizable

Systems through Composable Components, in Software

Process Improvement and Practice, " Vol. 10, No. 1,

Addison Wesley, January 2005

[11]Ioana Şora, D. Todinca," Specification-based Retrieval of

Software Components through Fuzzy Inference", in Acta

Polytechnica Hungarica. Vol. 3, No. 3, 2006..

[12] R. Oliveira, L. Bernardo, and P. Pinto, “Modeling delay on

IEEE 802.11 MAC Protocol for Unicast and Broadcast Non

Saturated Traffic,” in Proc. WCNC’07, IEEE, 2007, pp.

463–467.

[13] A. Fehnker, M. Fruth, and A. McIver, “Graphical Modeling

for Simulation and Formal Analysis of Wireless Network

Protocols," in Methods, Models and Tools for Fault

Tolerance, LNCS 5454. Springer, 2009, pp. 1–24.

[14] T. Lin, “Mobile Ad-hoc Network Routing Protocols:

Methodologies and Applications,” PhD thesis, Virginia

Polytechnic Institute and State University, 2004.

[15] V. D. Tracy Camp, Jeff Boleng, “A Survey Of Mobility

Models For Ad Hoc Network Research,” Wireless

Communications and Mobile Computing, 2:483–502, 2002.

8. APPENDIX-A: JAVA CODE

package examples;

import javax.swing.JOptionPane;

public class specification extends

javax.swing.JFrame {

/** Creates new form specification */

public specification () {

initComponents();

 }

private void initComponents() {

jLabel1 = new javax.swing.JLabel();

jLabel2 = new javax.swing.JLabel();

jLabel3 = new javax.swing.JLabel();

jComboBox1 = new javax.swing.JComboBox();

jLabel4 = new javax.swing.JLabel();

jComboBox2 = new javax.swing.JComboBox();

jLabel5 = new javax.swing.JLabel();

jComboBox3 = new javax.swing.JComboBox();

jLabel6 = new javax.swing.JLabel();

jComboBox4 = new javax.swing.JComboBox();

jLabel7 = new javax.swing.JLabel();

jButton1 = new javax.swing.JButton();

setDefaultCloseOperation(javax.swing.Window

Constants.DISPOSE_ON_CLOSE);

setTitle("Specification phase\n");

jLabel1.setFont(new java.awt.Font("Times

New Roman", 1, 14));

jLabel1.setText("FACTS");

jLabel2.setFont(new java.awt.Font("Tahoma",

1, 18));

jLabel2.setForeground(new

java.awt.Color(102, 0, 102));

jLabel2.setText("The specification Phase

using fuzzy logic");

jLabel3.setFont(new java.awt.Font("Times

New Roman", 1, 14));

jLabel3.setText("READ/WRITE -ACK-STATUS");

jComboBox1.setFont(new

java.awt.Font("Tahoma", 1, 14));

jComboBox1.setModel(newjavax.swing.DefaultC

omboBoxModel(newString[]{"almost

noresponse","no-change-needed", " " }));

jComboBox1.addActionListener(new

java.awt.event.ActionListener() {

public void actionPerformed(java. awt.

event. ActionEvent evt) {

jComboBox1ActionPerformed(evt);

 }

 });

jLabel4.setFont(new java.awt.Font("Tahoma",

1, 14));

jLabel4.setText("DEGREE MEMBERSHIP X=");

jComboBox2.setFont(new

java.awt.Font("Tahoma", 1, 14));

jComboBox2.setModel(new

javax.swing.DefaultComboBoxModel(new

String[] {"0.1", "0.3", "0.2","0.4", "0.8",

"0.6" }));

jComboBox2.addActionListener(new

java.awt.event.ActionListener() {

public void actionPerformed(java. awt.

event. ActionEvent evt) {

jComboBox2ActionPerformed(evt);

 }

 });

jLabel5.setFont(new java.awt.Font("Tahoma",

1, 14));

Label5.setText("OCCURANCE");jComboBox3.setF

ont(new java.awt.Font("Times New Roman", 1,

14));

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

42

jComboBox3.setModel(newjavax.swing.DefaultC

omboBoxModel(newString[]{"Almost-no-

connect"," About-right" }));

jComboBox3.addActionListener(new

java.awt.event.ActionListener() {

public void actionPerformed(java. awt.

event. ActionEvent evt)

 {

jComboBox3ActionPerformed(evt);

 }

 });

jLabel6.setFont(new java.awt.Font("Tahoma",

1, 14));

jLabel6.setText("THE DECISION");

jComboBox4.setFont(new

java.awt.Font("Tahoma", 1, 14));

jComboBox4.setModel(new

javax.swing.DefaultComboBoxModel(new

String[] {"WEAK-REJECT",

"STRONG-SELECT", "WEAK-SELECT" }));

jLabel7.setFont(new

java.awt.Font("Verdana", 1, 12));

jLabel7.setForeground(new

java.awt.Color(102, 0, 102));

jLabel7.setText(" Existing occurrence=

Almost-no-connect");

jLabel7.setBorder(javax.swing.BorderFactory

.createLineBorder(new java.awt.Color(0, 0,

0)));

jButton1.setText("Specification Result");

jButton1.addActionListener(new

java.awt.event.ActionListener() {

public void actionPerformed (java. awt.

event. ActionEvent evt) {

jButton1ActionPerformed (evt);

 }

 });

javax.swing.GroupLayout layout = new

javax.swing.GroupLayout(getContentPanel());

getContentPanel().setLayout(layout);

layout.setHorizontalGroup(layout.createPara

llelGroup(javax.swing.GroupLayout.Alignment

.LEADING)

.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.LEADING).addGro

up(layout.createSequentialGroup(

).addGap(140, 140, 140)

.addComponent(jLabel2,javax.swing.GroupLayo

ut.PREFERRED_SIZE,457,javax.swing.GroupLayo

ut.PREFERRED_SIZE))

.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup(

).addGap(28, 28, 28)

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.LEADING)

.addComponent(jLabel4).addComponent(jLabel1

,javax.swing.GroupLayout.PREFERRED_SIZE,60,

javax.swing.GroupLayout.PREFERRED_SIZE)))

.addGroup(layout.createSequentialGroup()

.addGap(25,25,25)

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.LEADING)

.addComponent(jLabel3)

.addComponent(jLabel6,javax.swing.GroupLayo

ut.PREFERRED_SIZE,126,javax.swing.GroupLayo

ut.PREFERRED_SIZE).addComponent(jLabel5,jav

ax.swing.GroupLayout.PREFERRED_SIZE,114,

javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(4, 4, 4)))

.addPreferredGap(javax.swing.LayoutStyle.Co

mponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.LEADING)

.addComponent(jComboBox1,javax.swing.GroupL

ayout.PREFERRED_SIZE,224,javax.swing.GroupL

ayout.PREFERRED_SIZE).addComponent(jComboBo

x3, javax.swing.GroupLayout.PREFERRED_SIZE,

181,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent(jComboBox4,javax.swing.GroupL

ayout.PREFERRED_SIZE,220,javax.swing.GroupL

ayout.PREFERRED_SIZE)

.addComponent(jComboBox2,javax.swing.GroupL

ayout.PREFERRED_SIZE,56,javax.swing.GroupLa

yout.PREFERRED_SIZE).addComponent(jLabel7,j

avax.swing.GroupLayout.PREFERRED_SIZE,277,j

avax.swing.GroupLayout.PREFERRED_SIZE)).add

Gap(44,44,44)).addGroup(layout.createSequen

tialGroup().addGap(238, 238, 238)

.addComponent(jButton1))).addContainerGap(4

21, Short.MAX_VALUE))

);

layout.setVerticalGroup(layout.createParall

elGroup(javax.swing.GroupLayout.Alignment.L

EADING).addGroup(layout.createSequentialGro

up().addGap(29,29,29).addComponent(jLabel2)

.addGap(50, 50, 50)

.addGroup(layout.createParallelGroup(javax.

8887) –International Journal of Computer Applications (0975

Volume 27– No.4, August 201

43

swing.GroupLayout.Alignment.BASELINE)

.addComponent(jLabel4,javax.swing.GroupLayo

ut.PREFERRED_SIZE,30,

javax.swing.GroupLayout.PREFERRED_SIZE).add

Component(jComboBox2,

javax.swing.GroupLayout.PREFERRED_SIZE,java

x.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(32, 32, 32)

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.TRAILING,

false)

.addGroup(layout.createSequentialGroup()

.addComponent(jLabel1,javax.swing.GroupLayo

ut.PREFERRED_SIZE,26,javax.swing.GroupLayo

ut.PREFERRED_SIZE).addGap(114,114,114)).add

Group(layout.createSequentialGroup()

.addGap(4, 4, 4)

.addComponent(jLabel7,javax.swing.GroupLayo

ut.PREFERRED_SIZE,30,javax.swing.GroupLayou

t.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.Co

mponentPlacement.RELATED,

javax.swing.GroupLayout.DEFAULT_SIZE,Short.

MAX_VALUE).addGroup(layout.createParallelGr

oup(javax.swing.GroupLayout.Alignment.BASEL

INE).addComponent(jComboBox1,

javax.swing.GroupLayout.PREFERRED_SIZE,25,j

avax.swing.GroupLayout.PREFERRED_SIZE).addC

omponent(jLabel3,javax.swing.GroupLayout.PR

EFERRED_SIZE27,javax.swing.GroupLayout.PREF

ERRED_SIZE)).addGap(43, 43, 43)))

.addPreferredGap(javax.swing.LayoutStyle.Co

mponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.LEADING)

.addComponent(jComboBox3,javax.swing.GroupL

ayout.PREFERRED_SIZE,27,javax.swing.GroupLa

yout.PREFERRED_SIZE)

.addComponent(jLabel5)).addGap(26, 26, 26)

.addGroup(layout.createParallelGroup(javax.

swing.GroupLayout.Alignment.BASELINE)

.addComponent(jComboBox4,javax.swing.GroupL

ayout.PREFERRED_SIZE,javax.swing.GroupLayou

t.DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addComponent (jLabel6)).addGap (30, 30, 30

.addComponent (jButton1)

.addContainerGap (1164, Short.MAX_VALUE))

);

pack ();

 }// </editor-fold>

PrivatevoidjButton1ActionPerformed

(java.awt.event.ActionEvent evt) {

JOptionPane.showMessageDialog (null,

"The specification phases completed

successfully");

 }

privatevoidjComboBox1ActionPerformed(java.a

wt.event.ActionEvent evt) {

 }

privatevoidjComboBox2ActionPerformed(java.a

wt.event.ActionEvent evt) {

 }

privatevoidjComboBox3ActionPerformed(java.a

wt.event.ActionEvent evt) {

// TODO add your handling code here:

 }

public static void main (String args [])

{java.awt.EventQueue.invokeLater(new

Runnable () {

public void run ({new specification (

).setVisible(true);

 }

 });

 }

// Variables declaration - do not modify

private javax.swing.JButton jButton1;

private javax.swing.JComboBox jComboBox1;

private javax.swing.JComboBox jComboBox2;

private javax.swing.JComboBox jComboBox3;

private javax.swing.JComboBox jComboBox4;

private javax.swing.JLabel jLabel1;

private javax.swing.JLabel jLabel2;

private javax.swing.JLabel jLabel3;

private javax.swing.JLabel jLabel4;

private javax.swing.JLabel jLabel5;

private javax.swing.JLabel jLabel6;

private javax.swing.JLabel jLabel7;

 // End of variables declaration

