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ABSTRACT 

In wireless sensor networks sampling time interval and the number 

of nodes involved in each stage of tracking are important factors 

which have high effect on the efficiency of target tracking 

applications. In this paper a new target tracking method has been 

proposed which at each time step employs two helpful tools. First, 

an extended Kalman filter (EKF)-based estimation technique to 

predict the tracking error and second, an energy consumption 

model to estimate energy consumption based on different number 

of nodes and sampling time intervals. By using these estimations, 

this method selects the best number of nodes and sampling time 

interval according to an objective function which is defined based 

on tracking accuracy and energy consumption.  
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1. INTRODUCTION 

A wireless sensor network (WSN) is composed of a large number 

of sensor nodes and deployed either inside the phenomenon or very 

close to it. Wireless sensor networks are expected serve as a key 

infrastructure for a broad range of applications including precision 

agriculture, surveillance highway systems, emergent disaster 

response and recovery. One of the important application issues for 

sensor networks is utilized to track mobile object [1]. 

In wireless sensor networks generally the accuracy of target 

tracking strongly depends on two important factors.  First, the 

number of nodes which are involved in target tracking operations, 

second, the sampling time intervals. In other words when we use 

more sensor nodes and smaller tracking time interval, it causes an 

increase in the accuracy of tracking a moving object. However, this 

increases the power consumption significantly. 

Until now a lot of researches on adaptive target tracking protocols 

have been done. Some of them have focused on adaptive sampling 

time intervals and some of them tried to adapt the size of wakening 

up areas. For example, in paper [2] a new method that is called 

Target Tracking Based on Mobility Model (T2BM2) has been 

proposed, which uses Semi-Dynamic clustering (SDC) structure. 

The main idea of this method is that when the target moves 

randomly, to increase the accuracy of tracking it is better to use 

bigger size of clusters. On the other hand, when the target‟s motion 

is predictable, in order to decrease the energy consumption it is 

better to decrease the size of clusters. In SDC structure, at first, the 

network backbone is formed from small static clusters then during 

the tracking period based on the number of nodes needed to 

participate in tracking operation, some of these backbone clusters 

are merged and form a bigger cluster. In paper [3] a new 

classification algorithm has been introduced that by using easy 

classification based on velocity estimate provides a way to reduce 

the uncertainly in movement of target and thus the error on the 

estimate of target's position is reduced. In [4], a protocol for 

Prediction Accuracy-based Tracking Energy Saving (PATES) is 

well developed to conserve energy of WSNs. In [5], an energy 

efficient adaptive tracking algorithm called Predict-and-Mesh 

(PaM) is proposed, which consists of two prediction models and a 

failure recovery process. Paper [6] has proposed the AEC 

algorithm. In this algorithm, tracking time interval is modified 

based on averaging the Error, which is the difference between the 

measured and predicted locations of the moving object, after some 

given iterations, periodically. In distributed structure approach, in 

paper [7] an energy efficient adaptive sensor scheduling approach 

has been proposed that jointly selects tasking sensors and 

determines their associated sampling intervals according to the 

predicted tracking accuracy and tracking energy cost. In [8], based 

on the uniform sampling intervals, a covariance control framework 

is presented where the tracking accuracy is defined as an expected 

covariance matrix, and multiple tasking sensors for the next time 

step are selected such that the updated estimation covariance will 

be within the desirable covariance at all times. In general, most of 

the previous adaptive target tracking protocols(like AEC in [6], 

PATES in[4], T2BM2 in[2] ), have focused on the adaptive 

sampling time interval or adaptive wakening up areas separately, 

but in this paper a new protocol has been presented that have 

pained attention on both of the subjects. In other words, in this 

paper a new Adaptive Target Tracking Protocol (ATTP) has been 

proposed which at each time step, employs two helpful tools. First, 

an extended Kalman filter (EKF)-based estimation technique to 

predict the tracking error and second, an energy consumption 

model to estimate energy consumption based on different number 

of nodes and sampling time intervals. After that by using these 

estimations selects the best number of nodes and sampling time 

interval according to an objective function which is defined based 

on tracking accuracy and energy consumption.  

The rest of the paper is organized as follows. In section 2, the 

proposed network model (including the network structure and 

adaptive prediction-based tracking) is described. In section 3, the 

new adaptive target tracking protocol is described. Also simulation 

results are given in section 4. Meanwhile, the results are compared 

with two existing prediction-based tracking schemes (i.e. AEC and 

T2BM2). Finally, conclusion and future work are introduced in 

Section 5. 
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2. PROPOSED NETWORK MODEL 

In this section, we describe the proposed network model and 

argue about our network structure and adaptive prediction-based 

tracking briefly.   

2.1 Network Structure 

In ATTP protocol, the network structure is based on 

SDC1structure. In this structure, at first the network backbone is 

defined in static clustering form and then according to the number 

of nodes needed for target tracking some of these backbone 

clusters are merged and form the bigger cluster. One of the main 

points in this structure is that, it includes two level cluster heads. 

The cluster heads of backbone clusters which are called the first-

level cluster heads (CH1) and a node named second-level cluster 

head that is selected among CH1 nodes and is generally in the 

center of the big cluster. After receiving information from member 

nodes in backbone clusters, CH1 nodes transmit their integrated 

information to CH2. Subsequently, after receiving this information 

from all of CH1 nodes, CH2 transmits its integrated information to 

the base station [2]. Fig. 1 illustrates this structure briefly. 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
Figure 1.   A scheme of SDC structure 

 

2.2 Prediction-Based Tracking  

In the proposed protocol, the prediction of the next target‟s 

location is based on the tracking algorithm in paper [9]. This 

protocol uses linear prediction to estimate the target‟s next 

location. Suppose according to Fig.2 the location of the mobile 

object at the time instance of t+1 is approximately predicted by 

estimating the target‟s velocity will move during the time [t-1, t]. 

Let us suppose the target‟s locations at the time instants 1tT and tT  

are ))1(),1(( tytx  and ))(),(( tytx .Then the target‟s velocity 

can be estimated as: 

(1)                             
)1()(

))1()(())1()((
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Also let us express the prediction error by the angle between the 

actual location and the previously predicted, denoted by )(t  as 

shown in Fig. 2, we have: 

                                                           
1
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Figure 2.   Tracking of the mobile target in WSNs 
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And the target‟s direction can be estimated as: 
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Finally the target„s location at the time instance (t+1) is predicted 

as: 

(5)        ))1(sin()()()1(
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3. ADAPTIVE TARGET TRACKING 

PROTOCOL 

As mentioned before, most of the previous adaptive target tracking 

protocols have focused on the adaptive sampling time interval or 

adaptive wakening up areas separately, but our proposed protocol 

have considered both of these subjects concurrently. In other 

words, in this protocol, at first the tracking error and the amount of 

energy consumption based on various wakening up areas (different 

numbers of nodes) and different sampling time intervals are 

predicted. After that the number of nodes needed to be waked up 

and the amount of sampling time interval for the next tracking 

operation are selected according to an objective function. In the 

following we describe this protocol in detail.  

3.1 Estimation of the total wakening up area 

In this section, we want to estimate the total area which the target 

probably would appear there. In addition to the predicted velocity 

which is vpre(t+1), we consider maximum velocity, vmax(t+1) and 

minimum velocity, vmin(t+1), then based on these supposes, we can 

estimate the total wakening up area. But this area expands toward 

up or down regarding to prediction error ))(( t . In other words, if 

the target‟s location in the past sampling time interval has been 

placed upper than the real location then the area would be stretched 

toward up, otherwise, it would be stretched down. For example 

regarding to Fig. 2 the area in this example would stretch toward 

down. If we denote the total wakening up area at time instance 

(t+1) by )1(tAreaTotal , then in mathematical approach, this area 

can be described as: 
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Where  

 Vmax: the target‟s maximum velocity  

 Vmin : the target‟s minimum velocity  

 Δtk: the kth sampling time interval )( 1 kkk ttt  

 θ(t+1): the predicted direction for target mobility 

 α: the maximum angle which the target probably would  

bend toward up 

 β: the maximum angle which the target probably would  

bend  toward down 

3.2 The candidate wakening up areas 

 We always don't consider the )1(tAreaTotal as the waken-ing up 

area, in other words, respect to energy consumption it is better to 

select a smaller area as wakening up area. So we describe a series 

of candidate wakening up areas which are grown up hierarchically 

from the target‟s next predicted loc-ation in time 

instance )1(t , ))1(),1(( tytx .The main point about the 

candidate waking up areas is that similar to )1(tAreaTotal these 

areas expand according to α and β angles. In this paper, we 

consider these areas as discrete areas
N

iArea 1}{ . Fig. 3 illustrates 

these concepts better. 
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Figure 3.   The discrete candidate wakening up areas 

 

Also in mathematical view we can define the ith candidate area as: 
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Supposing that the density of nodes in network is λ then the 

number of sensor nodes in the Areai , is denoted by Ni and is 

defined as:                 

                                Ni= λAi                           (8) 
where Ai is supposed to be the total area of the ith candidate area 

and is defined as: 
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3.3 The estimation of tracking  error  

By taking the idea from paper [7], in this section we want to 

predict the tracking error in each candidate wakening up area in the 

next tracking operation. In paper [7], the tracking operation is done 

just by using one sensor node in addition to the network structure 

is supposed to be a distributed structure, but as mentioned before, 

we have supposed in the ATTP protocol the SDC structure as 

network structure. Furthermore, we use more than three sensor 

nodes for target tracking in each stage. We assume a linear target 

motion model and a non-linear measurement model, both with 

Gaussian noise distributions. EKF is used as the estimation 

algorithm. The target motion is modeled by the following state 

equation: 

(10)           ),()()()1( kk tkwkXtFkX  
where X (k) is the state of the target at the kth time step that 

happens at tk and )( 1 kkk ttt is the kth sampling interval. 

F(Δtk) is the transition matrix dependent on Δtk. w(k,Δtk) is the 

process noise, which is also dependent on Δtk. If the candidate area 

ith, (Areai), is used to obtain the kth measurement Zi(k) of the 

target at tk, the measurement model is given by  

(11)                                 )())(()( kivkXihkiZ  

where hi is a (generally non-linear) measurement function 

depending on X(k), the measurement characteristic, and the 

parameters (e.g., the central location of cluster) of Areai. vi(k) is the 

measurement noise in Areai. Both w and vi are independent and 

assumed to be with zero-mean, white, Gaussian probability 

distributions. The covariance matrices of w(k,Δtk) and vi (k) are 

Q(Δtk) and Ri(k), respectively.  

EKF operates in the following way: Given the estimate 

k)|(kX


of X(k) at tk with covariance P(k|k) and assuming that 

Areaj is used for measurement at tk+1, the predicted state 

k)|1(kX


of Areaj at tk+1 can be calculated with the predicted 

state covariance  

)12(     )()()|()()|1( kk
T

k tQtFkkPtFkkP  

    The predicted measurement of Areaj is 

   (13)               ))|1(ˆ()|1( kkXhkkZ jj


 

Then, the innovation, i.e., the difference between the mea-

surement Zj(k+1) of Areaj and the predicted measurement  

of Areaj at tk+1, is given by 

                          

(14)                                 )|1()1()1( kkZkZk jjj


 

with the covariance 

(15)                                    )1(                  
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where Hj (k + 1) is the Jacobian matrix of the measurement 

function hj at tk+1 with respect to the predicted state )|1( kkX


 

The EKF gain is given by 

(16)      )1()1()|1()1( 1 kSkHkkPkK j
T
j  

And the state estimation will be updated with the covariance 

matrix 
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Particularly, for a 2-dimensional constant velocity model with X(k) 

=(x(k), xv(k), y(k), yv(k))T where x(k) and y(k) are the x- and y-

coordinates of the target at time step k and xv(k) and yv(k) are the 

velocities of the target along x- and y-directions at tk, the matrix 

F(Δtk)  is given by 

(18)                                    
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In this paper, the matrix Q(Δtk) is assumed to be 
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Where, q is a known scalar that determines the intensity of the 

process noise.  

       The tracking error Φ(k) at time step k is defined as the trace of 

the covariance matrix P(k|k), i.e., 

(20)                        ))|(()( kkPTracek  

The definition of tracking error threshold Φ0 is predefined. The 

tracking accuracy is considered satisfactory if the tracking errorΦ 

(k) is not greater than Φ0 ; otherwise, it is considered to be 

unsatisfactory. Also if we set tracking adjustments each T seconds 

in order to decrease the communication and calculation overhead, 

the term T
tj, means the predicted error until T seconds later 

using:   

1) The sampling time interval Δt  

2) The wakening up areas in form areaj. 

Also it is important to mention that, the value of T
tj, is 

calculated using the values of Φ in previous sampling times. 

 

 

 

 

 

 

 

Figure 4.  The calculation of T
tj, by using the past values of Φ 

3.4 The estimation of energy consumption 

In this section we estimate the energy consumption in the volunteer 

area ith, Areai, which involves Ni sensor nodes. We used a simple 

radio model to estimate the consumed energy at the receiver and 

the transmitter.  Suppose the network backbone is consisted of 

small clusters which every one has M sensor nodes. The consumed 

energy by a member node to transmit l bit message to a cluster 

head based on [10] is: 

)21(                    )( 2
nchtxtochfselecNCH TdEElE

 

where
elecE is the energy of electronic transmission/recepti-

on, fsE is the amplification factor, tochd is the distance betwe-en 

each member node and its cluster head, nchtxT  is supposed to be the 

transmitting time for each member node to transmit l bit message 

to its cluster head.   

The energy consumption in each CH1 node to receive data from 

member nodes, integrate it and transmit to CH2 node is denoted by 

ECH1 and is defined as: 

21
2

21

1

)(            

(22)                       

CHCHCHCHfselec

DACHRXelecCH

TdlElE

MlETMlEE
 

where CHRXelecTMlE  is the consumed energy by each CH1 node 

to receive l bit information from M member node, TCHRX is the 

number of seconds for which each CH1 node listens to each 

member node, DAMlE  is the energy used for data 

aggregation. 21
2

21 )( CHCHCHCHfselec TdlElE  is the consumed energy for 

transmitting the integrated information to CH2. Where 21 CHCHd  

is the distance between each CH1 and CH2. 21 CHCHT  is 

supposed to be the transmitting time for each CH1 node to transmit 

l bit information to CH2 node. 

As it was mentioned before, the CH2 node is selected among the 

CH1 nodes and according to paper [2], if assume the neighborhood 

degree of each CH1 node is q, then the number of message 

interchanges between CH1 nodes for introduction of CH2 node, 

Num, is estimated as: 

  )23(                                          kqNum  

where k is the number of backbone clusters (the number of CH1 

nodes), which are going to be merged, and is given as 

(24)                                      
M

N
k i

 

So the consumed energy for introducing CH2 to the other CH1 

nodes is estimated as: 

(25)           )2( 2
112 CHCHfselecIntroCH dlElENumE  

where 11 CHCHd  is the distance between two CH1 nodes. The 

expression for the energy consumption by a CH2 node is given by: 

)26(      )(             2
4

12

BSCHBSmpelec

DAtoCHelecCH

TdlElE

klETklEE
 

where 1toCHelecTklE  is the consumed energy by the CH2 node to 

receive l bits information from CH1 nodes, 1toCHT  is the number 

of seconds for which CH2 node listens to each CH1 node, and 

DAklE  is the energy used for data aggregation. Also 

BSCHBSmpelec TdlElE 2
4 )(  is consumed energy to transmit 

integrated information to base station where BSCHT 2  is supposed 

to be the transmitting time for CH2 node to transmit l bit 

information to the base station. 

t t 
t

tj ,  
t
tj

2
,  T
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 Finally, the total energy consumption in Areai is denoted by 

)(ETotal i  and estimated as: 

)27(                                       

)()1()(

22

1

CHIntroCH

CHNCHiTotal
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If we suppose that during T seconds we use the same sampling 

time intervals and same size of wakening up areas so the term 
T

tj k
E

,
 means the predicted energy consumption until T seconds 

later if we use  

1) The sampling time interval Δtk  

2) The wakening up areas in size of areaj. 

And is estimated as: 

(28)                               )(, jE
t

T
E Total

k
k

T
tj

 

3.5 Adaptive target tracking protocol  

Suppose the current time step is k and the current tasking area is 

Areai with state estimation )|(ˆ kkX and estimation covariance 

matrix )|( kkP . Adaptive target tracking is used to select the 

optimal next tasking Areaj  and the associated sampling interval 

Δtk during T seconds, such that the Areaj can undertake the sensing 

task at time tk+1 = tk+ Δtk. We suppose Δtk is in the range [Tmin, 

Tmax] where Tmin and Tmax are the given minimal and maximal 

sampling intervals. We divide the interval [Tmin, Tmax] into N − 1 

equally spaced sub-intervals by N discrete values
N

tT 1}{ where T1 

= Tmin , 

TN = Tmax, and they satisfy 
21 tt TT if t1 < t2 

After predicting the tracking error and energy consumption for 

different candidate wakening up areas and different sampling time 

intervals, the optimum sampling time interval and volunteer 

wakening up area for the next T seconds are selected as: 

(29)     }kt,(_min{arg

]
max

,
min

[,

*)*,( jAreaFCost

TTtAj

t

k

kjArea
   

with 

)30(      )1(),(_
0

,

0

,

E

E
wwtAreaFCost k

T
tj

T

kj
ktj

If the predicted error meets this condition 

                                       )1(, Thresholdktj
kT

(31) 

where A is the set of candidate wakening up areas, 

),(_ kj tAreaFCost is the object function if Areaj is selected with 

the sampling time interval Δtk. )1(, kT

ktj

is the predicted 

tracking error obtained from the update covariance 

)1|1( kkp by (20) if Areaj is used as the tasking area. 

Also
0

,
T

ktj
is the normalized tracking error and 

0

,

E

E
k

T
tj  is the 

normalized total energy consumption over T seconds. (
k

T
tjE ,  is 

calculated by (28)). 

]1, 0[w is a weighting parameter used to balance the tracking 

accuracy and the energy consumption.  Also we used (31) to select 

the areas which their predicted error is less than Threshold . Finally 

table.1 shows our proposed protocol briefly. 

Table 1. Adaptive Target Tracking Algorithm 

1: estimate the next location of target using (4, 5) 

2: estimate the total area where the target would probably appear 

there using (6) 

3: Determine the candidate wakening up areas by using (7)  

                Set Area {the candidate wakening up areas} 

4: Determine the candidate sampling time intervals  

                Set  T = {the candidate sampling time intervals} 

5:  For 1j  to  Area  

         For 1t  to T  

           Calculate )1(, kT

ktj

by using tk Tt  (20)  

                If Threshold
T k

ktj
)1(

,
 

                   Then 

                      Calculate T
tj k

E
,

according to (28) 

                      Calculate ),(_ kj tAreaFCost  by using (30) 

                       End 

            End 

     End 

 6:  Calculate *)*,( kj tArea  according to (29) 

4. PERFORMANCE EVALUATION OF THE 

PROPOSED PROTOCOL 

In this section we compare our proposed protocol with the 

proposed methods in papers [2, 6]. In paper [2], the T2BM2 method 

has been proposed. In this method the size of waking up areas are 

adapted according to tracking errors in the previous times. In other 

words, in this method when the error of tracking increases, 

subsequently, the size of wakening up areas increases. On the other 

hand, the AEC method proposed in paper [6], adjusts the sampling 

time intervals according to tracking error in the past tracking 

periods. We will apply the proposed adaptive target tracking 

algorithm to the tracking of a moving sound source (the target) 

using a network of acoustic amplitude sensors. Using computer 

simulations, we evaluate the proposed algorithm from accuracy, 

power consumption points of view. The simulations are performed 

using Matlab. The measurement model for jArea is: 

)32(             )(
||))(),(())(),((||

)( kV
jyjxkykx

a
kz j

ss
j

 

where Ra is the assumed known amplitude of the sound 

source, ))(),(( kykx is the center of AreaTotal and ))(),(( jyjx ss is 

known as the center of 
jArea and )(kV j

 is the zero-mean Gaussian 

measurement noise of
jArea  with variance

2
j .This measurement 

model corresponds to the nonlinear function jh  

22 ))()(())()((

))((

jykyjxkx

a
kXh

ss

j
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with Jacobian matrix 

0

)))()(())()(((

))()((

0

)))()(())()(((

))()((

)(

2

3

22

2

3

22

jykyjxkx

jykya
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kH

ss

s
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s
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Simulations are done to validate and characterize the performance 

of the proposed adaptive target tracking algorithm. The monitored 

field is mm 400400 and covered by 4000 randomly placed 

sensors. The sound source produces sound with constant amplitude 

a= 40. We assu-me
2
j = 0.001 for any Areaj and q = 10 in the 

covariance matrix of the process noise. The parameters listed in 

Table.2 are used in the energy model. 

 
Table 2.      Simulation settings of energy consumption 

Setting Description Parameter 

10  nJoules/bit 

The amplification factor for 

transmitting information to a 

near distance 

Efs 

0.0013 

pJoules/bit 

The amplification factor for 

transmitting information to a far 

distance 

Emp 

50 nJoules/bit The electronic energy Eelec 

5 nJoules/bit 
The necessary energy for data 

aggregation Eda 

0.5 sec 

The transmitting time for each 

member node to transmit l bit 

message to cluster head 

Tnchtx 

0.5sec 

The transmitting time for each 

CH1 node to transmit l bit 

information to CH2 node 

TCH1-CH2 

1sec 

The number of seconds for 

which CH2 node listens to each 

CH1 node 

TtoCH1 

1sec 

The transmitting time for CH2 

node to transmit the information 

to base  

TCH2-BS 

6bit Message size l 

 
For the sampling time intervals, we suppose N=10, Tmin=0.1s and 

Tmax=1s. Also we suppose target travels at a constant speed v=5 

m/s and it can vary its direction as a Normal distribution, 

N(0,150).Also we suppose maximum 40 nodes and minimum 4 

nodes participate in each tracking operation. For implementation of 

T2BM2 method we assume the sampling time interval to be 0.9 

seconds. According to paper [6], in AEC method the number of 

nodes which participate in tracking is supposed to be 4 nodes. 

Fig.5 shows the effect of size of wakening up areas on the tracking 

error for various sampling time intervals. It is obvious, when the 

size of wakening up areas increases, at first the amount of tracking 

error decreases rapidly but after a while, increasing the size of 

wakening up areas doesn‟t have a large effect on tracking error.  

Also Fig. 6 illustrates the effect of size of wakening up areas on 

objective function. This figure shows that for all values of w when 

the number of nodes participating in tracking increases, at first, the 

amount of objective function decreases but after a while which is 

dependant on the amount of w, it gradually increases.  

Also Fig.7 illustrates the variation of objective function regarding 

to different tracking errors. For all values of w, when the tracking 

error increases by decreasing the number of nodes, at first the 

amount of objective function decreases but after a while dependent 

on the amount of w it gradually increases. 

Also in Fig. 8 and Fig. 9 our proposed protocol including two 

different values of w (w=0.1, w=0.2) has been compared with the 

T2BM2 and AEC protocols to evaluate the accuracy and energy 

consumption. By the way, the threshold error is supposed to be 14 

cm. it is clear from Fig. 8, that the ATTP protocol has less tracking 

error compared to the other protocols. But when we take more 

amounts of w we can catch better accuracy. However, in Fig. 9 it 

has been shown that the energy consumption of the T2BM2 method 

is less than the other methods. Also the ATTP method including 

w=0.1 has energy consumption similar to the AEC method but 

when the amount of w increases, its energy consumption is more 

than the other methods. 
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Figure 5.   The effect of size of wakening up area on tracking error 
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Figure 6.   The effect of size of wakening up area on objective 

function (Δt=0.1). 
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Figure 7.   The effect of error on objective function (Δt=0.1). 
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Figure 8.   Tracking error in different tracking schemes. 
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 Figure 9.   Energy consumption in different tracking schemes. 

 

5. CONCLUSION 

This paper has presented a new adaptive target tracking protocol in 

WSNs. In this method, at first the total area that the target would 

appear is estimated, after that we define some candidate wakening 

up areas based on this estimation and consider some volunteer 

sampling time intervals. Then we use two helpful tools. First, an 

extended Kalman filter (EKF)-based estimation technique to 

predict the tracking error. Furthermore, we use an energy 

consumption model to estimate the amount of energy consumption 

based on different number of nodes and sampling time intervals. 

After that, the optimum number of nodes and the sampling time 

interval are selected according to an objective function which is 

defined based on tracking accuracy and energy consumption. 

Simulation results show that, compared to the other previous 

adaptive tracking methods, our method has better tracking 

accuracy with similar energy consumption. There are many issues 

remaining for future study. This paper adopts EKF as the 

estimation and prediction algorithms; however, EKF can only deal 

with noises with Gaussian distributions and more advanced 

techniques (such as particle filter) are required for adaptive sensor 

scheduling with more general (non-Gaussian) noises. Multi-step, 

adaptive motion model based target tracking and multi-target 

tracking are other challenging problems for further investigations. 
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