
International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

1

Using Symmetric Multiprocessor Architectures for
High Performance Computing Environments

Mohsan Tanveer

Dept. of SE, Foundation

University, Institute of

Engineering and

Management Sciences

(FUIEMS), Rawalpindi,

Pakistan

M. Aqeel Iqbal
Dept. of SE, Foundation

University, Institute of

Engineering and

Management Sciences

(FUIEMS), Rawalpindi,

Pakistan

Farooque Azam
Dept. of CE, College of

Electrical & Mechanical

Engineering, National

University of Sciences

and Technology (NUST),

Islamabad, Pakistan

ABSTRACT
Performance enhancement for high speed computing can be

carried out by using many techniques and architectures at

software and high hardware level. Performance enhancement

using hardware techniques may include the use of multiple

computing nodes or a single node consisting of multiple
processors. Symmetric multiprocessor is one of the modern

architectures used to perform extensive computations.

Symmetric multiprocessors have many configuration modes to

carry out these heavy computations. The performance of

Symmetric multiprocessors is analyzed and compared with
high-fidelity models. Processors models are used to design and

construct the architectures of symmetric multiprocessors. In this

research paper such kind of critical design aspects of symmetric

multi processors have been analyzed for further enhancement of

the existing technology.

1. SYMMETRIC MULTI-PROCESSORS
The demand for the processing power unit is growing day by

day. The capability of execution according to speed and

efficiency can be increased by different type of ways like

enhancing the CPU programming like inserting new

programming, arrange new registers to the model of
microprocessors and grouping up the CPUs [9]. Chip

improvements are required for the first two options but the third

can boldly increase the processing power. However, the “CPU

grouping” approach is affordable because:

 If we enhance the CPU programming, more efforts would be

required to integrate the programs and registers.

 If one processor is faulty, the life of the computer would be

increased by multi processors. Hence we have to design a

new commercial scale super computer.

Hence, we have a choice, to rely on internal changes of the CPU
or we combine multiple processors/CPUs. Symmetric

multiprocessing is a case of parallel multiprocessing [7], [8]. In

the symmetric multiprocessing system all processors behave

identically and Kernel of operating system can assign any

process to any processor. A Single instance of the operating
system manages all processor s. Applications have uniform

access to memory and I/O. These operating systems are more

special and complex unlike typical operating systems.

Figure-1: Heterogeneous, Asymmetric Multi-processing

(AMP), Symmetric Multi-processing (SMP)

To gain the maximum advantages of symmetric

multiprocessing, we required an additional synchronization code
for data structures to maintain the consistency and balance the

work load between multiple threads of multiple processors [8],

[9]. On a multiprocessor, scheduling is multi dimensional. The

scheduler allocates processes to the CPUs to execute it . This

complicates the processing paths and signals of multiprocessors.
Thus efficient multiprogramming is required to avail the full

and maximum processing. Symmetric processors have their own

front side bus that‟s why they have the advantage over cores.

The scalability of symmetric multiprocessors can be increased

by using mesh architecture. SMP is one of the earliest types of

computer architecture mostly used for up to 8 processors.

These multiprocessors share a common main memory and I/O.
A microcontroller(s) controls data flow throughout the

processors and main memory [6]. Each processor has a

dedicated cache for better latency and data brought into each

processor‟s registers can be transferred through its cache rather

than from main memory. The question arises here that may be a
process on data can be cached by multiple processors. To avoid

this incidence there is a task called cache coherence that ensures

each processor is working on recent copy of data. The basic

architecture we use for coherence is snoopy bus architecture

(discussed later).

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

2

Figure-2: Basic Architecture of SMP

1.1 SMP Clusters
A computer cluster is a team of linked computers forming fast

local networks. Clusters are usually used to increase the speed

and performance over single computer. They are cost effective
and available to high performance computing. They are

operated on having redundant CPU nodes [5], [6]. The

capability to control more clients by giving more jobs and data

access is done by scaling server side processor. We can have

cluster of shared memory computers like:

Each node has its own local memory, and Nodes share data by

passing data over the network. Client computers bonded to

clusters of SMP server has given the computing power of

Divide and Conquer Algorithms. Clusters provide the scaling
of I/O, processors, and storage but not of client management

methods, or security. Grid‟s computing domain is scaling. Grid

computing provides services like client management or security.

With some careful analysis on SMP nodes and cluster

architecture, we can scale these systems precisely and with very
limited waste of resources. Also the communication between

cluster nodes is much grater than that of between

multiprocessing in SMP.

Figure-3: BSMP Cloud

2. SOFTWARES CHARACTERISTICS

FOR SMP
As discussed earlier, in multiprocessors all processors use the

same order of rules just like in a single processor system. The
thread which comes out of this rule of processing, are globally

analyzed and reordered with respect to each other in the shared

area. The thread visits the processors as multi thread. So multi

programming is required to produce multi threads. If an

operating system is not partitioning the threads in multi-way
multiprocessors then it is better to use a uni-processor instead.

In fact it could be a worse situation, because it may suffer more

locking overhead and process delays when dispatched to other

processors, it may be slower.

There are different ways to achieve parallel threads execution of

a single program:

1. Make parallel calls to library subroutines to create parallel

multi threads that can run at a same instance.
2. Execute the program with a parallelizing compiler. It will

help us to detect threads that are not dependent on other

thread that is to be executed on second instance and generate

a parallel multi threaded parsing code.

3. Use a multi threaded software.

The maximum improvement can be analyzed and achieved by a

rule that is called Amdahl's Law: It says increase of speed can

be achieved by a formula equals to uni-processor time divided

with the sum of sequence time and time of multi-processor. For

example:

Sequential time = 50% and Parallel time= 50%

Time improvement = less than a factor of 2 (= 1.6 in 4-way µp).

2.1 Operating System Scheduling
A SMP unit has a similar view of the memory; any task has the
capability of running on any processor. But in fact , it is not a

correct way to let a task wandering between different processors

to be processed [3]. When a thread migrates to a processor, the

data which is currently present in first cache of that processor

also has to be move towards the other processor. So each
processor can have its copy and can be replaced again on the

memory. This is handled by the cache coherency. If we

introduce the processor property to each task and bound that

task to execute on the same processor, this method is known as

processor affinity. But this method is not suitable for locking
because for example a task is running on that processor and

suddenly blocked.

The task which is already waiting in a queue and ready for

execution would suffer extra time [3], [4]. Therefore modern
SMPs can assign any task to any processor. In Windows NT

there are no separate schedulers. A thread produces events.

These events are handed over to the event handler modules of

the windows kernel. Events Like creating a new task, task

asleep, blocking of tasks on synchronization and task
terminator. Windows scheduling is totally based on the time

quantum mechanism. Each task has a time period. It is a time in

which operating system checks the task priorities. To do task

switching there is time tick period. The tick is custom set to 10

ms for uni-processors, and 14 ms for SMP. On single tick, time
is decreased by 3. When time period value reaches zero, task

will be put away and recalled again soon.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

3

Figure-4: Seven States Model for OS Processes/Threads

Normally, Windows NT has “32” priorities. ”0” priority is for

idle process. Windows may keep on changing priority to avoid

starvation, indefinite postponement deadlock etc. The OS kernel
maintains 1 queue ready for each thread priority. There is a bit

mask of (32 bit) which tells which task is ready to be performed

and if its idle it tells scheduler that processes are idle. If none of

any processor is found idle, the scheduler will preempt the

lower priority task on interrupt. Every processor has assigned
each task and the last processor on which it was executed is

saved.

One another way can be that we do process switching but the

fact is process switching costs more then thread switching. So

it‟s better to divide the threads and allocate to the multiple

processor.

2.2 Locks:
A uni-processor blocks a task. While in any Operating system

executing parallel codes, there is a need of locking technique.

Lock is used to ensure that no other task is executing outside a

limiting point. The purpose of lock is to grant that task which is
waiting for the lock permission to carry on. Locks provide a

way to for process communication and synchronization.

Locking concept is used to prevent other processes access to

incomplete data. Interrupt disabling is not the solution to

prevent data modification by another processor in SMP case.

Therefore locking mechanism controls data between the

multiple processors. There is a lock variable which has to be

free to acquire processor by writing some value to it . After the

first processor, another processor is able to read and write the
lock variable. Thus lock is free for the both processors. This

lock is applied to tasks and ISR and can be applied to the cache-

line of the processors. If we apply lock to Cache, no unrelated

bus traffic disturbance is expected. The locked cache will hit the

bus until another processor will need this for operations like
Exchange, Compare and Addition etc.

Table-1: Efficient Polling Protocol

Lock Qualities
A programmer must know how many locks should be created.

For example if spin lock is created:

 A spinlock must not be recursive, as the processor would be

continuously spinning on the lock with no one to release the

lock.

 Too much poll will affect bandwidth and too low will delay.

So remain balanced.

 The existence of multiple locks makes a deadlock possible.

 More then needed locks effects throughput for example in

case of mutual-exclusion locks, with 9 instances of a program

running in parallel. 9 instances would not be synchronized

effectively to avoid waiting for other process.

3. CACHE COHERENCY
In symmetric multiprocessors every processor has its own

cache, so the obvious possibility is every cache has the same

copy of data to be executed. If more then two threads modify

the same data, it concludes with no data coherency [1]. The

solution is to invalidate other copies of data except one, by
broadcasting on the shared bus. Invalidation is performed by

cache controller hardware [2]. Cache controller hardware

watches flow of data over the bus. This method is known as

snooping protocol. Directory based coherence protocol is

another model [11]‟ [13].

Figure-5: Cache Coherency in Multi-processor

Architectures

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

4

After invalidation, there are two methods to update main

memory [14]:

Write through: In this method the controller updates the

memory as soon as possible for the other processors after

writing the data.

Write back: In this method the controller doesn‟t updates the
memory cell unless another thread comes and demand for that

cell. If one processor has demanded the same data in the

memory, it is better to retrieve it from the cache of other

processor. Main memory will take more time to recognize the

recall.

Figure-6: Cache Coherency Solutions

There are three states of cache blocks of Snoopy protocol;

Shared (block is ready to fetch and read), Exclusive (block is
ready to write and there are no other copies of it), Invalid (block

has no data) [12].These states are implemented when CPU

demands for any cache block.

Figure-7: Snoopy Protocol [10]

3.1 MESI Protocol
The snoopy protocol model is ideal for on chip supported

caches. But in most of the small scale SMP‟s MESI protocol

model has been implemented. There are four states of MESI

protocol (in fig).INVALID, SHARED, MODIFIED &

EXCLUSIVE.

Figure-8: MESI Protocol

For example cache has been hit and sent from modified state to

shared state. Now address has been shared in both the caches.

The process is modified and arrived towards the cache which

one was requesting for it. On the other side cache which has the

modified data can refuse to share, writing it back to the main
memory and then requester can get data from the main memory.

Read and write are not enough, we have to add some more to

increase the performance efficiency of coherency model. The

processors address bus must be available to the controller so

that tags of the addresses can be matched and state of

invalidation can be performed.

3.2 Token Coherency Protocol:
The message passing technique was difficult in direct

connections so a new protocol model was designed for direct

interconnections CPUs and as well as for switched based
interconnections in 2003. Token coherency technique uses

counting and exchange of tokens simply. Each block is mapped

with fixed number of tokens. Processor should have all the

tokens in order to write a block but to read a block at least 1

token is required [15]. Encoding bits of tokens is done by the

formula Log2N (N = no. of tokens).

Figure-9: Basic Concept of Token Protocol:

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

5

In this protocol processors can predict and ask other processor

for the required token if it has. Token coherence model can

perform (18-25%) faster than the snoopy protocol. Counting of
tokens gives safety to coherence invariant (single writer and

multiple readers). If a processor failed to acquire data, a timeout

message will be sent to requestor, and a persistent request will

be sent. Request persists until it is satisfied and deactivated

upon completion. It reduces starvation as well. Token snooping
is more efficient in direct processors interconnection. The graph

given below is between indirect interconnected SMP on

Normalized runtimes.

3.3 Advanced Programmable Interrupt

Controller (APIC)
Interrupts are controlled through APIC (Advanced

Programmable Interrupt Controller) unit. ICC (interrupt

controller communication) will be a pathway to control and

communicate multiple I/O APIC units collectively.

3.4 Scalability
Scalability is the performance of Multiprocessors. As expected,

adding more processors should increase the overall performance
accordingly, for example two processors should increase the

performance twice as compared to one processor. But in actual

as adding processors increase the scalability so it reduces some

as well. That is due to:

1. Cache coherency pipelining.
2. Time taken by number of cycles by spin lock.

3. Synchronization conflict.

The fact is, if one processor provides 1 speed. Two processors

provides 1.75 with a increase of 0.85 and eight processors will
provide (5.2 - 5.5) (see Amdahl‟s law) the speed and

performance gradually decreases but not a big deal as compared

to uni-processors.

Thus scalability and performance can be increased by increasing

memory band-width, shortening the latency of memory access

time (may be we should design a new memory scheduling

techniques and algorithms), and by reducing the gap between

memory so that starvation could be less possible.

The Threads received by SMP is distributed to all processors

equally. If we run Windows NT on a single CPU, as we know

that threads are distributed by multi threaded operating system.

The result of parallel threads can be shown by this graph.

Figure-10: Threads Increment Behavior Running On Single

CPU

4. SMP NETWORK ARCHITECTURE

4.1 NUMA Architecture:
SMP is a basic form of UMA (uniform memory access)
architecture. The interconnection of SMP with another SMP

through Interconnection network(s) and switches forming the

clusters are known as NUMA (non uniform memory access).

UMA is best for not more then 8 processors due to scalability

issue. But NUMA or (cache coherence NUMA) makes it
preferable due to its scalability for more than 8 processors,

because every unit of processors have their own local physical

memory which is easy to access but logically there is one

address shared space.

Figure-11: UMA vs. NUMA Architectures

Users prefer NUMA on multicomputer architecture because

they believe that programming is easy and due to non required

extra library of the compilers. The time required to access data

depends upon its location, whether it is present in local memory

or may be residing over remote memory. A single image of
operating system runs all over the network. If one processor will

modify any data the other processors will also update data into

their cache (for cc-NUMA machines). Logical address space

contains pages; these pages have some states which are passed

to track the position.

STAGES:
1. “NO- PRESENCE: they are in remote memory

2. SHARED: copies are distributed to local memories

3. EXCLUSIVE: In local memory”

The latency for accessing data in comparison of both local
memory as well as non local memory is calculated by NUMA

Factor. For example data access from the neighbor node is faster

then the node which is present on a distant level. For NUMA

factor we have to architect different inter-connection design for

the nodes. For example: Indirect fat tree, 2D torus, 4D hyper
cube, Hierarchical Inter connection, Omega network, Ring,

cross bar... etc.

International Journal of Computer Applications (0975 – 8887)

Volume 27– No.9, August 2011

6

4.2 COMA Architecture:
COMA (Cache Only Memory Architecture) is made for large

SMP networks just like NUMA. In this structure memory are

replaced by cache memory or we can say acting like cache

(attraction memory). Their addresses are hashed to DRAM

cache lines. Data is readable at any of modulo at any single
instance and is moved by hardware. This ability of making

copies, proved this structure extremely time effective. If the OS

algorithms are poor, COMA compensates it, but it requires

separate memory boards along with coherence interconnection

memory board.

Figure-12: Cache Only Memory Architecture (COMA)

5. FUTURE WORK
In research paper, as mentioned, there are some facts due to
which the scalability of SMP decreases. These facts include the

issues like synchronization and the pipelining. So we have to re-

design a protocol and algorithms which can be used to produce

maximum performance for every processor used in SMP. Re-

designing the interconnection scheme and by utilizing the most
suitable material for interconnection can also resolve

performance issue to some extent.

1. Multithreaded and hyper threaded programming might be a

suitable benchmark to research for increasing the speed

and performance of SMP.

2. We ought to design such network architectures and maps

as to keep memories close to the processors and
interconnection switches.

3. As size of microprocessor is decreasing, the ability of

handling data and low latency in SMP can be the platform

for producing SMP based cell phones in the commercial
market. These cell phones will act dual.

4. Combining GPU processors and SMP architectures on

experimental bases and performance can lead us to a real

time high embedded super computing machine.

5. The clouds of SMP can lead to highly vast global scale
network.

6. CONCLUSION
Since last few decades, the distributed computing has evolved

dramatically to fulfill the emerging requirements of

computational extensive applications. There are different ways

to implement distributed computing environments in which

most prominent solution is to use symmetric multiprocessors
architecture for achieving high performance distributed

platforms. Symmetric multiprocessor architectures have an

extensive capability to manage multiple real time threads for

active application. The current architectural scenarios being

adopted for the design of symmetric multiprocessor
architectures are not demonstrating the enough computational

power and hence are good candidates for further research.

Different issues including synchronization, pipelining,

protocols, hyper threading, coupling of GPU and SMP and

dealing with SMP clouds, have been pointed out for further

consideration and research.

7. REFERENCES
[1] Hung. Cache Coherency for Symmetric Multiprocessor

Systems on Programmable Chips. M.A.Sc. Thesis,

University of Waterloo, Waterloo, August 2004.

[2] A. Hung, W. Bishop, and A. Kennings. Enabling Cache

Coherency for N-Way SMP Systems on Programmable

Chips. In Proceedings of the 2004 Intl. Conference on

Engineering of Reconfigurable Systems and

Algorithms,LasVegas, Nevada, June 2004.

[3] W. Stallings. Operating Systems (6th ed.): Internals and

Design Principles. Prentice-Hall, Inc. UpperSaddle River,

NJ, USA, 2008.

[4] Simon Kågström: Performance and Implementation

Complexity in Multiprocessor Operating System Kernels.
Blekinge Institute of Technology, 2005.

[5] Serveurs Architectures: Multiprocessors, Cluster Parallel

Systems, Web Servers, Storage Solution René J.

Chevance,2004

[6] B. Senouci, A. M. Kouadri M, F. Rousseau, F. Petrot
Multi-CPU/FPGA Platform Based Heterogeneous

Multiprocessor Prototyping: New Challenges for

Embedded Software Designers The 19th IEEE/IFIP

International Symposium on Rapid System Prototyping,

2008. RSP ‟08

[7] John P. Shen & Mikko Lipasti. Modern Processor Design:

Fundamentals of Superscalar Processors. McGraw-Hill

2002.

[8] The von Neumann Architecture

(http://www.csupomona.edu/~hnriley/www/VonN.html).

[9] Sahoo, D., J. Jain, S. K. Iyer, D. L. Dill and E. A. Emerson,

Multi-threaded reachability, 2005.

[10] Martin, M.M.K., Sorin, D.J., Hill, M.D., and Wood, D.A.:

„Bandwidth adaptive snooping‟. Proc. 8th Int. Symp. on

High-performance Computer Architecture, Anaheim, CA,
February 2002.

[11] J. Tuck, L. Ceze, and J. Torrellas. Scalable Cache Miss

Handling for High Memory-Level Parallelism. In

Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, Dec. 2006.

[12] M. M. K. Martin. Formal Verification and its Impact on the

Snooping versus Directory Protocol. In International

Conference on Computer Design. IEEE, Oct. 2005.

[13] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing

and Partitioning in a Chip Multiprocessor Architecture. In
Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, Sept. 2004.

[14] S. V. Adve and K. Gharachorloo. Shared Memory

Consistency Models: A Tutorial. IEEE Computer,

29(12):66–76, Dec. 1996.

[15] R. Fernandez-Pascual, J. M. Garcia, M. E. Acacio, and J.

Duato. A Low Overhead Fault Tolerant Coherence

Protocol for CMP Architectures. In Proceedings of the

Thirteenth IEEE Symposium on High-Performance

Computer Architecture, Feb. 2007

