
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.7, August 2011

31

Improved Bandwidth Utilization based Check pointing
Algorithm in Distributed Database

Neera Batra and Manpreet Singh

M. M. Engineering College, M. M. University
Mullana, Ambala
Haryana, India

ABSTRACT
In this paper, we present an optimal-bandwidth, min-process

coordinated check pointing algorithm suitable for network

failure prone applications in distributed systems. In the

developed algorithm, during normal computation message

transmission, dependency information among clusters is

recorded in the corresponding cluster head processes. When a

check pointing procedure begins, the initiator from a cluster

concurrently sends composite message to all the cluster head

processes which after extracting individual messages from it,

further multicasts individual messages to the corresponding

currently active receiving processes in their corresponding

clusters thus resulting in reduced transmission delay and

communication cost, better bandwidth utilization and faster

speed of execution. Quantitative analysis shows that proposed

algorithm works efficiently in terms of better response time

and maximum bandwidth utilization for applications running

under critical conditions such as low bandwidth availability

and thereby resulting in frequent disconnections.

Keywords
Optimal bandwidth cluster fed check point, non-blocking.

1. INTRODUCTION
Cluster federations contain a large number of nodes and are

heterogeneous. Nodes in a cluster are often linked by a SAN

(System Area Network) while clusters are linked by LANs

(Local Area Network) or WANs (World Area Network) [5].

Clusters communicate with each other by message passing. To

survive failures, clusters take checkpoints periodically or non-

periodically. Checkpoint is defined as a designated place in a

program at which normal processing is interrupted specifically

to preserve the status information necessary to allow

resumption of processing at a later time. Check pointing is the

process of saving the status information. A checkpoint is a

snapshot of the state of a process saved on the stable storage

which can be reloaded into memory to reduce the amount of

lost work in recovery. [6] Checkpoints correspond just to

processes states and have no information about the states of

the communication channels. Therefore, in order to record a

consistent global state of a process, whenever the state of any

process indicates that it has sent a message to another

process, the state of the receptor must indicate that it has

received this message. This requirement is the major

condition to the implementation of techniques to record

global states of distributed system.

A global checkpoint [8][9][10][14] consists of certain number

of checkpoints such that each of these checkpoints

corresponds to one of the clusters uniquely in a cluster

federation.

In this paper, we specifically address a reduced bandwidth

usage and low cost scheme for distributed database based on

processes check pointing . Processes take checkpoints

periodically managed by the local cluster head and log their

output/input in a common table maintained by cluster head.

The developed scheme reduces the cluster-to-cluster

communication to a single composite message and the cluster

head of each cluster is responsible for extracting the individual

messages from the composite message and multicast them to

the corresponding receiving processes.

The remainder of this paper is organized as follows. In section

2, we state the data structures used. Section 3 describes the

working model of the algorithm. Section 4 presents the
proposed check pointing algorithm. In section 5, some

relevant observations along with comparison to other

algorithms are presented. Section 6 comprises of performance

analysis. Section 7 concludes the paper.

2. DESIGN PRINCIPLES

2.1 Models and assumptions

APPLICATION MODEL: Distributed database applications
using the composite message model is designed. Processes of

this kind of applications are divided into clusters (modules).

Processes inside the same cluster communicate a lot while

communications between processes belonging to different

clusters are limited due to global bandwidth usage resulting in

more communication cost incurred and frequent transaction

restarts due to unavailability of optimal bandwidth required

for Inter-cluster communications.

Cluster 1 Cluster 2
Cluster 3

Figure 1: Cluster Federation

2.2 Architecture model and network

assumptions
We assume a cluster federation as a set of clusters

interconnected by a WAN, inter-cluster links being either

dedicated or even Internet, or a LAN. Each group of processes

may run in a cluster where network links have small latencies

and large bandwidths (SAN).

2.3 Data Structures

Notations used:

 Ν - Global Bandwidth

 η - Local Bandwidth

SN - Sequence Number of a Process
aSN -Sequence number of cluster A

PN - Total number of processes

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.7, August 2011

32

cN - Total number of clusters

CH -Cluster Head

[]ii YP
i,

 -Process identity number of
thi process, flag Y

for
thi process

a
iv - keeps a record of SN for each process ip in cluster

A

()ai xC -
thX checkpoint of process i in cluster A

[][]aiY - is the flag used to identify active processes at

thx checkpoint

t - Time taken for a composite message to reach from one

CH to another CH

()CHp
a
1 - The checkpoint initiating cluster head process

cluster A
cm -control message

am - Application message

Cam - Composite message

Suppose there are PN processes and cN clusters in the

system where PN is much larger than
cN . Each process is

assigned a unique id, i where ()PNi ≤≤1 .

In our check pointing scheme, for each process in the cluster,

the checkpointing dependency information is maintained by its

cluster head process. Each Cluster Head CH sends the

composite messages consisting of control and application

messages to the cluster head of other clusters which further

multicast the message to all the corresponding currently active

processes in the cluster after extracting the individual single or

multiple messages from the composite message meant for

each receiving process. This scheme reduces the message

passing and number of lost messages drastically, thus making

system more available, reliable and faster and resulting in

optimal bandwidth utilization for network failure prone

applications.

When a check pointing procedure begins, the sending and the

receiving of composite messages is mainly accomplished

amongst cluster head processes. To maintain such additional

information for each process
a

ip in cluster A , each

sending cluster head CH maintains a log file

Bpp b
j

a
i ,, with

a

ip as a sending process in cluster A

and
b
jp as a receiving process in cluster B where

()PNji ≤≤ ,1 and ()cNba ≤≤ ,1 . A vector
a
iv for

keeping a record of SN (Sequence Number) for each process

ip in cluster A where flag [][] 0=aiY in case, process

ip neither receives or sends any message during current

global interval () ()()aa

i xCxC 1
_

− at
thX check point.

After the global check point is taken, both the fields in the

table are set as empty and
aSN is incremented.

3. WORKING MODEL
In the proposed algorithm, when communication occurs

between two processes in different clusters, then dependencies

are generated between checkpoints taken in different clusters.

Dependencies must be tracked in order to allow the

application to be restarted from a consistent state. In our work

based on idea adopted from [1], it is the sending process that

ensures that none of its sent messages can remain an orphan

(received-not-sent).

When the CH of any cluster initiates the checkpointing

procedure by sending the control message to other clusters,

then the current cluster’s sequence number SN is

piggybacked on inter-cluster control message embedded in the

composite message which is sent to any active process in any

cluster during
thX global checkpoint interval. CH of each

other cluster is responsible for storing these SN values for

synchronization among clusters.

The communication scheme based on message passing from

one CH to other is beneficial only if (i) there are very few

chances of message loss due to network failure. So the

proposed algorithm works best for the applications which are

network failure prone and for applications which do not use

secure network media for message communication as it

introduces the concept of composite message passing to

overcome these two significant shortcomings of

communication induced check pointing (ii) CH

communicates the inter-cluster received messages to all the

active processes in the cluster within a finite period of time so

that there is no synchronization delay. To deal with

synchronization delay, the algorithm assumes a threshold

value of time interval within which sending CH creates a

composite message comprising of control messages and

application messages both and receiving CH multicasts the

received messages to all corresponding processes in the cluster

which are participating during current global checkpoint

interval ()xx cc −−1 ,after extracting them from the composite

message .

 Let us assume that the time taken on an average by a cluster

head to send a composite message to other cluster head is a

constant t with the assumption that the bandwidth available

during message passing remains constant. As seen in most of

the previous works[1][2][3], If a control message is to be

sent to processes in a cluster, time taken by a sending process

a

ip in cluster A for any processes
b
jp where

)1(np j≤≤ in cluster B is t . If the process ip is

supposed to send the control message to each process in

cluster B directly, it will take tn * if there are n processes.

In the proposed algorithm, the CH of cluster B checks for

the value of iY where ni ≤≤1 and multicasts extracted

control messages and application messages to all the processes

with value of 1=iY . Suppose time taken by CH to multicast

the control message
cm and application messages

am

among active processes is τ which is a small fraction of time

t as cluster B uses SAN(System Area Network), a very fast

and reliable media in comparison to LAN or WAN used for

communication amongst clusters. So total time taken by CH

to inform all the active processes for the next checkpoint is

()ττ ++ t i.e. τ2+t where τ is time taken by sending

process in cluster A to composite the message, t is the time

taken by cluster A to send the message to CH of cluster B

and τ is the time taken by CH of cluster B to extract the

individual messages and multicast them to corresponding

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.7, August 2011

33

active processes. This value)2(τ+t is considered as a

threshold value to keep a check on transmission delay caused

by CH . Although this threshold value varies during each

global check point interval depending upon number of active

processes in current global checkpoint interval but this

variation is very small, since number of participating

processes during each checkpoint interval remain almost

constant. Now this threshold value will be a common constant

for all the clusters in cluster federation. Hence, each sending

and receiving cluster will know a priori about message

transmission delay caused by any other CH . So no

acknowledgement is required to ensure that cluster head

CH has sent the message to all other processes or not, which

belong to same cluster.

Suppose there are two clusters A and B with 4 processes

each uniquely identified as 432,1 ,, pppp and

87,65 ,, pppp respectively as shown in Fig. 2.

Figure 2. Cluster Communication Through Meassage

Passing

Now process 1p of cluster A which is initiating cluster

head process ()CHp
a
1 , when takes a check point, creates a

composite message
Cam comprising of a single control

message with latest SN and application messages received

during a fixed timeτ say 2 ms and then sends this composite

message to CH of cluster B in time interval t say 2

ms(micro seconds). CH of cluster B on receiving this

composite message
Cam extracts each individual control

message
cm and application message

am from it and further

multicasts them o all the corresponding receiving processes

respectively in cluster B who are active in current global

checkpoint interval ’ I ’ say within τ ms(say 2ms) .

So total time taken for control message
cm sent by cluster A

to reach all the active processes in cluster ()ττ ++= tB =

6 ms. Now say after 2ms of sending the first composite

message by ()CHp
a
1 of cluster A , a process

ap3

belonging to same cluster sends an application message

6,, pSNm aa
 piggybacked with aSN along with process

identity number of receiving process to cluster B through

()CHp
a
1 embedded in second composite message. CH of

cluster B after extracting the application message

6,, pSNm aa
 from the received composite message ,

sends the message to 6p for processing taking total time of

6ms(2+2+2) i.e. ()ττ +++ t i.e.. ()τ2+t .Total time

taken for processing second composite message =

(2+2+2+2) i.e. ()τ3+t = 8 ms where first 2 ms taken are

considered on the basis that this message is sent after 2ms of

recent global checkpoint interval starts which is ≅ τ .

Accordingly within 8 ms, all the processes in the cluster come

to know about the next global checkpoint to be taken even if

they haven’t received the first composite message containing

the control message in it yet.

On basis of above observations, maximum global checkpoint

interval ()xx CCI −= −1 is such that ()2222 +++=T i.e.

()τ3+t = 8 ms.

The proposed algorithm makes system resilient against any

message delay or message loss. Since this threshold value

considered is a constant and already known to each cluster, so

if any process ()CHp
a
1 of cluster A sends a piggybacked

message to cluster B , it takes again t time to reach the

cluster head CH of cluster B and now the cluster extracts

the
aSN piggybacked with application message . If

ab SNSN < , then CH of cluster B informs all the active

processes in cluster B about the next checkpoint to be taken

and sends the received application message for processing to
the concerned process. Therefore instead of waiting for the

control message
cm to arrive which was embedded in the

first composite message, the process 6p of cluster B takes a

forced checkpoint and updates its SN value with piggybacked

aSN value received in second composite message,

if [][] 16 =bY . The first application message embedded in the

second composite message , sent by a CH to any other cluster,

only contains piggybacked information. However, any other

process in source cluster doesn’t need to piggyback SN value

if it sends any other message to the same cluster before the

next invocation of the proposed algorithm.

4. CHECKPOINTING ALGORITHM

*p[j][i] is the ith process in jth cluster & we assume p[j][1] as

cluster head of eack cluster j, cNj ≤≤1 *\

 cp NN ≥ & cp NN ∈

 where Np-Number of processes
 Nc-Number of clusters

 At Sender :

* Assume inip is the initiator in cluster c*\

If inip ==][cCH

 Step 1:][cCH takes a checkpoint

 Step 2: checks Y[k][c]==1 for each process k in

 Cluster c

 Step3:][cCH sends
Cam to][jCH where

cNjjCH ≤≤∀1],[.

 Step 4: 1+= cc SNSN ;

P6

P3

P7

Cluster A

(CH)

Cluster B

(CH)

P1

m1+m2+m3

Ca
m

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.7, August 2011

34

 Step 5: Set Y[k][c]=0 for each process k in cluster

 c

At Receiver:

On receiving
Cam from cluster c , each

cNjjCH ≤≤∀1],[checks for process ip satisfying

condition pNijiY ≤≤∀== 1,1]][[

 Step 1 :][jCH after extracting control message

cc
SNm , from

Cam sends it to processes with

Y[i][j]==1.

 Step 2 : 1+= jj SNSN ;
c

c

NcCH

Nj

∉

≤≤

][

&1

 Step 3: Each extracted
am from

Cam is sent to

corresponding receiving active process in cluster j where

cNj ≤≤∀1

Step 4: Set Y[i][j]==0 for CNj ≤≤1 , pNi ≤≤1

End of algorithm.

5. IMPLEMENTATION
 It is reasonable to say that the major source of overhead in

checkpointing schemes is the response time and network

communication latency. Communication overhead becomes a

minor source of overhead as the latency of network

communication decreases. In this scenario, the coordinated

checkpoint becomes worthy since it requires less accesses to

stable storage then uncoordinated checkpoints. Moreover,

Composite message composition further helps in reducing the

network latency significantly thereby resulting in reduced

transmission delay, communication cost, better bandwidth

utilization and faster speed of executioN.

6. PERFORMANCE
The main advantage of our algorithm over the algorithms

[1][2][3] is that the inter-cluster transmission delay,

communication cost and bandwidth usage remains minimum

with increasing number of processes also ,thereby making the

system more efficient, less prone to network failure and worth

using for application running with low strength bandwidth

available. We have presented the comparison of performance

of the above three algorithms with our algorithm in Table 1.

Consider a cluster federation consisting of n clusters where

N- number of clusters

minn - minimum number of processes that need to take a

check point

airC - cost of sending a message from one process to

another

multin - time taken to multicast a message to all processes

in the system

broadn - time taken to broadcast a message to all processes in

the system

Table 1: Performance Comparison of the Check pointing

Algorithms

The cost to complete the checkpointing process using [1] is

given as aircn *min . It is a single phase algorithm and it

multicasts only one type of control message. In [2], the

initiator sends control messages to all the processes costing

aircn* . Then all the receiving processes acknowledge the

initiator process about the receiving of control message

costing aircn* , then finally the initiator sends all the

processes a control message requesting for commit. Hence

total cost to complete the checkpointing process using

algorithm [2] is given as ()aircn**3 .

In [3] the initiator in each cluster broadcasts a check pointing

request to all the processes costing broadn . The initiator

receives replies from n processes, the cost of which is

aircn* . Finally the initiator broadcasts a commit message to

all processes to convert their temporary check points to

permanent ones, the cost of which is broadn . Hence the total

cost of [3] is broadair ncn *2* + .

In proposed algorithm, communication takes place directly

between clusters. So when one cluster sends a control message

to other, it is received by cluster head CH and multicast to the

participating processes in current global checkpoint interval.

Since only one control message per cluster is sent and if there

are N clusters, one cluster sends 1−N messages to all the

remaining clusters. Hence the cost is aircN *1− .

0

100

200

300

400

500

600

700

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

N
o

.
o

f
m

e
ss

a
g

e
s

No. of processes

Comparison of Communication Cost

Hierarchical Algorithm

Hybrid Algorithm

Roll Algorithm

Proposed Algorithm

In Fig. 2, the ordinate represents the cost of sending the

control messages to complete the check pointing algorithm in

the best case for the four algorithms. Fig. 2 clearly

demonstrates the better performance of our approach than the

Hierarchical

[3]

Roll-

forward

[1]

Hybrid

[2]

Proposed

Algorithm

Cost 2*nbroad +

n*cair

nmin*cair 3n*cair N-1*cair

Temporary

Checkpoints

Yes No Yes No

Non-

blocking

Yes No Yes No

No. of

check

points

minn minn n+1 minn

Message

complexity

O(n) O(n) O(n)

O(1)

Figure 2. Performance Comparison of Proposed Algorithm

with Existing Algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.7, August 2011

35

ones in [1],[2] & [3] in terms of message passing. In our

approach, with the increase in number of processes the

number of control messages transferred is minimum. Hence

the least chances of traffic congestion and bandwidth

utilization

Fig.3 Cpu Utilization Comparison

7. REFERENCES
[1] B. Gupta, S. Rahimi, and R. Ahmad, “ A New Roll-

Forward Checkpointing / Recovery Mechanism for Cluster

Federation”, International Journal of Computer Science

and Network Security, vol. 6, no.11, pp. 292-297, Nov.

2006.

[2] J. Cao, Y. Chen, K. Zhang and Y. He, “Checkpointing in

Hybrid Distributed Systems”, IEEE ISPAN’04, 2004.

[3] S. Monnet, C. Morin and R. Badrinath,”A Hierarchical

Checkpointing Protocl for Parallel Applcations in Cluster

Federations”, IEEE IPDPS 2004, 2004.

[4] B. Gupta, S. Rahimi, and Z. Liu, “A New High

Performance Checkpointing Approach for Mobile

Computing Systems”, International Journal of Computer

Science and Network Security, vol. 6, no. 5, May 2006.

[5] G. Cao, and M. Singhal, “On coordinated checkpointing in

distributed systems”, IEEE Transactions on Parallel and

Distributed Systems, vol. 9, no. 12, pp. 1213 – 1225, Dec.

1998.

[6] R. Prakash, and M.Singhal, “Low-Cost Check pointing and

Failure Recovery in Mobile Computing Systems,” IEEE

Transactions on Parallel and Distributed Systems, vol. 7,

no. 10, pp. 1035-1048, October 1996.

[7] G.Cao, and M. Singhal, “Mutable checkpoints: a new

checkpointing approach for mobile computing systems,”

IEEE Transactions on Parallel and Distributed Systems,

vol. 12, no. 2, pp. 157-172, Feb. 2001.

[8] K.M. Chandy, and L. Lamport, "Distributed Snapshots:

Determining Global States of Distributed Systems," ACM

Transactions on Computer Systems, vol. 3, no. 1, pp. 63-

75, Feb. 1985.

[9] P. Kumar, L. Kumar, R.K. Chauhan, and V.K. Gupta, “A

non-intrusive minimum process synchronous

checkpointing protocol for mobile distributed systems,”

ICPWC 2005, IEEE International Conference on Personal

Wireless, vol. 3, no. 1, pp. 63-75, Feb. 1985.

[10] L. M. Silva, and J.G. Silva, “Global checkpointing for

Distributed Programs,” Proceedings of 11th symposium

on Reliable Distributed Systems, pp. 155 –162, Oct. 1992.

[11] B. Gupta, S. Rahimi, and Z. Liu, “A New Non-Blocking

Synchronous Checkpointing Scheme for Distributed

Systems,” Proceeding of 20th International Conference on

Computers and Their Applications, pp. 26–31, Mar. 2005.

[12] R. Prakash, and M.Singhal, “Low-Cost Check pointing and

Failure Recovery in Mobile Computing Systems,” IEEE

Transactions on Parallel and Distributed Systems, vol. 7,

no. 10, pp. 1035-1048, Oct. 1996.

[13] D. Manivannan, and M. Singhal, “Asynchronous Recovery

Without Using Vector Timestamps,” Journal of Parallel

and Distributed Computing, vol. 62, no. 12, pp. 1695-1728,

Dec. 2002.

[14] B. Gupta, S. Rahimi and Yixin Yang, “A Novel Roll-Back

Mechanism for Performance Enhancement of

Asynchronous Checkpointing and Recovery”, Informatica,

pp. 1–13, 2007.

