
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

32

Development of Remote Access Network

Communication (RANC)

Randhir Kumar
Dept. of Information Technology

Gyan Ganga Institute of Technology & Management
Bhopal, M.P, India

Akash Anil
Dept. of Information Technology

Gyan Ganga Institute of Technology & Management
Bhopal, M.P, India

ABSTRACT

This paper involves the development of an application through

which user can monitor the computers over a network and can

perform the administrative tasks such as accessing programs,

hardware details, monitoring users, installation of any software

on remote System and also can share all the information with

compressed and encrypted format.

General Terms

Remote Access, Networking, Communication.

Keywords

Establishing Connection, Data Compression, Encryption and

Decryption, RANC Protocol, Adaptive Protocol.

1. INTRODUCTION
The Remote Machine Control System is a Software tool which

is an application through which user can monitor the computers

over a network and can perform the administrative tasks such as

accessing programs, hardware details, monitoring users. Using

this software the two systems will be connected to each other

and also the systems running on the different environment can

communicate to each other. Using this software the user can

initiate different processes in remote machine and can gather

much information from the remote machine like list of drives,

list of files and copying or sending the file from server machine

to client machine. We fetch software and hardware information

from window registry editor . Under registry folder there are sub

folders for software from where we can fetch information about

particular products and similarly we will get information about

hardware of client. Using this project we can shutdown , logoff

remote machine and also able to send different types of message

according to requirement. Using this software the user can

control the mouse of the remote machine. It can lock or release

the mouse as per its requirements. Using this software the user

can view the desktop screen of the remote machine through

which it is connected. The remote machine desktop will be

shown on the user screen itself. Using this software the server

can view the activities performed by the clients among each
other and can provide the facility to perform the administrative

tasks. Data will be compressed for avoiding overhead and

congestion in network applying data compression algorithm . By

applying encryption and decryption algorithm security will be

provided for confidential data transmission. There are many

types of software available in the market that can help to import

the remote computer to your computer based on Remote Access

Network Computing using remote Frame Buffer Protocol.

Software like PC anywhere by semantic and GVNC of Linux

works exactly how this system should work and both work fine,

But this software let the client gain full access to the control of

the server which is not required in the proposed system.

Previously the software can perform the administrative tasks but

the clients have the full access of the remote system which is not

required in RANC software, it has just the connection and by

using it the client system can access the remote system. With the

wide spread utilization of object technology, it has become more

and more important to employ the object oriented paradigm in

distributed environments as well. This raises several inherent

issues, such as references spanning address spaces, the need to

bridge heterogeneous architectures[11]. The Java environment,

designed by Sun Microsystems, has probably experienced the

greatest evolution recently. From the broad spectrum of the Java

platform segments, we will focus on Java RMI [12]. In the last

decade, distributed systems engineers have often relied on

middleware platforms to increase their productivity. Residing

between the operating system and distributed applications,

middleware systems provide abstractions that hide from

application developers several details inherent to distributed

programming, such as network communication primitives, data

marshalling and unmarshalling, failure handling, heterogeneity,

service lookup and synchronization. Java RMI [13] – are the

most common middleware platforms. In such systems,

developers invoke methods on remote objects using the same

syntax of local invocations; therefore, code to handle distributed

communication looks similar to code that handles

communication in centralized systems[14].

2. OVERVIEW OF THE PROPOSED

SYSTEM

2.1 System Objectives
Based on the feasibility study of the requirements provided by

the client, the Customer Requirement Analysis Document is

prepared to formally seek clarifications from the customers.

After the customer’s needs (both implied and stated) are

understood and a detailed analysis of the risk factors is made the

following tasks are handled.

o An outlay of general work schedule is formed.

o An estimate of the time required is made.

o Resources and manpower to be involved in the project

are identified

o System objectives are formulated.

2.2 Proposed System
The proposed system is designed in such a way that most of the

above problems found in the existing system are eliminated.

Some of the features expected from the proposed system are as

follows:-

o User friendly interfaces such that any person accessing

the computer can easily use this system.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

33

Client

Server

Call find

method

Send Object

Return Object

object

o Faster and quicker access to the server machine.

o Disallowing the extra burden over the net.

o The user can view the desktop of the server and know

what is happening.

o The system should be flexible enough to facilitate

upgrades.

o The system should be able to generate appropriate

error and exception messages.

2.3 Methodology

2.3.1 Java Programming
Due to exciting features like Simple, Distributed, Robust,

Interpreted and Compiled, Secure, Architectural neutral,

Portable, High performance, Multi-threaded and Dynamic nature

of JAVA, it will be easy to implement the desire specification.

And it is best suited for this project.

2.3.2 Remote Method Invocation
Remote Method Invocation (RMI) enables the software to

implement distributed Java - to- Java applications in which the

methods of remote Java objects can be invoked from other java

virtual machines possibly on different hosts. A Java program can

make a call on a remote object once it obtains a reference to the

remote object in the bootstrap naming service provided by RMI

or by receiving the reference as an argument or a return value

and due to this accessing of the remote objects it is being used

up in developing software. Client can call a remote object in a

server and that server can also be a client of other remote

objects[6][1]. RMI uses Object Serialization to marshal and

unmarshal parameters.

Invoking a remote method on a server object

Fig-1: (Making Stub on Client Machine)

Stub is a Java object that resides on the client machine as shown

in Fig (1). Its function is to present the same interfaces as the

remote server. Remote method calls initiated by the clients are

actually directed to the stub.

The stub packages the parameters used in the remote into a

block of bytes. This packaging uses a device-independent

encoding for each parameter. The process of encoding the

parameters is called parameter marshalling.

The purpose of parameter marshalling is to convert the

parameters into a format suitable for transport from one virtual

machine to another. Information block generated by stub

consists of

o An identifier of the remote object to be used

o A description of the method to be called

The marshalled parameters

On the server side, a receiver object performs the following

actions for every remote method call

o Unmarshal the parameters

o Locates the object to be called

o Calls the desired method

o Captures and marshals the return value or exception

of the call

o Sends a package consisting of the marshalled return

data back on the client.

2.4 Uses of Proposed System

2.4.1 Workstation to Workstation (Windows)

In a PC support environment this would be the most useful

feature. With the server software loaded into each machine on

the network and the viewer on restricted machines (or carried

around on a floppy disk by support personnel) it would be easy

for remote diagnostics to be carried out on PCs that were located

remotely (perhaps many miles away), either via the company

LAN or a dial-up connection to the remote PC. The issue of

monitoring/spying also crops up here if it is suspected that a

member of staff is not utilizing his/her time correctly then the

viewer, if connected in View only mode, can easily “snoop” on

the user. A technician or even someone senior who might not

have the relevant technical skills could do this in View Only

mode no real technical skills are required to start up, view and

subsequently shut down the software.

2.4.2 Workstation to Server
It would enable a viewer on any type of workstation (or

Windows CE machine) to connect to a server running one of the

supported operating systems, so allowing remote control (or

monitoring) of that server. The most common uses here would

be for server control/monitoring from the support person’s desk

while at work or when dialing into the server from home (the

viewer software being run on a laptop, desktop or Windows CE

machine).

2.4.3 Workstation to Workstation (cross-platform)
The server and viewer software is also available for the

Macintosh machines it is now possible to remotely run for

example a non-Windows-compliant application on a Windows

machine so enabling a vast array of Macintosh software to

effectively be “run” on Windows PCs (in spite a little slow and

with some obvious restrictions on functionality).

3. IMPLEMENTATION OF THE SYSTEM

3.1 Platform Independent
This software is going to be implemented in Java language to

make it platform independent, portable, cost effective and it is

too simple to implement. It will enhance my skills in

programming language as well as in networking discipline. The

language java consists of such technologies which will be

helpful to me in implementing the RANC software.

Client

Server

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

34

3.2 Peer-to-Peer Communication
The Java Swing is been used up to make the GUI more

effective. In implementing the software RANC it will help in the

peer-to-peer communication.

It will also help RANC software to communicate among the

computers running on different platform. It is a part of Java

Foundation Classes (JFC) that implemented a new set of GUI

Components. A number of packages that are presented in swing

make it easy to design.

Swing is a set of classes that provides more powerful and

flexible components than are possible with the AWT[2][3]. In

addition, to that the familiar components such as buttons, check

box and labels swings supplies several exciting additions

including tabbed panes, scroll panes, trees and tables. Even

familiar components such as buttons have more capabilities in

swing. For example a button may have both an image and text

string associated with it. Also the image can be changed as the

state of button changes. Unlike AWT components swing

components are not implemented by platform specific code

instead they are return entirely in JAVA and therefore are

platform-independent[4]. The term lightweight is used to

describe such elements. The number of classes and interfaces in

the swing packages is substantial.

3.3 RANC Protocol
The RANC protocol is a simple protocol for remote access to

graphical user interfaces. It is based on the concept of a remote

frame buffer or RFB[6]. In the past we have tended to refer to

the RANC protocol as the RFB protocol, so you may have seen

this term in other publications. The protocol simply allows a

server to update the frame buffer displayed on a viewer. Because

it works at the frame buffer level it is potentially applicable to

all operating systems, windowing systems and applications. It

includes X/Unix, Windows 3.1/95/NT and Macintosh, but might

also include PDAs, and indeed any device with some form of

communications link. The protocol will operate over any

reliable transport such as TCP/IP[6].

It is truly a "thin-client" protocol that has been designed to make

very few requirements of the viewer. In this way, clients can run

on the widest range of hardware and the task of implementing a

client is made as simple as possible.

3.4 Rectangular updates
The display side of the protocol is based around a single

graphics primitive: "put a rectangle of pixel data at a given x, y

position". It might seem an inefficient way of drawing arbitrary

user interface components. But because we have a variety of

different encoding schemes for the pixel data, we can select the

appropriate scheme for each rectangle we send and make the

most of network bandwidth, client drawing speed and server

processing speed.

The lowest common denominator is the so-called raw encoding,

where the rectangle is simply pixel data sent in left-to-right scan

line order. All clients and servers must support this encoding.

However, the encodings actually used on any given RANC

connection can be negotiated according to the abilities of the

server, the client and the connection between the two

systems[1].

The copy rectangle encoding for example, it is very simple and

efficient and can be used when the client already has the same

pixel data elsewhere in its frame buffer. The server simply sends

an x, y coordinate giving the position from which the client can

copy the rectangle of pixel data. It means that operations such as

dragging or scrolling a window, which involve substantial,

changes to the screen may only require a few bytes. Most clients

will support this encoding, since it is generally simple to

implement and saves bandwidth.

A typical workstation desktop has large areas of solid colors and

of text. Some of our most effective encodings take advantage of

this by efficiently describing rectangles consisting of one

majority (background) colors and 'sub-rectangles' of different

colors.

3.5 Adaptive update protocol
A sequence of these rectangles makes a frame buffer update (or

simply update). An update represents a change from one valid

frame buffer state to another, so in some ways is similar to a

frame of video, but it is usually only a small area of the frame

buffer that will be affected by a given update. Each rectangle

may be encoded using a different scheme. The server can

therefore choose the best encoding for the particular screen

content being transmitted and the network bandwidth available.

The update protocol is demand-driven by the client. That is, an

update is only sent by the server in response to an explicit

request from the client. It gives the protocol an adaptive quality.
The slower the client and the network are the lower rate of

updates becomes. Each update incorporates all the changes to

the 'screen' since the last client request. With a slow client

and/or network, transient states of the frame buffer are ignored,

resulting in reduced network traffic and less drawing for the

client. It also improves the apparent response speed.

4. RESULTS
Initial Interface between Client and Server

Getting Connected to the Remote System.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

35

Modules working among the Client and Server systems

Sending Text Files to remote system.

Control on Peripheral Device i.e. mouse

Sending messages to remote/server system.

Description of the Remote system i.e. Files

Chatting service provided by the software.

5. CONCLUSION

A system can not be a perfect system in fact no system can be a

perfect system. There is lot of room for improvement in this

system which includes: -

o Providing the facility for the client to send the

keyboard and pointer events.

o Providing the facility for a user id and password to

make system more stable.

o Making the system more versatile by recording the

server to client messages or in other words the client

can store the changes in the server’s desktop.

o Will be able to make the Server system shutdown and

restart facility by the Client system.

o

6. ACKNOWLEDGEMENT
The authors wish to thank the management of Gyan Ganga

Institute of Tech & Mgmt, Bhopal for their constant

encouragement for completion of this work. The authors want to

acknowledge Mr.D.Suresh Babu for his co-operation for

completing this paper, also to Mr.S.M.RajBharath for his

encouragement during this work

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

36

6. REFERENCES
[1] Orielly “Java Network Programming” 3rd edition.

[2] Deitel “Advanced Java2 platform How to Program”.

[3] Bruce Eckel “Thinking in Java”.

[4] “Core Java-1 and Core Java –2”, published by Sun

Microsystems.

[5] Herbert Scheldt, “The Complete Reference JAVA 2”, Tata

McGraw-Hill Edition.

[6] Douglass E. Comer “Internetworking with TCP/IP

Principles, Protocols, and Architecture” 5th edition.

[7] Roger S Pressman, “Software Engineering – A

Practitioner’s Approach” McGraw-Hill International

Edition, 2002.

[8] Sun Microsystems website, http:// www.java.sun.com

[9] Research Document of Virtual Networking website,

http://www.uk.research.att.com

[10] Virtual Networking website, http:// www.vnc.com

[11] Plasil, F., Stal, M.: 1998, An architectural view of

distributed objects and components in CORBA, Java RMI

and COM/DCOM. Software - Concepts and Tools

[12] Sun Microsystems: Java Remote Method Invocation

Specification.

October1997,http://java.sun.com/products/JDK/1.1/docs/gu

ide/rmi

[13] Wollrath, A., Riggs, R., and Waldo, J. (1996). A distributed

object model for the Java system. In 2nd Conference on

Object-Oriented Technologies & Systems

[14] Fernando M Q Pereira, Marco T O Valente, Wagner S

Pires, Roberto S Bigonha, and Mariza A S Bigonha. Tactics

for Remote Method Invocation

AUTHORS PROFILE
Randhir Kumar was born in 1984 in Bihar, India. He

completed his graduation in Computer Application from MCRP

University, Bhopal & post graduation in Computer Application

from Vellore Institute of Technology, Vellore, India. He was

Engineer at Honeywell Technology Solution Lab India till 2009.

Currently he is Sr.Lecturer in Department of Information

Technology, Gyan Ganga Institute of Technology &

management, Bhopal (M.P), India. His major research areas are

data mining, web mining and Image Processing, Networking.

Akash Anil was born in 1985 in Bihar, India. He completed his

B.Tech from BPUT University, Orrisa, India. He is currently

with Gyan Ganga Institute of Technology & management,

Bhopal (M.P), India. His major research areas are Image

Processing, digital image processing and network security.

../../../../../Akash/IJCA/www.java.sun.com
../../../../../Akash/IJCA/www.uk.research.att.com
../../../../../Akash/IJCA/www.vnc.com
http://java.sun.com/products/JDK/1.1/docs/guide/rmi
http://java.sun.com/products/JDK/1.1/docs/guide/rmi

