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ABSTRACT 

K-means is considered as one of the most common and powerful 

algorithms in data clustering, in this paper we're going to present 

new techniques to solve two problems in the K-means 

traditional clustering algorithm, the 1st problem is its sensitivity 

for outliers, in this part we are going to depend on a function 

that will help us to decide if this object is an outlier or not, if it 

was an outlier it will be expelled from our calculations, that will 

help the K-means to make good results even if we added more 

outlier points; in the second part we are going to make K-means 

depend on Rock links in addition to its traditional distance, Rock 

links takes into account the number of common neighbors 

between two objects, that will make the K-means able to detect 

shapes that can't be detected by the traditional K-means. 
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1. INTRODUCTION 
K-means is considered as one of the most powerful and popular 

algorithms in the data clustering field[1], it has the ability to 

make good results in discovering similar data and separate them 

in different groups[2][3], one of the main attractive reasons for 

this algorithm –in addition to its power- its simplicity, it is a 

very simple algorithm, it depends on defining a number of 

clusters, then the algorithm will initialize a number of centroids, 

one for each cluster, every point in the dataset will be assigned 

to the nearest centroid; after applying n iterations, we'll find out 

that objects with the same characteristics are assigned to the 

same centroid. 

Unfortunately K-means is vulnerable for some issues, its first 

problem is its sensitivity for outliers, a distant object can be 

assigned to a particular centroid, this outlier object will make the 

centroid move to the wrong way, many researches tried to solve 

this problem by detecting and removing outliers[5][7]. 

The second problem is its dependability on the distances 

regardless of any other factors, that makes K-means very weak 

when it faces non-globular shapes. 

In Figure 1, it's obvious that object A is connected to the 

centroid C2, the connectivity here depends on the number of 

common neighbors between the object and the centroid, but if 

you measured the distance, the Euclidian distance for example, 

you'll find that object A is closer to centroid C1, in K-means it 

will be assigned to cluster 2, and that doesn't seem right. 

The third problem with K-means is its sensitivity for the initial 

state of the centroids location, which will make K-means stuck 

in local minima instead of finding the global minima or the right 

groups. 

 

Figure 1, A is closer to C1, but it is more connected to C2 

Another drawback in the K-means operation is its dependency 

on the number of clusters as an input, in data clustering we 

prefer algorithms that have only one input: the data, the 

algorithm should not know any idea about the number of 

clusters, the type of the data, the priority of the attributes, etc.  

In section 3 we are going to present two techniques, the first is 

used for eliminating the effect of outliers in the K-means 

process,in this part we will depend on a function that decides if 

this object has to be eliminated or not, this function depends on 

the number of neighbors for this object, the second technique 

will involve the ROCK similarity measurement in the K-means 

process, this technique will help the K-means to detect clusters 

like the one in Figure 1. 

The two techniques are applied for four artificial datasets and 

another two real datasets, the results show that the proposed 

algorithm is more robust for outliers, and can detect some types 

of non-globular shapes. 
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2. RELATED WORK 
Many papers tried to make the K-means depend on other factors 

in addition to the traditional distance, Some algorithms tried to 

solve this problem by using novel ideas for measuring distance, 

ROCK[6] for example depends on the number of common 

neighbors to measure the similarity instead of the traditional 

distance to solve this problem. 

The similarity in ROCK is called links and it depends on the 

number of shared neighbors between the centroid and the object. 

Other papers proposed new ideas to cluster data, The proposed 

algorithm in [13][14] adopts a new non-metric measure based on 

the idea of symmetry. 

Many papers proposed new ideas for initializing the centroids in 

K-means to make good results[4][11]. 

In [7] new techniques were added to eliminate outliers, these 

methods tried to make K-means more robust for outliers, to 

solve the K-means problem of sensitivity for outliers. 

Other ideas were proposed in the field of prototypes' 

initialization[4][15], these ideas tried to solve the problem of K-

means sensitivity for initial location of centroids.  

3. PROPOSED ALGORITHM 
In this section we are going to talk about our proposed 

algorithm, in these techniques we will try to solve the problem 

of outliers' sensitivity in K-means by making it more robust for 

outliers, this will be done by evaluating each object, and 

counting the number of its neighbors, eventually some objects 

will look like sole or isolated objects, that means that the closest 

neighbor is further than it should be. 

The second technique will alter the way of measuring distances 

in K-means by adding  some techniques inspired from the 

ROCK algorithm, the rock algorithm depends on a new concept 

of distance, it does not depend on the traditional concept of K-

means, it counts the number of neighbors between two points, 

the more the number the strongest the relation and the 

similarity[6], that concept will be used in our technique to make 

K-means able to discover non-globular shapes. 

We implemented our proposed techniques in Java, our 

application receives the dataset in a csv file, and the data should 

be normalized in another application in advance. 

3.1 Eliminating Outliers 
In this part we are going to depend on a novel function that 

calculates the number of neighbors for each point, if f(N) = 5, 

then each point should has at least 5 points as neighbors, if it has 

only 4 points, then it should be eliminated; our proposed 

function is: 

f(N) = ln (N) 

Where N is the number of the points or objects in the dataset, so 

if we have 10 points in the data set, then each point must has at 

least 2 neighbors, when the number of the objects increases too 

much –a billion for example- this function will not make the 

number that we might think, so we have to solve this problem by 

raising this function to a particular power, say two, but we still 

have another problem!, what if we have 10 objects, and the 

number of wanted clusters is  k=5?, it's obvious that one 

neighbor for each object is enough, so we have to involve the 

number of clusters in this function, so our improved function 

will be according to the formula: 

 

where N is the number of objects in the dataset, and k is the 

number of clusters. 

The following table shows some samples for different N values 

and number of clusters k=2: 

 

Table 2 shows the results for the same function but when k=3 

 

Note:f(N)will be mentioned as Ө in this paper. 

But how can we decide if object xi is neighbor of xj or not? 

In the beginning of our algorithm we measure a value called the 

average distance davg, this value calculates the average distance 

between each point and the others, divided by the number of the 

points in the dataset, then the average of the calculated distances 

will be calculated, by summing the distances and dividing them 

on the number of the objects. 

Now, if the distance between objects xi and xj is less than davg, 

they are considered neighbors. 

In the beginning of our algorithm we have to measure the davg 

value, and then count the number of neighbors for each object, 

and according to our function we have to eliminate each object 

with neighbors < f(N) or Ө, that can be done by assigning these 

objects to cluster -1, which contains all the noise. 

These eliminated objects will not take a part on the future 

process, that will make centroids follow the points of interest 

instead of following far objects, these objects can be assigned to 

the nearest centroid in the end of the process. 

K-means initialization depends on selecting random objects as 

centroids, in our case, the points of cluster -1 –the eliminated 

ones- will not be selected as centroids, that will help K-means in 

selecting core points as centroids instead of wasting time and 

processing in the case of selecting outlier objects.  

 

 

 

Table 1. f(N) for different datasets and k=2 

10 20 100 1000 Million Billion N 

2 4 10 23 95 214 f(N) 

Table 2. f(N) for different datasets and k=3 

10 20 100 1000 Million Billion N 

1 2 7 15 63 143 f(N) 
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The following code illustrates the above process: 

Code 1 – Eliminate Outliers 

procedurecompute neighbors(S) 

begin 

1. Compute davg , Ө 

2. Compute nbrlist[i] for every point i in S 

3.  for i := 1 to n do { 

4.  N := nbrlist[i] 

5.  if(N<Ө) 

6.  cluster[i]= -1 

7. } 

end 

The eliminated objects will not be involved in any part of our 

algorithm, they will not be selected as centroids, and they will 

not be used in the process of calculating the new location for a 

centroid. 

3.2 Initializing K-means 
In the beginning we have selected k random points as centroids, 

where k is the number of clusters, but in this case we have to run 

our application for many times till we have the right clustering, 

to avoid this problem –without involving ourselves in this field- 

we modified our application to select R points for each cluster 

randomly, and calculate the average of the selected points as our 

centroid, we can repeat that for the number of clusters. 

For example if we have to select two clusters k=2 and the 

number of attributes p=2, then to calculate the first centroid we 

have to select two random points (when R=2): 

P1={ 5, 8} 

P2={ 7, 10} 

The first centroid M1 is the average of the selected points: 

M1 = { (5+7)/2 , (8+10)/2 } = {6, 9} 

The second centroid will be calculated by selecting other two 

random points, and calculating their average. 

If we changed R to be 3, then we have to select three random 

points and calculate their average. 

In our Java application we found that selecting two random 

points is enough, we implemented that and it showed good 

results, now we can get the perfect solution without running the 

application more than once or twice at most.  

 

Selecting more than one point will give us more chances that the 

centroid is located in the middle of our map, then when we start 

the K-means algorithm, each centroid will rush toward its  right 

cluster.  

3.3 Modifying K-means distance 

measurement 
In this part we will involve the ROCK links concept in our 

work, but we will depend also on the traditional K-means 

similarity in measuring the distance between two points, we can 

use the Euclidian distance: 

 

In ROCK, links are the number of shared neighbors between 

two objects, so if object A has the set of neighbors { d, e, f, g} 

while object B has the neighbors { f, g, h, i, j} then link{A, B} = 

|{f, g}| = 2. 

To implement this part we have to build two matrices with sizek 

* n, the first matrix will be for the Euclidian distance between 

each point and each centroid, the second matrix will be for the 

number of common neighbors between each object and each 

centroid. 

 

After preparing these matrices we have to normalize them by 

changing the values in the two sets to a value between 0 and 1, 

this can be done by dividing the whole matrix by the maximum 

value in it. 

Note that the first matrix is distance while the second matrix is 

similarity, so we have to change the first matrix to a similarity 

matrix, this can be done simply by subtracting each value from 

one. 

After preparing the two matrices we can sum them and divide 

them by 2, that will give us a new similarity value depends on 

the distance between any two points and the number of the 

common neighbors between them. 

The following formula describes the summation of the two 

normalized matrices, the result is our final similarity matrix. 

Final_sim[][]=((Norm(links[][])+Norm(similarity[][]))/2 

Now we can use the final similarity to assign objects to the 

nearest centroid. 
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The following code illustrates this process: 

Code 2 – Calculate similarity and links 

procedurecompute shared_links(S) between nodes and each  

centroid 

begin 

1. findNnbrlist[i] for every point i in S 

2. findCnbrlist[j] for every centroid j in C 

3. Set shared_link[i; j] to be zero for all i; j 

4. Set similarity[i; j] to be zero for all i; j 

5.     for i := 1 to C do { 

6.     for i := 1 to S do  

7. calculate shared_neighbors[i][j] 

8.      } 

9.     for i := 1 to C do { 

10.     for i := 1 to S do  

11. calculate similarity[i][j] 

12.      } 

13. Normalize(similarity)  // All values from 0 to 1 

14. Normalize(shared_links) 

15. final_sim =( shared_links + similarity ) / 2 

16. assign nodes according to final_sim 

end 

 

3.4 Fixing eliminated objects 
At the end of our operation we measure the similarity between 

each object in cluster -1 and each centroid, then we can assign 

each object to its nearest centroid. 

4. SIMULATION AND RESULTS 
We have implemented a Java code to test our algorithm, our 

code receives the data in csv files, each line is an object and 

each column is an attribute, though our application accepts 

multi-dimensional data, we used only two dimensional artificial 

datasets that can be shown in 2D shapes. 

We also brought two real datasets for testing, the first one is the 

Iris and the second is the glass identification dataset. 

4.1 Artificial Datasets 
To test our algorithm we used four artificial datasets, we began 

our tests with two simple datasets to see if our algorithm is 

working as we planned or not, the results of the first data set is 

shown in Figure2. 

 
Figure 2, Simple Artificial dataset 

 

In the above dataset we tried to make an object closer to the 

above cluster and more connected to the lower cluster, according 

to the results in Figure 2, our algorithm was able to take number 

of shared neighbors into account in addition to the distance. 

In the second test, we tried to make a dataset that contains an 

object closer in distance to cluster A, but more connected by 

links –neighbors- to cluster B, the results are shown in Figure 3. 

 

 

Figure 3, Simple dataset for testing the proposed Algorithm 

In the dataset in Figure 3, we tried to add more objects and more 

complexity to our dataset, we can see here –also- that some 

objects are closer in distance to centroid A, but they are 

connected to centroid B because of the stronger connectivity. 

In Figure 4 we can see a dataset distributed as two different-

sized clusters, the first cluster is large while the other one is 

small, in this case K-means cannot catch the large cluster 

without including some objects from the small one. 

Our algorithm in Figure 4 worked as well as we planned, it was 

able to detect two clusters with different sizes, as we see in the 

figure there are two clusters one is large while the other is small 

with some noise between them, the two clusters were separated 

successfully.  
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Figure 4, dataset with two clusters, small and large 

The fourth dataset is divided in 3 clusters, with different sizes, 

our algorithm could detect the intended clusters. 

 

Figure 5, dataset divided in 3 clusters 

In the fourth dataset we can see that some objects are not 

connected to the true clusters, this problem occurred because we 

still depend on the K-means traditional distance in addition to 

the ROCK links distance, that will make such errors occur. 

In all the above cases we added some isolated objects to watch 

its effect on our algorithm, we found that the added objects were 

not involved in the calculations because of our proposed 

algorithm (section 2.1), which eliminates the outliers. 

4.2 Real Datasets 
We also applied our algorithm for two real datasets, the first is 

the common Iris dataset, and the second is the Glass 

Identification dataset.  

The datasets are brought in different values and orders, to begin 

we normalized all the attributes values to be in the range zero to 

1, then we entered the data to be processed by our algorithm. 

Table 3 is composed of five columns, the first three columns 

describe the dataset, the number of attributes, the number of 

objects, and the intended clusters, the fourth column presents the 

number of objects that was not classified in the right sector, and 

the fifth column shows the error ratio which is the number of 

errors divided by the number of objects. 

The Iris dataset is composed of 4 attributes, 150 objects, the 

objects have to be distributed in 3 clusters. 

In this test we got 17 errors in objects classification, they were 

not clustered as the UCI website suggests them, and the error 

ratio is calculated as 11.3%. 

The Glass Identification dataset is composed of 10 attributes, 

and 214 objects distributed in 6 clusters. 

In the second test we got an error ratio of 16.8%, for 36 objects 

out  of 214 were not clustered right. 

The following table shows the results after running the 

clustering application for 3 times for the Iris and the Glass 

identification datasets. 

Table 3. Real Datasets Results 

 attrib
u

tes 

o
b

jects 

clu
sters 

erro
rs 

E
rro

r R
atio

 

Iris 4 150 3 

19 12.6% 

21 14% 

17 11.3% 

Glass 

Identification 
10 214 6 

41 19.1% 

39 18.2% 

36 16.8% 

 

Table 4 shows the results for the traditional K-means algorithm, 

the results showed that the number of errors for the Iris dataset 

32 is more than it for our algorithm which was 19; the second 

row shows the results for the Glass identification dataset, which 

has 95 errors out of 214 objects. 

Table 4. K-means Results 

 attrib
u

tes 

o
b

jects 

clu
sters 

erro
rs 

E
rro

r R
atio

 

Iris 4 150 3 32 21.6% 

Glass 

Identification 
10 214 6 95 44.8% 

 

The results showed that our proposed algorithm optimized the 

K-means detection for the intended clusters in the above 

datasets, the optimization ratio in the Iris dataset was 33.3%, and 

more than 50% in the glass identification dataset case. 
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5. CONCLUSION 
In this paper we have introduced a new technique to optimize 

the K-means measurement for distance, we added the ROCK 

links concept to the traditional K-means distance, the optimized 

K-means will take into account the connectivity between the 

centroid and each node, that has been applied by counting the 

number of shared neighbors between them, that helped the K-

means to detect shapes that can not be detected by the traditional 

K-means. 

We also introduced a new function to decide if the object is an 

outlier or not, if it was considered as an outlier, it will not take a 

part in the K-means process. 

In our experiments we added outlier objects to see if it will 

affect the work of our algorithm or not, the final results showed 

that our proposed algorithm is more robust for outliers compared 

with the K-means traditional algorithm. 

The results showed that our proposed technique detected the 

intended clusters in the Iris and the glass identification datasets, 

and the error ratio was less than the traditional K-means ratio. 
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