
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

19

Automatic Reordering Rule Generation and Application of
Reordering Rules in Stochastic Reordering Model for

English-Myanmar Machine Translation

Thinn Thinn Wai
Universtity of Computer

Studies,Yagon.

Tin Myat Htwe
University of Computer

Studies, Yangon.

Ni Lar Thein
University of Computer

Studies, Yagon.

ABSTRACT

Reordering is one of the most challenging and important

problems in Statistical Machine Translation. Without reordering

capabilities, sentences can be translated correctly only in case

when both languages implied in translation have a similar word

order. When translating is between language pairs with high

disparity in word order, word reordering is extremely desirable

for translation accuracy improvement. Our Language, Myanmar

is a verb final language and reordering is needed when our

language is translated from other languages with different word

orders. In this paper, automatic reordering rule generation and

application of generated reordering rules in stochastic reordering

model is presented. This work is intended to be incorporated

into English–Myanmar Machine Translation system. In order to

generate reordering rules; English-Myanmar parallel tagged

aligned corpus is firstly created. Then reordering rules are

generated automatically by using the linguistic information from

this parallel tagged aligned corpus. In this paper, proposed

function tag and part-of-speech tag reordering rule extraction

algorithms are used to generate reordering rule automatically

and First Order Markov theory is applied to implement

stochastic reordering model.

Keywords

Reordering; English-Myanmar translation; First Order Markov

theory; parallel tagged aligned corpus.

1. INTRODUCTION
The goal of statistical machine translation is to translate an input

word sequence in the source language into a target language

word sequence. In order to improve the translation process, it is

possible to perform preprocessing steps before training and

translation in both source and target language sequence. In

machine translation, reordering is one of the major problems,

since different languages have different word order

requirements. When an English sentence is translated to

Myanmar sentence, the verb in the English sentence must be

moved to the end of the sentence in order to obtain the correct

word order. On a sub sentential level, Myanmar word order

diverges from English mostly within the noun phrase and verb

phrase. In Myanmar, noun phrase exhibits multitude of word

orders. In chunk level, the noun chunk made up of determiner

(DT) and noun (NN) is translated as many patterns such as “DT,

NN” (original English order) and “NN, DT” (Myanmar order).

Moreover, some function tags are missed and some part-of-

speech tags in some chunks are combined together as only one

tag. For example, formal subject (F-SUBJ) and verb chunk

containing verb-to-be and adjective. Without reordering, the

correct word order can’t be obtained. Therefore, reordering is

necessary for translation from English language to Myanmar

Language. In this work, corpus creation procedure and

reordering rules generation procedures are described for

English-Myanmar statistical machine translation.

Moreover, a stochastic word reordering model based on first

order Markov theory is presented. The purpose of this reordering

model is to model reordering concerning two levels; word level

and chunk level. Based on function tag and pos (part-of-speech)

tag information, reordering rules are extracted from parallel

tagged corpus. Moreover, lexical information are also used to

disambiguate some pos reordering rules consist of determiner.

2. RELATED WORK
Different approaches have been developed to deal with the word

order problem. First approaches worked by constraining

reordering at decoding time [23]. In [12], the alignment model

already introduces restrictions in word order, which leads also to

restrictions at decoding time. A comparison of these two

approaches can be found in [2]. They have in common that they

do not use any syntactic or lexical information; therefore they

rely on a strong language model or on long phrases to get the

right word order. Other approaches were introduced that use

more linguistic knowledge, for example the use of bitext

grammars that allow parsing the source and target language [13].

In [21], syntactic information was used to re rank the output of a

translation system with the idea of accounting for different

reordering at this stage. In [22], a lexicalized block-oriented

reordering model is proposed that decides for a given phrase

whether the next phrase should be oriented to its left or right.The

most recent and very promising approaches that have been

demonstrated, reorder the source sentences based on rules

learned from an aligned training corpus with a POS-tagged

source side [9][20]. These rules are then used to reorder the

word sequence in the most likely way.

In our approach we follow the idea proposed in [20] of using a

parallel training corpus with a tagged source side to extract rules

which allow a reordering before the translation task. Moreover,

we use the lexical information for some part of speech (pos)

rules to solve ambiguity problems. By doing this we hope to

differentiate between these pos rules.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

20

3. SYSTEM OVERVIEW
As shown in Fig 1, there are two key components in this

reordering system; rule generation and reordering. In rule

generation, reordering rules are automatically extracted from

corpus by using rule extraction algorithms. For this corpus

creation, Analyzer is used to annotate for English sentence and

manual annotation is used for Myanmar sentence. In reordering

component, the input sentence is firstly analyzed to extract

syntactic structure by using language analyzer [15]. Language

Analyzer performs part-of-speech tagging and function tagging

on input sentence. Reordering Model performs reordering by

taking the syntactic rules extracted from analyzer and reordering

rules automatically extracted from rule extraction algorithms as

input parameters.

Fig 1: System Overview

4. ESSENTIALNESS OF REORDERING
When English sentence is translated to Myanmar sentence,

many differences of word order can be found. In this section, we

describe some word order differences; adjective movement,

adverb movement, preposition movement and auxiliary verb

movement.

Some adjectives (jj) in noun chunk (nc) of English sentence are

necessary to move after its relative noun (nn) according to the

translation. For example, when the English phrase “rich man” is

translated into the Myanmar phrase “ ”, the adjective

“rich (jj)” must be moved after the noun “man (nn)”. This can be

seen in the Example (1).

Example (1),

nc[rich(jj) man(nn)]

nc[(nn) (jj)]

Myanmar is also modifier and adjunct proceeding language.

Therefore, these adjuncts are necessary to move before the

relative verb. When the English sentence “He runs quickly” is

translated into the Myanmar sentence “ ”,

the adverb “quickly” must be moved before its relative verb

“run” in order to fit the correct Myanmar order. Such adverb

movement can be seen in the Example (2).

Example (2),

He(subj) runs(active) quickly.(advl)

(subj) (advl) (active)

Moreover, auxiliary verbs (md) in verb chunk (vc) are necessary

to move after the main verb in order to get an appropriate word

order. Therefore, auxiliary verb movement also helps in English-

Myanmar Translation. This auxiliary verb movement can be

seen in the Example (3).

Example (3),

 vc[can(md) go(vb)]

vc[(vb) (md)]

All of these above necessities, word reordering is essential for

English-Myanmar statistical machine translation.

5. CORPUS CREATION
Corpus creation steps are described in Fig 2. For corpus

creation, plain text corpus is used as a resource. For each

sentence in the corpus, analysis process is carried out by using

Chunk-based Syntax Analyzer [15]. This Syntax Analyzer

consists of two components; Chunker and Grammatical

Function Tagger. In this analysis process, there are three main

steps.

(1) Morpho-lexical analysis

(2) Constituent analysis and

(3) Syntax analysis

Morpho-lexical analysis and constituent analysis are

accomplished by the chunker and syntax analysis is the role of

grammatical function tagger.

Morpho-lexical analysis contains tokenizing and part-of-speech

tagging. Tokenizing splits input text into words by using token

marker such as space, punctuation marks. Part-of-speech (POS)

tagging marks up the words in the text with their corresponding

part-of-speech such as noun, verb, and adjective and so on. For

this POS tagging, TreeTagger is used.

Constituent analysis consists of chunking and merging some

chunks that are necessary to merge. Chunking is done by

generating CFG rules based on part-of-speech (POS) tags.

In syntax analysis, Grammatical function tagger searches the

functional relation between chunks based on dependency

grammar by using Maximum likelihood Estimation and then

identifies the function of each chunk.

Automatic Rule Extraction

English Language Analysis

Reordering Model

English Sentence

English Sentence

with Myanmar

order

Parallel tagged

aligned Corpus

Reordering Rules

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

21

By aligning the analyzed text resulted from Analyzer, parallel

tagged aligned corpus is created.

Our tagged align corpus format can be seen in Fig 3. As shown

in Fig 3, “SUBJ”,”ACTIVE” , “ADVL” and “OBJ-P” are

function tags of each chunk. “NC”, ”VC” and “PPC” refer the

relevant chunk type and “PP”, “VBP”, “TO” and “NN” are part

of speech of each word. The numbers in the parentheses are

alignment position of function tags and part of speech tags. The

first number before “/” indicates the position of tags in source

language and the number after “/” indicates the posi-tion of tags

in target language. These are separated by target position with

“/”. Each chunk is separated by “#”.

Fig 2: Corpus creation steps be extended both columns

6. RULES EXTRATION ALGORITHMS
By using the linguistic information from the corpus, two kinds

of reordering rules are generated automatically. They are

function tags-based reordering rules and part-of-speech tags-

based reordering rules. The former is generated for using in

chunk-level reordering and the latter is for using word-level

reordering. They are extracted from corpus using the following

rule extraction algorithms.

function rule extraction algorithm

funSeq=NULL //sequence for function tags

aliSeq=NULL //sequence for alignment position

1. Load the sentences from Tagged Aligned Corpus

2. Store all sentences in S .

3. for each sentence is S do, where i=1,2,3,…k

4. for each chunk ic C do, where i =1,2,3,…k

5. if (k>1)

6. extract if for is

7. ifunSeq funSeq f

8. extract alignment position ia

9. ialiSeq aliSeq a

10. End if//line 5

11. End for//line 4

12. #rule funSeq aliSeq

13. write rule

14. End for//line 3

15. End.

pos rule extraction algorithm

posSeq=NULL //sequence of pos tags

aliSeq=NULL //sequence of alignment position

1. Load the sentences from Tagged Aligned Corpus

2. Store all sentences in S .

3. for each sentence is S do, where i=1,2,3,…k

4. for each chunk ic C in is do, where i=1,2,3,…k

5. for each words iw W in ic where

 i=1,2,3,…,k

6. if (k>1)

7. extract ipos for iw

8. iposSeq posSeq pos

9. extract alignment position ia

for iw

10. ialiSeq aliSeq a

11. End if//line 6

12. End for//line 5

13. rule= posSeq +#+ aliSeq

14. End for//line 4

15. write rule

16. End for//line 3

alignment extraction algorithm

Input: AP //Alignment Position Array

Output: rule // for actual alignment position

A=NULL // Array for final alignment position

1. for each iap from Array AP do

2. if (iap = 1iap) then

3. 1ia =i-1+i+\+ iap

4. else

5. ia =i+\+ iap

6. end if

7. end for

8. for each ia A do

9. if ia NULL then

Plain Text

Corpus

Morpho-lexical

Analysis

Constituent

Analysis

Syntactical

Analysis

1. Tokenizing

2. Part-of-Speech Tagging

Chunking

Grammatical Function

Tagging

Analyzed Text

Tagged Aligned

Corpus
Create Corpus

Myanmar

Lexicon

Dependency

Grammar

CFG

Grammar

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

22

10. rule=rule+ ia

11. end if

12. end for

7. REORDERING RULES GENERATION
In order to generate reordering rules for English-Myanmar

translation, two main cases are needed to consider. In the first

case, words can be reorder in several ways if they have different

reordering rules. In this case, reordering in several ways does

not affect the translation because Myanmar is free chunk order

language. In the second case, words are needed to reorder

according to the specific translation although they have same

pattern with different reordering rules.

According to the first case, reordering can be seen in the

following Example (4).

Example (4),

From the above example, the English Sentence “He bought a

book.” has two different reordering rules and both of these rules

make correct translation. Moreover, we can see that word

insertion (INS) is needed when this sentence is translated in

second way (2).

The second case suggests that, the use of reordering rules

mistakenly makes the translation error if they are not reorder

over the specified translation. This can be seen in Example (5),

Example (5),

By studying this example, the POS rules composed of

determiner and noun have several reordering patterns as shown

in (1) and (2). Although they have same pattern (dt,nn), they

must be reordered according to the identified translation. If these

patterns are not reorder according to the specified patterns, there

will be error in translation. To solve this condition, lexical

information for determiner is needed to consider in generating

reordering rules for this pattern. Therefore, reordering rules are

generated automatically using part-of-speech tag, function tags

and lexical information.

The generated reordering rule consists of two sides: the left-

hand-side (lhs), which is a function tags or POS tags pattern, and

the right-hand-side (rhs), which corresponds to a possible

reordering of that pattern. Different rules can share the lhs: in

such cases, the same pattern can be reordered in more than one

way. Rules are weighted, according to statistics extracted from

training data. There are two kinds of reordering patterns:

function tag-based, which define reordering at the clause and

phrase level, and pos tag-based, which defines reordering at the

word level. Let us consider the following examples:

 Rules using function tag

-SUBJ, ACTIVE, OBJ#0/0, 1/2, 2/1:7(10)

-SUBJ, ACTIVE, OBJ#0/1, 1/2, 2/0:3(10)

-SUBJ, ACTIVE, ADVL#0/0, 1/2, 2/1:10(10)

-F-SUBJ, ACTIVE, PCOMPL-S, ADVL, OBJ-P# 0+1/3, 2/2,

3/1, 4/0:10(10)

 Rules using pos tag

-the@ DT, NN#0+1/0:10(30)

-this @DT, NN#0/0, 1/1:10(30)

-a @DT, NN#0/1, 1/0:10(30)

-CD, NNS#1/0, 0, 1:10(10)

-DT, JJ, NN#1/0, 2/1, 0/2:10(10)

In the above rules, “SUBJ”,”ACTIVE” and OBJ are function

tags and “DT”,,”NN”,”CD”,”NNS” are POS’s tags. Therefore,

“SUBJ, ACTIVE, OBJ” is function rule pattern and “DT, JJ,

NN” is POS rule pattern. The string of numbers after “#” is

position of source and target words and source word position is

divided by “/” target word position. For example, in the rhs of

the third pos rule pattern“1/0, 2/1, 0/ 2”, the 1/0 means that the

pos tag at the position 1,”JJ” is move to the position 0. In this

model, we used array structure to store the position and so the

starting index is 0. Moreover, in the function tag rule, the formal

subject(F-SUBJ) “there” in English is not in the Myanmar

Function tag and then it is translated as “ ” (ACTIVE) in

Myanmar language by combining it into the Function

tag(ACTIVE) containing the words “am ,is are, was, were”.

This means that the two function tags F-SUBJ and ACTIVE are

become only ACTIVE and F-SUBJ is dismissed in Myanmar.

Therefore, in the third function tag rule described above, the

string after #, “0+1/3” means that the words at position “0”and

“1” are move together into the position “3”.

The sequences “SUBJ, ACTIVE, OBJ” and “DT, JJ, NN” are

function and pos rule patterns (1
np).The strings of numbers in

between the symbols “#” and “:” represent suggested reordering

(1
nr): each integer after “/”, ri represents the new position of (the

translation of) pi. The two numbers after the colon (:) are

collected from training data and are respectively the number of

times the rhs (reordering suggestion) of the rule has been

observed and (inside brackets) the number of occurrences of the

rule pattern 1()ncount p . The probability of each reordering

suggestion is computed as follows:

 1
1 1

1

()
(/)

()

n
n n

n

count r
P r p

count p
 (1)

Moreover, some pos rules composed of determiner (a, an, the,

this… etc) have same pattern with different reordering rules

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

23

according to the kind of determiner used. To solve the ambiguity

problem of these pos rules, lexical information concerned with

determiner is added before the rule pattern divided by “@” to

obtain the correct order.

8. MARKOV -BASED REORDERING

MODEL
In this reordering model we proposed, function tag and pos tag

sequences are taken as input. And then, reordering is performed

based on first order Markov model by using the alignment

probabilities extracted from corresponding function tag and pos

tag reordering rules. The tag alignment sequence 1
Ka

 specifies a

reordering of source tag sequences into target language tag

order. In this way the source language tag sequence 1
Ku

 is

reordered into 1au
, 2au

, . . . , kau
 under the model

1 1 1(\ , ,)k k kP a u K e
. The First Order Markov process is firstly

defined over tag alignment sequences
{1,2,..., }ka K

as can

be seen in the following equation and these alignment sequences

are obtained from the extracted reordering rules explained

above.

1 1 1 1 1(\ , ,) (\)k k k k kP a u K e P a u

 1 1 1
2

() (\ ,)
K

K
k k

k

P a P a a u

 (2)

The tag alignment sequence is further constrained to be a valid

reordering of 1
Ku

 , i.e. the tag alignment sequence is

constrained to be a permutation of the set {1, 2, . . . ,K}. The

alignment sequence distribution is constructed to assign lower

likelihood to tag re-orderings that diverge from the original tag

order. Suppose kau
=

'l
le

 and 1kau
=

'm
me

, the Markov chain

probabilities is set as shown in equation (3).

' 1
1 1 0(\ ,)k l m

k kP a a u p

 1

1
() ; {1,2,..., }P a k k K

K
 (3)

In the above equations, 0p
 is a tuning factor and the

probabilities 1(\)k kP a a
 is normalized so

that 1
11,

(\) 1
k

K
k kj j a

P a j a
. This reordering model

involves two acceptors un-weighted permutation acceptor

U and weighted permutation acceptor H. Un-weighted

permutation acceptor U contains all reordering of the

source language tag sequence 1
Ku

 . For the source sentence

“He/ kicked /the ball.”, the function tag for this sentence is

“subj,active,obj”. and there are two reordering examples in the

this sentence “He the ball kicked.” and “the ball he kicked”. So,

the first reordering of this tag sequence is “subj,obj,active” and

the second reordering of this sequence is “obj,subj,active”.

Therefore, the function tag alignment sequence for the former

reordering example is a1 = 1, a2 =3, a3 = 2and that for the latter

reordering example is a1 = 3, a2 =1, a3 = 2.

The second acceptor H assigns alignment probabilities

(equation 4) to a given reordering 1
Ka

 of the source tag

sequence 1
Ku

. Therefore, the alignment probability for the first

reordering is P(a1 = 1)P(a2 = 3| a1 = 1)P(a3 = 2| a2 = 3) =

0.7 0.7 1 0.49 and the alignment probability for the

second reordering is P(a1 = 3)P(a2 = 1| a1 = 3)P(a3 = 2| a2 = 1)

= 0.3 0.3 1 0.09 . By choosing the maximum alignment

probability from the two alignment probabilities, the first

reordering example “subj, obj, active” is defined as the optimal

reordering rule. After reordering by the optimal reordering rule,

phrases relevant to the function tag are extracted. Moreover,

part-of-speech tag sequences and their reordering rules are

applied to reorder words in each phrase by doing this manner.

9. EXPERIMENTAL RESULTS

9.1 Accuracy of Reordering Rules
The purpose of this experiment is to see how many reordering

rules are accurate if they were applied to the test set. The test set

is obtained randomly from High School English books. In the

test set, lengths of the sentences are between 3 and 20 words.

The test set was split into three subsets:

• 1000 simple sentences

• 1000 compound sentences

• 1000 complex sentences

After reordering the test set by the reordering rules, the accuracy

values of the reordering rules are collected for each subset on

the test set. The accuracy values are given in percentage form.

Human evaluation is used for evaluating how accurately the

reordering rules are applied to the test set.

Table 1 shows the accuracies of the reordering rules for each

subset of English sentences on the test set. The experiment

showed that the most common causes of errors of the reordering

rules are incorrect tagging from Analyzer and tree-tagger.

Table 1. Accuracy of Reordering Rules

English test subsets Accuracy

Simple sentences 98.9%

Complex sentences 95.4%

Compound sentences 93.6%

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

24

9.2 Evaluation of Proposed reordering travel
The reordering model used in [17] cannot allow all possible

reordering for one input sentence and it can allow only

maximum phrase jump up to 2. Therefore, it cannot solve long

distance reordering. By comparison, proposed reordering model

can allow possible reordering rules for one input sentence. By

using this reordering model, long distance reordering can be

solved easily because the input sentence word length in this

system is not limited. Moreover, proposed reordering model can

also solve the rule disambiguation problem in part-of-speech

rules by using lexical information. In this reordering model, the

problem of loss of words caused by tag missing is also solved by

generating reordering rules which involve combining two or

more tags those have same target position into only one group

described in function tag reordering rules pattern 3.

10. CONCLUSION AND FUTURE WORK
To solve the word-order problem between English language and

Myanmar language, an approach for automatic reordering rule

generation and applying the extracted rule in Markov-based

Reordering Model are introduced. In this work, Language

Analyzer [15] is applied for function tagging for English

language. Moreover, tree-tagger is used for part-of-speech

tagging. The proposed approach can work correctly for the rules

in the training corpus. Therefore, additional training is also

needed for other rules that are not in the training data. Moreover,

this work mostly depends on the correct tagging of Analyzer and

so better Analyzer will be used for future work. In addition to

this, proposed reordering model can be extended for reordering

of other language pairs rather than English and Myanmar

languages because this model works with the reordering rules

based on part-of-speech tags and function tags generated by

Chunk-based Analyzer. Therefore, this system can be used for

other language pairs that need reordering if the part-of-speech

tags and function tags of these languages will be known.

1-SUBJ:NC[I/က PP(0/0)#(1/3)ACTIVE:VC[go/ VBP(0/0)]#(2/2)1-ADVL:PPC[to/သTO(0/0)]#(3/1)2-

OBJ-P:NC[school/ NN(0/0)]

Fig 3: Parallel tagged aligned corpus

11. REFERENCES
[1] C. Tillmann and H. Ney. 2002. Word reordering and DP

beam search for statistical machine translation to appear in

Computational Linguistics.

[2] R. Zens and H. Ney. 2003. A comparative study on

reordering constraints in statistical machine trans lation. In

Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics, vol ume 1, pages 144–151,

Sapporo, Japan.

[3] S. Vogel, F.J. Och, C. Tillmann, S. Nießen, H. Sawaf, and H.

Ney. 2000. Statistical methods for machine translation.

InW.Wahlster, editor, Verbmobil: Foundations of Speech-

to-Speech Translation, pages 377–393. Springer Verlag:

Berlin, Heidelberg, New York.

[4] Y.Y. Wang and A. Waibel. 1997. Decoding algorithm in

statistical translation. In Proc. 35th Annual Meeting of the

Assoc. for Computational Linguistics, pages 366–372,

Madrid, Spain, July.

[5] Ei Ei Han and Ni Lar Thein, "Morphological Synthesis For

Myanmar Language", Proceeding of International

Conference on Internet Information Retrieval, Korea, 2007.

[6] Yaser Al-Onaizan and Kishore Papineno. 2006. Distortion

models for statistical machine translation. In Proceedings of

the 21st International Conference on Computational

Linguistics and the 4th annual meeting of the ACL, pages

529–536, Sydney, Australia.

[7] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra,1996.

A maximum entropy approach to natural language

processing. Computational Linguistics, 22(1):39.

[8] B. Chen, M. Cettolo, and M. Federico. 2006. Reordering

rules for phrase-based statistical machine translation. In Int.

Workshop on Spoken Language Translation Evaluation

Campaign on Spoken Language Translation, pages 1–15.

[9] M. Popovic and H. Ney. 2006. POS-based word reorderings

for statistical machine translation. In Proc. of the 5th Int.

Conf. on Language Resources and Evaluation (LREC),

page 1278, Genoa, Italy.

[10] L. Shen, A. Sarkar, and F. J. Och. 2004. Discriminative

reranking for machine translation. In HLTNAACL 2004:

Main Proc., page 177.

[11] C. Tillmann and T. Zhang. 2005. A localized prediction

model for statistical machine translation. In Proceedings of

the 43rd Annual Meeting of the As-soc. for Computational

Linguistics (ACL), pages 557–564, Ann Arbor, MI.

[12] D. Wu. 1996. A polynomial-time algorithm for statistical

machine translation. Proc. 34th Annual Meeting of the

Assoc. for Computational Linguistics, page 152.

[13] D. Wu. 1997. Stochastic inversion transduction grammars

and bilingual parsing of parallel corpora. Computational

Linguistics, 23(3):377.

[14] Y. Zhang, R. Zens, and H. Ney. 2007. Chunk-Level

Reordering of Source Language Sentences with

Automatically Learned Rules for Statistical Machine

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.8, August 2011

25

Translation. In Human Language Technology Conference

of the North American Chapter of the Association for

Computational Linguistics (HLT-NAACL): Proceedings of

the Workshop on Syntax and Structure in Statistical

Translation (SSST), pages 1–8, Rochester, NY.

[15] Myat Thuzar Tun and Ni Lar Thein, " English Syntax

Analyzer for English-to-Myanmar Machine Translation",

In proceedings of the Fifth International Conference on

Computer Application, Myanmar, February, 8-9,2007.

[16] Myat Thuzar Tun, Tin Myat Htwe and Ni Lar Thein,

"EMTM: An Effective Language Translation Model", In

proceedings of International Conference on Internet

Information Retrieval, Korea, November 30, 2005.

[17] Shankar Kumar “Local Phrase Reordering Models for

Statistical Machine Translation”, Center for Language and

Speech Processing, Johns Hopkins University, 3400 North

Charles Street, Baltimore, MD 21218, U.S.A.

[18] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.

Mercer, “The Mathematics of Statistical Machine

Translation: Parameter Estimation,” Computational

Linguistics, vol. 19(2), pp. 263–312, 1993.

[19] Kenji Yamada and Kevin Knight. 2000. A Syntax based

Statistical Translation Model. ACL 2000.

[20] Josep M. Crego and Jose B. Marino. 2006. Reordering

Experiments for N-Gram-based SMT. In Spoken Language

Technology Workshop, pages 242-245, Palm Beach,

Aruba.

[21] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “BLEU: a

Method for Automatic Evaluation of Machine Translation”,

Association for Computational Linguistics, 2002, pp. 311-

318.

