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ABSTRACT 
In recent years Image and Signal compression have been 

receiving a lot of attention by scientists and researchers in order to 

improve storage and transmission capabilities. In this study we 

have compared the performance of Kekre’s wavelet with other 

wavelets viz. Haar and Daubechies 2 with respect to energy in the 

Low-Low (LL ), Low-High (LH) ,High-Low (HL) and High-High 

(HH) bands. The energy distribution in each band is an indicator 

of the performance of the transform for image compression. It is 

found that the percentage of energy in the low-low band is equal 

for Kekre’s and Haar wavelet. The daubechies 2 wavelet although 

offers a slightly higher energy compaction but the tradeoff is that 

the order of the filter being higher and therefore computational 

burden increases.  
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1. INTRODUCTION 
Wavelets are mathematical functions that cut up data into 

different frequency components, and then study each component 

with a resolution matched to its scale. They have advantages over 

traditional Fourier methods in analyzing physical situations where 

the signal contains discontinuities and sharp spikes. Wavelets 

were developed independently in the fields of mathematics, 

quantum physics, electrical engineering, and seismic geology. 

Interchanges between these fields during the last ten years have 

led to many new wavelet applications such as image compression, 

turbulence, human vision, radar, and earthquake prediction [1]. 

The basic concept in wavelet is to use a mother wavelet and then 

perform analysis using shifted and dilated versions of this mother 

wavelet [2] 

Wavelet Transforms  use different window functions to analyse 

different frequency bands of the signal x (t). Different window 

functions  ψ(s,b,t);which are also called daughter  wavelets they  

can  be generated by dilation or compression of a mother wavelet 

ψ(t), at different time frame. A scale is the inverse of its 

corresponding frequency . A continuous type of wavelet transform 

(CWT) that is applied to the signal x(t) can be defined as, 

                                                                         

w(a,b) =                  (1) 

 

Where 

a   is the dilation factor, 

b is the translation factor and  

 ψ(t) is the mother wavelet.  

1/ a is an energy normalization term that makes wavelets of 

different scale have the same amount of energy. 

 

2. METHODOLOGY 
We have used three test images viz . lena ,rice and one band of a 

multispectral image of SanFrancisco bay area for comparison of 

the performance of Kekres transform with Haar and Daubechies 

wavelets. 

THE KEKRE’S MATRIX [3 ] 

Kekre’s matrix can be generated using the expression  

 

                 1                           ;   x ≤ y  

 Kxy =      -N + (x-1)             ; x= y + 1 
            0                           ; x > y + 1                                                                     
                           (2) 

A 2x2 Kekres matrix  obtained from the above expression is 

     

K(2) =        1     1 

                                  -1    1  

                           (3) 

 

Figure 1. Two dimensional Kekres basis functions (N=2) 
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A 3x3 Kekres matrix  obtained from the above expression is 

 

 1     1     1 

 -2     1     1 

 0    -1     1 

                                                                   (4) 

 

 

Figure 2 Two dimensional Kekre’s basis functions (N=3) 

 

3. PROPERTIES OF KEKRE’S WAVELET 

TRANSFORM 

3.1 Orthogonal 

The transform matrix K is said to be orthogonal if the following 

condition is satisfied. 

  [K][K]T = [D]                                               (5) 

Where D is the diagonal matrix. 

Kekre’s Wavelet Transform matrix satisfies this property and 

hence it is orthogonal. 

The diagonal matrix value of Kekre’s transform matrix of size 

NxN can be computed as 

 

                       2                                    ;   if x = y=N  

 D(x,y)  =       N                                   ;   if x= y = 1 
               0                                     ;   if x ≠ y 
       D(x+1,y+1)+ 2(N-x+1)  ; if x=y=p and p ≠1 or N 

      

                                                                                       (6) 

Asymmetric 

As the Kekre’s transform is upper triangular matrix, it is 

asymmetric. 

3.2   Non-Involutional 

An involutionary function is a function that is its own inverse. So 

involutional transform is a transform which is inverse transform 

of itself. Kekre’s transform is non involutional transform. 

3.3 Transform on Vector 

The Kekre’s Wavelet transform on a column vector f is given by 

F = [KW] f               (7) 

 

And inverse is given by 

f = [KW]T  [D]-1 F      (8) 

3.4 Transform on 2D Matrix 

Kekre’s Wavelet transform on 2D matrix f is given by 

[F] = [KW] [f] [KW]T        (9) 

Obtaining Inverse: Calculate Diagonal matrix D as,  

[D] = [KW][KW]T      (10) 

 

D1 0 0 0 0 0 

0 D2 0 0 0 0 

0 0 D3 0 0 0 

0 0 0 … 0 0 

0 0 0 0 … 0 

0 0 0 0 0 DN 

 

Inverse is calculated as 

[f] = [KW]T [ Fij / Dij ] [KW]     (11) 

Where Dij = Di * Dj      ; 1≤ i ≤ N and 1≤  j ≤ N 

 

4. DECOMPOSITION USING WAVELETS 
The basic idea of subband coding (SBC) is to split up the 

frequency band of the signal and then to code each subband using 

a coder and bit rate accurately matched to the statistics of that 

band [4].In Subband coding of images each row of the image is 

convolved with the coefficients of the LPF and HPF and 

downsampled by two , then we work on the image column wise 

and again downsample by two.If the original image is of size NxN 

after first level decomposition we obtain four images of size N/2 x 

N/2. It is usually found that out of  the four sub images the LL 

subimage has most of the energy and other subimages have 

energy close to zero . Therefore the LL subimage may be 

decomposed further and the other subimages are usually not 

decomposed further. 

 

4.1 Kekre’s wavelet [5] 
The first row of the Kekre’s forward transform matrix is a Low 

Pass filter. The frequency response of the filter is shown in Fig. 3. 

This row is used as the impulse response of the low pass 

decomposition filter. 

The impulse response of Kekres analysis filters are 

               h0[n] =  [1 , 1 ] LPF                   (12) 

               h1[n] =  [-1 , 1] HPF   (13) 

 

|H0(e
jw)| =                    (14) 

 

|H1(e
jw)|=     (15) 

 

|H0(0)|=2 , |H0(π/2)|=  , |H0(π)|=0 and |H1(0)|=0  (16) 

 

|H1(π/2)|=  , |H1(π)|=2    (17) 
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Figure 3. Frequency Response of Kekres Lowpass 

Decomposition Filter 

The second row of the Kekres forward transform matrix is a High 

pass filter and its frequency response is as  shown Fig.4 . This row 

is used as the impulse response of the  high pass decomposition 

filter 

 

Figure 4. Frequency Response of Kekres Highpass 

decomposition filter 

 

 

 

 

Figure 5 One level decomposition using Kekres wavelet 

transform 

4.2 Haar Wavelet 

The impulse response of Haar  analysis filters are 

 h0[n] = [ 0.7071    0.7071 ]   LPF   (18) 

 

 h1[n] = [- 0.7071    0.7071] HPF   (19) 

 

 

Figure 6 Frequency response of the LPF used in the Haar 

analysis filter bank. 

 

Figure 7 Frequency response of the HPF used in Haar analysis 

filter bank 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

Normalized Frequency  (  rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

Normalized Frequency  (  rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-180

-160

-140

-120

-100

-80

Normalized Frequency  (  rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

Normalized Frequency  (  rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

Normalized Frequency  (  rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

Normalized Frequency  (  rad/sample)

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-180

-160

-140

-120

-100

-80

Normalized Frequency  (  rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

Normalized Frequency  (  rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)



International Journal of Computer Applications (0975 – 8887) 

Volume 27– No.6, August 2011 

31 

 

 

 

 

Figure 8 : One level decomposition using Haar wavelet 

transform. 

 

4.3 Daubechies Wavelet 

The impulse response of Daubechies 2 analysis filters are 

 

h0[n] =  [-0.1294    0.2241    0.8365    0.4830]   LPF (20) 

 
 h1[n] = [-0.4830    0.8365   -0.2241   -0.1294]  HPF (21) 

 

 

Figure 9 Frequency response of the LPF used in the 

Daubechies 2 analysis filter bank 

 

 

Figure 10 Frequency response of the HPF used in the 

Daubechies 2 analysis filter bank. 

 

 

 

 

Figure 11:One level decomposition using Daubechies wavelet 

transform. 

To perform image compression using the transform coding 

method is to take an image and apply a transform on the image to 

change its representation. The original image usually has its 

energy scattered throughout the image . The objective of taking 

the transform is to pack a lot of energy into as few pixels as 

possible. Energy compaction capability of the transform is a very 

useful property which allows allocation of more bits to high 

energy coefficients which occur in the LL band and fewer bits to 

low energy coefficients which are quantized and made zero. 

 

When the image is decomposed using wavelets  transform is taken 

most of the energy  in the image   relocates to the top  LL band. 

Higher order filters are more efficient in decomposition than 

filters with lower order . However higher the order the number of 

computation i.e. multiply-add increases. 
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5. RESULTS AND DISCUSSION 

Table 1 Comparison of Wavelet Coefficients using Kekre , 

Haar and Db2 for  Different Images. 

 
Image 

Name 

Wavel

et 

Name 

Approx. 

coefficie

nts 

Horizont

al Detail 

Vertical 

Detail 

Diagonal 

Detail 

Lena Kekre 98.8116 0.3544 

 

0.7850 

 

0.0490 

 Haar 98.8116 

 

0.3544 0.7850 

 

0.0490 

 Db2 99.0780 0.3444 

 

0.5418 0.0358 

 

Pepper

s 

Kekre 99.7323 

 

0.1615 

 

0.0871 

 

0.0191 

 

 Haar 99.7323 

 

0.1615 

 

0.0871 

 

0.0191 

 

 

 

Db2 99.8625 0.0829 

 

0.0420 

 

0.0126 

 

SFO Kekre 99.5410 

 

 

0.1863 0.2269 0.0459 

 Haar 99.5410 

 

0.1863 0.2269 0.0459 

 Db2 99.6693 0.1398 0.1577 

 

0.0332 

Rice Kekre 99.2723 0.2711 0.3681 0.0884 

 Haar 99.2723 

 

0.2711 0.3681 0.0884 

 Db2 99.5351 0.1516 0.2439 0.0693 

 

 

 
 

 

Figure 12: Wavelet vs. Energy for image Leena 

 

 
 

Figure 13: Wavelet vs. Energy for image SFO 

 
 

Figure 14: Wavelet vs. Energy for image Peppers 
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Figure 15: Wavelet vs. Energy for image Rice 

From the Table. 1 it is found that maximum energy in all images 

are in the approximate coefficients, but the amount of energy in 

the LL band is image dependent. In all images the energy in LL, 

LH, HL and HH band when kekres transform is used is same as 

that when Haar transform is used. In case of Daubechies wavelet 

the energy in the LL band is more compared to Kekres and Haar 

transform and then energy drastically reduces. The energy in other 

bands is proportional to the type of edges i.e. Horizontal, Vertical, 

diagonal present  in the respective image. 

 

6. CONCLUSION 

The performance of Kekre’s wavelet transform is the same as 

Haar transform with respect to energy compaction ability .The 

advantage of Kekre’s wavelet over Haar is that the coefficients of 

the Kekres matrix are integers and computational burden and 

quantization problems are less in this transform. Another 

advantage is that Kekres matrix can be generated for any order 

unlike Haar where the order hast to be an integer power of two 

(i.e. 2, 4, 8,16….)  
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