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ABSTRACT 
In this paper, we introduce product intuitionistic fuzzy graphs 

and prove several results which are analogous to intuitionistic 

fuzzy graphs. We conclude by giving properties for a product 

partial intuitionistic fuzzy sub graph. 
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1. INTRODUCTION  
The first definition of fuzzy graphs was proposed by Kafmann, 

from the fuzzy relations introduced by Zadeh. Although 

Rosenfeld [1] introduced another elaborated definition, 

including fuzzy vertex and fuzzy edges, and several fuzzy 

analogs of graph theoretic concepts such as paths, cycles, 

connectedness and etc. The first definition of intuitionistic fuzzy 

graphs was proposed by Atanassov[2]. Dr. V. Ramaswamy and 

Poornima .B introduce the concept of product fuzzy graph. In 

this paper we develop the concept of Product Intuitionistic fuzzy 

graphs of intuitionistic fuzzy graphs. Further investigate 

properties Product Intuitionistic fuzzy graphs. 

 

2. DEFINITION AND MAIN RESULTS 
Definition 2.1 An intuitionistic fuzzy graph (IFG) is of the form       

G = (V,E) , where V = {v1,v2,…,vn} such that 1:V  [0,1],             

1: V  [0,1]  denote the degree of membership and nonmember 

ship of the element vi V respectively and 0 ≤ 1(vi) + 1(vi) ≤ 1 

for every vi V,(i =1,2,…n) (ii) E  V V where                    

2:V  V  [0,1] and 2:V V  [0,1] are such that               

2(vi,vj) ≤ 1(vi)  1(vj), 2(vi,vj) ≤ 1(vi)  1(vj) and                                   

0 ≤ 2(vi,vj) + 2(vi,vj) ≤1. 

 

Definition 2.2 Let G = (V, E) be an intuitionistic fuzzy graph. If 

2(x, y) ≤ 1(x)  1(y) and 2(x, y) ≤ 1(x)  1(y) the intuition 

fuzzy graph is called product partial intuitionistic fuzzy sub 

graph of G. 

 

Remark: If G = (V,E) is a product intuitionistic fuzzy graph 

then since  1(x) and  1(y), are less than or equal to 1, it follows 

that 2(vi, vj) ≤ 1(vi)  1(vj) ≤ 1(vi) 1(vj) and 2(vi, vj) ≤ 

1(vi)  1(vj) ≤ 1(vi)  1(vj) for all x, y  V. Thus every 

product intuitionistic fuzzy graph is an intuitionistic fuzzy 

graph. 

 

Definition 2.3 A product Intuitionistic fuzzy graph G = (V,E) is 

said to be complete if  2(x, y) = 1(x)  1(y) and                 

2(x, y) = 1(x)  1(y) for all x, y  V. 

 

 

 

Proposition 2.1 Let G = (V, E) be a complete product 

intuitionistic fuzzy graph where 1 and 1 are normal. Then 

2
n(x, y) = 2(x, y) and 2

n(x, y) = 2(x, y) for all x, y V and for 

all positive integer n for n  2 

 2
n(x, y) = z V { 2

n-1 (x, y)  2(x, y)} 

 2
n(x, y) = z V { 2

n-1 (x, y)  2(x, y)} 

 

Proof: We prove by method of induction .Let n =2 then for all 

x, y V, we have 

2
2(x, y) = z V { 2

 (x, z)  2(z, y)} 

2
2(x, y) = z V {[ 1

 (x)  1(z)]  [ 1
 (z)  1(y)]} 

2
2(x, y) = z V { 1

 (x)  1(y)  1
 (z)2 } 

Since 1
 (z)2 ≤ 1 for all z [ 1

 (z) ≤ 1] 

 2
2(x, y) = z V { 1

 (x)  1(y)} 

 2
2(x, y) = 2(x, y)     (1) 

and         2
2(x, y) = z V { 2

 (x, z)  2(z, y)} 

2
2(x, y) = z V {[ 1

 (x)  1(z)]  [ 1
 (z)  1(y)]} 

2
2(x, y) = z V { 1

 (x)  1(y)  1
 (z)2 } 

since 1
 (z)2 ≤ 1 for all z [ 1

 (z) ≤ 1] 

 2
2(x, y) = z V { 1

 (x)  1(y)} 

 2
2(x, y) = 2(x, y)     (2) 

If 1 and 1 normal, then 1 (t) =1 and 1 (t) =1 for some t. Then

   

 2
2(x, y) = z V { 1

 (x)  1(y)  1
 (z)2 } 

   1
 (x)  1(y)  1

 (t)2  

  = 1
 (x)  1(y)          [  1

 (t)2 
 = 1] 

 2
2(x, y)  1

 (x)  1(y)   

2(x, y)  2(x, y)  (3)  [since 2
2(x, y) = 1

 (x)  1(y)  G is 

complete] 

from (1) and (3) we get 2(x, y) = 2(x, y)  (4)  

If 1 normal, 1 (t) =1 for some t. Then   

 2
2(x, y) = z V { 1

 (x)  1(y)  1
 (z)2 } 

   1
 (x)  1(y)  1

 (t)2  

  = 1
 (x)  1(y)          [  1

 (t)2 
 = 1] 

 2
2(x, y)  1

 (x)  1(y)   

2(x, y)  2(x, y)  (5)  [since 2
2(x, y) = 1

 (x)  1(y) ,G is 

complete] 

from (2) and (5) we get 2(x, y) = 2(x, y)    (6) 

Now assuming that 2
k(x, y) = 2(x, y) and 2

k(x, y) = 2(x, y) we will 

prove 2
k+1(x, y) = 2(x, y) and 2

k+1(x, y) = 2(x, y) we have  

2
k+1(x, y) = z V { 2

k (x, z)  2(z, y)} 

2
2(x, y) = z V {[ 2

 (x, z)  2(z, y)]}= 2
2(x, y) 

2
k+1(x, y) = 2(x, y) using (5) 

Similarly we get 2
k+1(x, y) = 2(x, y) 

Hence proved 
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Definition 2.4 The complement of product intuitionistic fuzzy 

graph G = (V,E) is Gc = (Vc, Ec) where Vc = ( c
1,

c
1
 ) and          

Ec = ( c
2,

c
2
 ) here c

1 = c
1, 

c
1 = c

1 and     

 c
2 (x, y) = 1(x)  1 (y) - 2 (x, y) ,                                          

c
2 (x, y) = 1(x)  1 (y) - 2 (x, y). 

Remark: The complement of a Gc is G. 

 

Definition2.5 Let G1 = (V1, E1) and G2 = (V2,E2) be a product 

intuitionistic fuzzy graph. Here V1 = ( 11, 11), E1 = ( 12, 12),    

V2 = ( 21, 21) and E2 = ( 22, 22). Let X’ denotes the set of all 

arcs joining the vertices V1 and V2. We further assume that      

V1  V2 = . Then the join of G1 and G2 is defined as              

(V1 + V2, E1 + E2) where V1 + V2 = ( 11 + 21, 11 + 21 ) and     

V1 + V2 = ( 12  +  22, 12  +  22 ) here  

( 11 + 21) = 11 (u) if u  V1  

     = 21 (u) if u  V2  

                 ( 11 + 21) = 11 (u) if u  V1  

     = 21 (u) if u  V2  

           ( 12 + 22)( u, v) = 12 (u, v) if (u, v)  E1 

  = 22 (u, v) if (u, v)  E2 

  = 11 (u)  21 (v) if (u, v)  X’ 

           ( 12 + 22)(u, v) = 12 (u, v) if (u, v)  E1 

  = 22 (u, v) if (u, v)  E2 

  = 11 (u)  21 (v) if (u, v)  X’. 

 

Proposition 2.2 G1 + G2 is a product intuitionistic fuzzy sub 

graph of G = (V, E) where and E = E1  E2  X’ 

 

Proof: We have to prove that  

      ( 12 + 22) (u, v) ≤ ( 11 + 21) (u)  ( 11 + 21) (v)      (i)  

for all  (u, v)  V  

and ( 12 + 22) (u, v) ≤ ( 11 + 21) (u)  ( 11 + 21) (v)       (ii)    

for all (u, v)  V   

Case 1: If (u, v)  X1, then u, v  V1   so that                          

( 12 + 22) (u, v) = 12 (u, v)  (iii) 

And ( 11+ 21)(u)  ( 11+ 21) (v) = 11(u)  11(v)        (iv) 

from (iii) and (iv) we get (i) 

( 12+ 22)(u,v)= 12(u,v)          (v) 

and ( 11+ 21)(u) ( 11+ 21)(v)= 11(u) 11(v)               (vi) 

from (v) and (vi) we get (ii) 

Therefore we get G1+ G2 is a product intuitionistic fuzzy sub 

graph of G.  

Similarly we can prove (u, v)  X1. 

Case 2: If (u, v)  X’ then u  V1 and v  V2. Now                

( 12 + 22) (u, v) ≤ ( 11 (u)  21 (v)   whereas                          

( 11 + 21) (u)  ( 11 + 21) (v)      = 11(u)  21(v) therefore we 

get ( 12+ 22) (u,v) = ( 11 + 21) (u)  ( 11 + 21) (v)       (vii) 

Similarly we get 

 ( 12 + 22) (u,v)= ( 11+ 21) (u)  ( 11+ 21) (v)        (viii) 

From (vii) and (viii) G1+ G2 is a product intuitionistic fuzzy sub 

graph of G.Hence proved.   

Proposition 2.3 G1 + G2 is complete if and only if G1 and G2 are 

both complete. 

 

Proof: First we are assuming that G1 and G2 are both complete. 

We will prove that G1+ G2 is complete. 

Case 1: If (u, v)  X1 therefore u, v  V1 .we get  

         ( 12 + 22) ( u, v) = 12 (u, v) = 11 (u)  11 (v) [since G1 

is complete] 

         ( 11 + 21) (u)  ( 11 + 21) (v) = 11 (u)  11 (v) 

and    ( 12 + 22) (u, v) = 12 (u, v) = 11 (u)  11 (v) [ since G1 is 

complete] 

          ( 11 + 21) (u)  ( 11 + 21) (v) = 11 (u)  11 (v) 

Therefore G1 + G2 is complete. 

Similarly we argue (u, v)  X2 therefore u, v  V2. 

Case 2: Suppose (u, v)  X’. Then u  V1 and v  V2, 

we get ( 12 + 22) (u, v) =  11 (u)  21 (v) whereas 

         ( 11 + 21) (u)  ( 11 + 21) (v) = 11 (u)  21 (v) 

Therefore, ( 12 + 22) (u, v) = ( 11 + 21) (u)  ( 11 (u)  21) (v) 

And ( 12 + 22) (u, v) = 11 (u)  21 (v) whereas 

         ( 11 + 21) (u)  ( 11 + 21) (v) = 11 (u)  21 (v) 

Therefore, ( 12 + 22) (u, v) = ( 11 + 21) (u)  ( 11 + 21) (v) 

Therefore G1 + G2 is complete. 

Conversely assume that G1 + G2 is complete, we will prove G1, 

G2 are complete. First we  

G1 complete, we have prove that for al (u, v)  E1,                   

12 (u, v) = 11 (u)  11 (v) and   12 (u, v) = 11 (u)  11 (v).   

G1 + G2 is complete therefore                                                

( 12 + 22) (u, v) = 12 (u, v)      (i)      [since (u, v)  E1] and  

( 12 + 22) (u, v) = 12 (u, v)   (ii) [since (u, v)  E2]                                           

whereas ( 11+ 21) (u)  ( 11+ 21)(v) = 11 (u)  11 (v)   (iii) 

and  

( 11 + 21) (u)  ( 11 + 21) (v) = 11 (u)  11 (v)    (iv) 

We know that ( 12 + 22) (u, v) = ( 11 + 21) (u)  ( 11 + 21) (v) 

 ( 12 + 22) ( u, v) = ( 11 + 21) (u)  ( 11 + 21) (v)  

using (i), (ii), (iii),(iv) we get 12 (u, v) = 11 (u)  11 (v) and 

12 (u, v) = 11 (u)  11 (v). Therefore G1 is complete. Similarly 

we prove G2 is complete. 

 Hence proved.  

 

Proposition 2.4 Let G1 and G2 be product partial intuitionistic 

fuzzy sub graph, then         

( 11 + 21, 12 + 22)
 c = ( 11

c  21
c, 12

c  22
c)  

( 11 + 21, 12 + 22)
 c = ( 11

c  21
c, 12

c  22
c) 

 

Proof: If u  V1 then ( 11 + 21)
c = ( 11 + 21) (u) = 11 (u) and                                      

max ( 11
c (u), 21

c (u) = max ( 11(u), 21(u)) = 11(u) 

  ( 11 + 21)
 c (u) = ( 11

c  21
c) (u).              

Similarly u  V2. 

Suppose (u, v)  X1, then u, v  V1  and  

( 12 + 22)
c (u, v) = ( 11 + 21) (u)  ( 11 + 21 ) (v) – ( 12 + 22) 

(u, v)  

                                            = 11 (u)  11 (v) - 12 (u, v) 

                                             = 12
c (u, v)  

Max ( 12
c (u, v), 21

c (u, v)) = 12
c (u, v)  

                                  ( 12 + 22)
c (u, v) = ( 12

c  22
c). 

Similarly (u, v)  X2. 

Suppose (u, v)  X’. Then u  V1 and v  V2 therefore  

( 12 + 22)
c (u, v) = ( 11 + 21) (u)  ( 11 + 21) (v) – ( 12 + 22) 

(u, v) 

    = 11 (u)  21 (v) – ( 11(u)  21(v))     = 0 

Max ( 12
c , 22

c ) = Max  ( 12
c (u, v), 22

c (u, v))  = 0 [since        

u  V1 and v  V2 ] 

This implies ( 11 + 21, 12 + 22)
 c = ( 11

c  21
c, 12

c  22
c)  

( 11 + 21, 12 + 22)
 c = ( 11

c  21
c, 12

c  22
c) 

Hence proved. 

 

Proposition 2.5 Let G1 and G2 be product partial intuitionistic 

fuzzy sub graph, then     
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            (( 11  21)
c
   , ( 12  22)

 c ) = ( 11
c + 21

c, 12
c + 22

c)  

            (( 11  21)
c
   , ( 12  22)

 c ) = ( 11
c + 21

c, 12
c + 22

c)  

 

Proof:  

Case 1: If u  V1, then ( 11  21)
c (u) = ( 11  21) (u) = 11(u) 

( 11
c + 21

c)(u) = max ( 11(u), 21 (u))c = max( 11
c(u), 21

c(v)) = 

11(u)  

 This implies (( 11  21)
c = ( 11

c + 21
c ) . similarly we can 

prove u  V2.      

Case 2: If (u, v)  X1 , then u, v  V1 , therefore 

 ( 12  22)
c(u, v) = ( 11  21)(u)  ( 11  21)(v) – ( 12  

22)(u, v) 

                             = 11(u)  11(v) - 12(u, v) 

                              = 12
c (u, v). 

Case 3: If (u, v)  X2, then u, v  V2 , therefore 

 ( 12  22)
c(u, v) = ( 11  21)(u)  ( 11  21)(v) – ( 12  

22)(u, v) 

                             = 21(u)  21(v) - 22(u, v) 

                            = 22
c (u, v). 

Case 4: If (u, v)  X’, then u  V1 and v  V2, therefore 

 ( 12  22)
c(u, v) = ( 11  21)(u)  ( 11  21)(v) – ( 12  

22)(u, v) 

                             = 11(u)  21(v)                                                     

                                          [since 12(u, v) = 22(u, v) =0] 

                              = 11
c(u)  21

c(v)  

                              = 12
c + 22

c 

Hence proved. 

 

Proposition 2.6 Let G1 and G2 be product partial intuitionistic 

fuzzy sub graph, then     G1  G2 be product partial intuitionistic 

fuzzy sub graph 

 

Proof: u1, v1  V1 and u2, v2  V2, we have  

( 12  22)((u1, u2 ), (v1, v2)) = 12(u1, v1 )  22(u2, v2 )  

             ≤ [ 11(u1)  11(v1)]  [ 21(u2)  21 (v2)]   

              = [ 11(u1)  21(u2)]  [ 11(v1)  21 (v2)] 

              = ( 11  21 ) (u1,u2 )  ( 11  21 )(v1 , v2) 

Therefore ( 12  22)((u1, u2), (v1, v2))) ≤ ( 11  21 ) (u1,u2 )  

( 11  21 )(v1 , v2) 

similarly we prove  

( 12  22)((u1,u2), (v1,v2)) ≤ ( 11  21 ) (u1,u2 )  11  21 )(v1 , v2) 

Hence proved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. CONCLUSION 
We are able to find the different types of intuitionistic fuzzy 

graph and its properties. Further we are try to find the 

engineering applications of the different types of intuitionist 

fuzzy graph. 
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