
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

33

M. Aqeel Iqbal
Dept. of CE, College of Electrical &

Mechanical Engineering, National University
of Sciences and Technology (NUST),

Islamabad, Pakistan

Farooque Azam
Dept. of CE, College of Electrical &

Mechanical Engineering, National University
of Sciences and Technology (NUST),

Islamabad, Pakistan

Uzma Saeed Awan

Dept. of CS, COMSATS, Institute of Information
Technology (CIIT), Abbottabad, Pakistan

Saifullah Hammad
Advanced Engineering Research Organization

(AERO) Islamabad, Pakistan

ABSTRACT
Reconfigurable computing has become an essential part of

research in the domain of modern computing paradigms.

Reconfigurable computing approach integrates both, the

performance and flexibility gaining aspects on a single
computing system. The computational performance of such

kind of systems is crucially dependant on the configuration

overheads caused by configuration management unit.

Performance of the configuration management unit greatly

accelerates the computational power of reconfigurable
computing system. There are a large number of control and

management techniques which can be used to improve this

technology. This research paper presents a comprehensive

analysis of existing performance enhancement methodologies

in practice. The paper also point outs the different aspects of
configuration management for critical analysis and further

optimization.

Keywords
Configuration Management, Configuration Streams,

Configuration Overheads, Performance Management,

Reconfigurable Computing.

1. INTRODUCTION TO

RECONFIGURABLE COMPUTING
Consider the Fig.1 which shows the basic computing themes

of ASICs, GPPs and the position of Reconfigurable
Computing in between them. In order to formalize the

concept reconfigurable computing paradigm, such kind of

computing devices or computing systems are required which

should demonstrate the expected computational functionality.

The reconfigurable computing systems have varying
characteristics to demonstrate the worth for modern

applications. The reconfigurable computing platforms consist

of a reconfigurable computing accelerator which provides the

expected programmable logic resource for a configuration

management unit [1]. Configuration management unit controls
the execution of the required tasks on reconfigurable

computing resources.

Figure-1: Concept of Reconfigurable Computing

The design and control complexity of the configuration

management unit is widely varying depending upon the
desired application and the computational approach being

used to achieve the desired goals. Consider the Figure-2

which shows the composition of basic reconfigurable

computing system.

Figure-2: Composition of a Reconfigurable Computing

System

Performance Enhancement Techniques for Modern

Reconfigurable Computing Systems

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

34

The most critical elements of the development system have a

well defined design and implementation flow that has been

adapted typically for modern reconfigurable computing
systems [1], [2]. The compilers used in reconfigurable

computing systems allow easy and fast compilation facility of

modern high-level software descriptions into hardware

circuits. Also the CAD tools now fully support the emerging

reconfigurable computing mechanisms including partial and
run-time reconfiguration.

2. RESOURCE MANAGEMENT
Since the modern applications support the multiprogramming

and multi-threading for performance enhancement and better

user service availability, the consideration of multiple running
applications on a single system demands that there should be

some kind of controlling mechanisms and supporting policies

that should manage such type of resource competition among

different running applications and should be able to resolve

any kind of resource allocation conflict [3]. Consider the
Figure-3 which shows the basic categorization of

programmable logic devices.

10

CMOS
Logic

uProcessors

uControllers

Standard

Logic
Programmable

Logic
ASIC

SPLD CPLD FPGA

Figure-3: Categorization of Programmable Devices

In a conventional computing system, these resource
management activities include the data storage management

and I/O resource management to communicate with external

world. Allocation of one active application at a time to a

single field programmable gate array device is the most

simple and easiest way to manage the resource allocation
problem. This kind of strategy of resource allocation and

management has already been implemented with positive and

negative aspects in dynamically reconfigurable computing

system. Consider the Figure-4 which shows the internal

architecture of a typical FPGA.

Later on researchers proposed operating system based

approaches for managing configuration overheads for partially

reconfigured computing devices or systems. The basic idea

behind this operating system based approach was to design the
swappable hardware configuration modules. These modules

are in fact some kinds of position independent tasks which can

be immediately swapped in and swapped out by the active

operating system being interfaced with the reconfigurable

device [2], [4].

Figure-4: Reconfigurable Logic Device

These reconfigurable modules are in fact logic segments of
FPGA. These logic modules are supposed to be of equal size

and can be allocated to active application. This assumption of

having equal sized blocks within an application has very

limited uses since it is mostly very difficult to divide a

running application into the segments of equal size. Hence
later on the researchers also improved the concept and

proposed the reconfigurable computing hardware modules

having un-equal sizes and dimensions [4]. Consider the

Figure-5 which shows the fundamental logic of internal

design of FPGA.

a

a

Figure-5: Basic Logic in side FPGA

The internal routing between the logic blocks being available

within the reconfigurable logic device is most important

aspect. This kind of internal routing in fact greatly contributes

to the overall performance of the reconfigurable computing
device [5]. When the overall usage of the logic blocks in field

programmable gate array becomes very high, then the

automatically routing tools frequently come across the

difficulty of achieving the necessary internal connections

between the successive and adjacent blocks.

Therefore effective routing structures are essential to ensure

that a design can be successfully placed and routed onto the

reconfigurable computing logic hardware. Also the arbitrarily

relocated computing modules need to internally communicate
with each other and also with I/O devices of the system.

Hence in this regard an online place and routing mechanism is

required to establish and enable this internal to external

communication. Consider the Figure-6 which shows the target

parameters for making reconfigurable computing to be
successful.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

35

Figure-6: Success of Reconfigurable Computing

In order to support high performance reconfigurable

computing systems that are mostly composed of several Field

Programmable Gate Array (FPGA) chips integrated on a
single processing board have additional hardware concerns as

compared to the single-chip reconfigurable computing

systems [6]. For such kind of systems there is always a critical

need for an efficient interconnection scheme between the

arrays of chips, as well as the connection of these chips to
external memory devices and the system bus [7].

Such kind of huge reconfigurable computing systems are used

for those circuits which are too heavy and cannot fit within a

single FPGA device. Such circuits are then partitioned to run

on the multiple FPGAs systems available. There is a need of
efficient communication between the multiple FPGAs and

hence the determining of the inter-chip routing is one of the

most important steps being involved in the design of a multi-

FPGA based systems [8], [9]. Consider the Figure-7 which

shows the programming flow while working for a typical
FPGA.

Figure-7: FPGA Based Programming Flow

Figure Source: Lecture slides “Introduction to Reconfigurable

Computing” By Volodymyr Kindratenko, NCSA Craig

Steffen, NCSA

3. Performance Management Techniques
In reconfigurable computing devices such as modern FPGAs,

the reconfigurable computing logic and programmable routing

resources are managed by reprogrammable internal memory

locations, such as found in Static RAM or Flash memory.

Binary bits available in the memory locations control the

connectivity of certain wires and also define the functionality
which has been implemented by a particular piece of

computing logic. These binary bits are typically known as

configuration Bit Streams [10]. The process of loading these

configuration bit streams into the memory locations is known

as reconfiguration. A set of specific bits sequence for certain
memory locations in reconfigurable device like FPGA

basically defines a specific hardware circuit. This set of

streams defining the hardware circuits is commonly known as

a Configuration for a given piece of hardware module [11].

The modern practices of loading and unloading configuration
streams back and forth like swapping in and swapping out

operating systems processes, is known as the Run-time

Reconfiguration (RTR).

These configurations are basically created by the Computer

Aided Design (CAD) software tools. The configuration
streams are dependent on the type of the circuit to be designed

and the internal architecture of the reconfigurable computing

device. After generation of the configurations by the CAD

tools, they are generally stored in a non volatile memory

available external to the reconfigurable device. But this is not
the only way to store the configurations. In certain cases the

configurations are stored in the main memory (SRAM or

DRAM) and it is the responsibility of microprocessor of the

system to keep transferring them from the memory to the

reconfigurable device as per the requirements of the running
application. There is another technique for managing the

configurations. In this technique the configurations are stored

in a Programmable Read Only Memory (PROM) and a

configuration controller which is a piece of hardware loads

this stream directly from this PROM to the reconfigurable
device.

Mostly in such kind of systems the configuration controller

and the PROM both are integrated into the same chip or

device. In these systems the configuration controller is

implemented in the form of a finite-state machine that
generates the sequences of memory addresses needed to read

an appropriate bit stream sequence from the configuration

memory. There are many methods which are used to minimize

the time delays required by the system to load the required

configurations. In the following some most prominent
configuration overhead optimization techniques have been

presented.

3.1 Single-context Configuration
The Virtex family of field programmable gate arrays provided

by the Xilinx Corporation has addressable internal

configuration locations inside the configuration memory.

These devices support a single-context configuration mode. In

these devices, the configuration bit streams are divided into
addressable blocks commonly known as Frames. Each one of

these frames is in fact corresponding to part of a vertical

column of reconfigurable hardware resource. In the process of

device reconfiguration, the configuration bit streams are

shifted block wise into the frame input register and from there
it is written back to a configuration memory location which is

being specified by the frame address register.

Those devices which support the single context configuration

mode, this configuration stream address begin at zero and are

automatically incremented gradually for each of the new
arriving frame [12]. Due to this characteristics it allows the

FPGA device to appear as a single-context device as viewed

externally. In order to make the configuration process fast the

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

36

number of configuration cycles can be minimized in single

context devices by simply extending the configuration path

[13].

3.2 Multi-context Configuration
For run-time reconfigurable systems, the configuration

overhead of serial loading the bit streams may be harming for
high speed applications. In order to solve this problem it is an

emerging practice to provide a set of local storages in the

FPGA device for holding temporary multiple configurations

simultaneously. In this way it becomes quite feasible to

facilitate the concepts of configuration pre-fetching and fast
reconfiguration. An FPGA device which supports the multi-

context capability contains a set of multiple active contexts of

configuration bit streams. Depending upon the application

requirements each configuration block of the FPGA device is

internally controlled by a digital multiplexer circuit which
chooses among the active contexts.

In general the multi-context FPGA devices have two major

advantages as compared to the single-context FPGA devices.

First advantage is that they allow the loading of configuration

bit streams in the background meanwhile maintaining the
operation of the system and hence demonstrating the

configuration overlapping with computation of the running

system [13], [14]. The second main advantage is that as these

devices support the multiple stored configurations, hence they

can be switched between internally stored configurations
quickly. Most of these devices can switch between the

multiple active configurations within a very short interval of

almost equal to one cycle.

In this way these devices dramatically reduce the

reconfiguration overhead of the device if the next required
configuration is already available in one of the other active

contexts. However, on the other hand if the next required

configuration is not available, there would be a fraction of

penalty faced for loading the configuration. In order to

manage this issue it is recommended that either all of the
required contexts must fully fit in the available hardware

device or some kind of internal control mechanism should be

provided that should determine when contexts should be

loaded in the device in order to efficiently minimize the

overall number of wasted cycles during the reconfiguration
process completes [14]. Consider the Figure-8 which shows

the concept of partial reconfiguration.

Figure-8: Partial Reconfiguration

3.3 Partial Reconfiguration
It is experimented that while configuring the device it is not

always required to configure the whole device because not all
kinds of configurations require the entire chip area. Hence it is

possible to reduce the configuration overhead if we reload

only those streams which are new and reuse those streams

which match the next incoming streams. In those devices
which support the process of partial reconfiguration, the

configuration memory is addressable. In a similar way as that

of traditional RAM memory structures. If required

configurations are smaller as compared to full reconfigurable

device, the partial reconfiguration can be used to actively
decrease the reconfiguration overhead. The process of partial

reconfiguration can also permit a set of multiple independent

configurations to be swapped in and swapped of the

reconfigurable device quite independently. Hence one of the

configurations can be selectively replaced on the device while
another one is left intact.

3.4 Pipelined Reconfiguration
This is another modern technique used to effectively reduce

the configuration overhead. In such type of systems a series of

physical pipeline stages are implemented to provide the

concept of the virtual pipeline stages of configurations. In this

method any virtual pipeline stage can actively be relocated to
any physical pipeline stage available. Also the number of

virtual pipeline stages is not limited by the number of physical

available pipeline stages. PipeRench is one of the most

prominent systems having this concept being implemented.

This system has been designed to implement pipelined
configurations, which have been subdivided into a set of

virtual pipeline stages. During the active operation of the

device, these virtual pipeline stages are assigned to one of the

available physical pipeline stage. Over the time the pipeline

stages may be implemented in different physical locations.
Hence the virtual pipeline appears quite fixed to its internal

own pipeline stages, with each pipeline stage receiving its

inputs from its predecessor stage and hence generating the

output to its successor stage. In the PipeRench the pipeline

stages can be reconfigured in a single clock cycle to speed up
the device execution.

3.5 Configuration Cloning
Regularity and locality is exploited in the process of

configuration cloning while the device is under

reconfiguration. The configuration cloning is performed in

FPGA device by copying the single or multiple bit-streams

from one region of device to one or multiple other regions.
Hence without loading entire configuration bit-stream, the

active device can be reconfigured at an instant. The process of

configuration cloning can be used to greatly reduce the device

configuration overhead. But overall this method of

configuration cloning is not very much realistic [12], [14].
This method requires the FPGA device to send all bits of the

configuration stream from multiple cells of the device in a

column/ row to several other available cells in the same

column/row concurrently.

Such kind of configuration copying process from one region
of FPGA chip to another region requires a large number of

internal routing resources and very complex control circuitry

[15]. It may also require a set of large switch matrixes, all of

which can impose a significant amount of area overhead. Also

this kind of configuration process may require very high level
of regularity. Hence it might be best suited only to hand-

mapped circuits and those kind of circuits which exist in the

form of arrays of similar replicated cells. Due to all of these

technical limitations, this configuration method has a very

limited utility.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

37

4. CLASSIFICATION OF EXISTING

SYSTEMS
The main criteria of the classifications of the existing

reconfigurable computing systems are based on the
implementation of the reconfigurable logic and its placement

inside computing system. The reconfigurable logic can be

placed at four different levels with respect to the placement of

the standard processing logic in the system. Consider the

Figure-11 which shows the different coupling approaches for
reconfigurable logic inside a reconfigurable computing

system.

FU

Coprocessor

CPU Memory

Caches

I/O

Interface

Standalone

Processing Unit

Attached

Processing Unit

Figure-11: Coupling Approaches for Reconfigurable

Unit

The characteristics of each of the four types are given as
under.

4.1 Placement as a Functional Unit
- Commonly known as Tightly Coupled Systems

- FPGAs are working as main functional Units

- Internal registers hold input/output data streams

- They have very less communication overhead

- Reconfigurable hardware cannot operate alone for long

periods of time

- Amount of reconfigurable logic being implemented is
limited

- Examples of such systems include OneChip, PRISC and

Chameleon etc

4.2 Placement as a Co-Processor
- They perform computations without the constant

supervision of host system

- Host system initializes the reconfigurable hardware

- They can perform the Independent parallel computations
- They have less communication overhead

- Examples of such systems include PRISM and GARP etc

4.3 Placement as a Processing Unit attached

to Memory
- These systems does not share cache

- They behave as an additional processor
- They exhibit DMA-type overlap interface

- Higher delay to communicate with host processor

- They can perform independent computations

- Examples of such systems include SPLASH and SPLASH-

2 etc

4.4 Placement as an External Processor

Attached to I/O
- They are commonly known as loosely Coupled systems

- They are most loosely coupled to host processor

- They have infrequent Communication with host processor

- They can perform independent computation for very long

periods of time
- They have higher communication overheads

- Examples of such systems include FPGA on a PCI bus

5. CONCLUSION
Reconfigurable computing is becoming an important part of

emerging research. Reconfigurable computing systems can be

used to provide the benefits of high speed ASICs and
programmable processors. The main issues related to

reconfigurable computing include the minimization of device

configuration overheads. Configuration overheads can be

greatly reduced by using the emerging concepts of multiple

context switching, partial reconfiguration, configuration
cloning and configuration pipelining. In this regard there are

many dimensions of further research to fully exploit the power

of the reconfigurable computing systems.

6. REFERENCES
[1] M. Aqeel Iqbal, Asia Khannum, Saleem Iqbal and M.

Asif, “Emerging Requirements of Reconfigurable

Computing Systems for Performance Enhancement”,

Published in the International Journal on Computer

Science and Engineering (IJCSE), Volume-02, No-05,

PP 1572-1579, August-2010, Published by Engineering
Journals Publications. ISSN: 0975-3397.

[2] M. Aqeel Iqbal, Shoab A. Khan and Uzma Saeed Awan,

“Computational Unit Design For High Speed

Reconfigurable Processors”, Published in International

Journal of Intelligent Information Technology
Application (IJIITA), Volume-02, No-05, PP 229-236,

October-2009, Published by Engineering Technology

Press. ISSN: 1999-2459.

[3] M. Aqeel Iqbal, Shoab A. Khan and Uzma Saeed Awan,

“Reconfigurable Computing Systems Related Hardware
and Software Perspectives”, Published in International

Journal of Intelligent Information Technology

Application (IJIITA), Volume-02, No-05, PP 209-217,

October-2009, Published by Engineering Technology

Press. ISSN: 1999-2459.

[4] M. Aqeel Iqbal, “RFU Based Computational Unit Design

for Reconfigurable Processors”, Published in Journal of

World Academy of Science, Engineering and

Technology (WASET). Volume-50, PP 950-957,

February-2009, Published by Waset. ISSN: 2070-3724.

[5] Benkrid, Khaled. “High Performance Reconfigurable

Computing: From Applications to Hardware” IAENG

International Journal of Computer Science, vol. 35, issue

1. February, 2008.

[6] K. Compton and S. Hauck, “Reconfigurable computing:
a survey of systems and software,” ACM Computing

Surveys, vol. 34, no. 2, pp. 171–210, 2002.

[7] Compton K. and Hauck S. “An introduction to

reconfigurable computing”, IEEE Computer Society,

April 2000.

[8] I. Kuon and J. Rose, “Measuring the gap between FPGAs

and ASICs,” in Proceedings of the ACM/SIGDA 14th

International Symposium on Field-Programmable Gate

Arrays (FPGA ’06), pp. 21–30, Monterey, Calif, USA,

February 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

38

[9] R. Hartenstein. “A Decade of Reconfigurable

Computing: A Visionary Retrospective”. In Design,

Automation, and Test in Europe Conference (DATE),
pages 642{649, Munich, Germany, 13-16 March 2001.

[10] A. DeHon, J. Adams, M. DeLorimier, et al., “Design

patterns for reconfigurable computing,” in Proceedings

of the 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM
’04), pp. 13–23, Napa Valley, Calif, USA, April 2004.

[11] Katherine Compton, “Reconfiguration Management” in

Reconfiguration Computing, (ed.) S. Hauck & A. Dehon,

Morgan Kaufman, 2008, pp. 65-86.

[12] R. Hartenstein, “Trends in reconfigurable logic and
reconfigurable computing,” in Proceedings of the 9th

IEEE International Conference on Electronics, Circuits,

and Systems (ICECS ’02), pp. 801–808, Dubrovnik,

Croatia, September 2002.

[13] T. J. Todman, G. A. Constantinides, S. J.

E.Wilton,O.Mencer, W. Luk, and P. Y. K. Cheung,

“Reconfigurable computing: architectures and design
methods,” IEE Proceedings: Computers and Digital

Techniques, vol. 152, no. 2, pp. 193–207, 2005.

[14] L. Bauer, M. Shafique, J. Henkel, “A Computation and

Communication-Infrastructure for Modular Special

Instructions in a Dynamically Reconfigurable
Processor”; Proc. of IEEE International Conference on

Field Programmable Logic and Applications (FPL 2008),

Heidelberg, Germany, pp. 203–208, Sept. 8–10, 2008.

[15] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot,

and D. Andrews. Hthreads: A computational model for
reconfigurable devices. In 16th International Conference

on Field Programmable Logic and Applications, Madrid,

Spain, August 2006.

