
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

46

Statistical Stream Metrics for Software Quality

Meena Sharma
Associate Professor

IET, Devi Ahilya University
Indore, India

Dr. Rajeev G Vishwakarma
Professor

SVITS, Rajiv Gandhi Technical University
Indore, India

ABSTRACT

The Statistical stream metrics developed by us are of unique

type (as compared to the existing available metrics) and we

propose these metrics as the solution towards software quality.

Probably the managers feel they are a bit "techie." We expect

that this concise research of the measures has shown that they

are practical and pragmatic techniques of assuring quality. The

foundation of statistical stream metrics is based upon the

principle of FanIn & FanOut or component coupling. Most of

the systems consist of components and it is the software

performance that these components actually do. The way

components are linked or associated together pretty much effect

the complexity of a software product. If a component has to do a

number of separate tasks it is said to be lacking in "cohesion."

Also, systems are highly coupled, if the components within the

system communicate data extensively with other components.

Systems theory approach talks about that the components which

are highly coupled and are less cohesive. These sorts of

components with more coupling and less cohesion may be less

reliable and difficult to maintain than those components that are

loosely coupled and highly cohesive.

General Terms

Software Quality

Keywords

Quality, Metrics, Statistical Stream, Geometric Progression

1. INTRODUCTION
The set of metrics we have developed extends the structural

metrics and are based on coupling of the software components.

It is structured and placed as it generally falls under the category

of metrics with stream of statistical information. At the

conceptual level our statistical stream metrics (SSM) are not

difficult to understand; it is when we come to apply them that

the fun can start. It is good to have practical and realistic

approach to achieve results.

The basis of SSM is founded upon the following working

premise. Software products are made up of components and the

software functionality is produced by the interaction between the

components. The way they are fitted together that influence the

complexity of a system. If a component has to do several

discrete tasks it is said to be deficient in "cohesion." Systems are

highly coupled, if the components within the system give and

accept data with other components. Systems theory approach

talks about that the components that are having more of coupled

among each other fall short of cohesion and thus these

components have poor reliability. The components with low

coupling are more trusted and easy to maintain.

2. STATISTICAL STREAM METRICS

FORMULATION
Let us now consider the definition of the terms cohesion,

coupling and component. Cohesion can be defined as the intra

components complexity that is calls inside the component itself.

Coupling is the degree of connection among one component and

others in the same system. A component is any element known

by decomposing a (software) system into its elemental parts.

The systems approach maps to software systems particularly

easily as most engineers use currently. At least recognizable

with, top-down design techniques that create hierarchical

arrangements of system components are popular. Rapid

engineering is one of the approaches picking up very fast subject

to the fact that we should produce proper documentation, and

maintainability. Here again, SSM can be used. The amount of

cohesion and coupling among components is analyzed and

represented as the statistical stream metrics. The methodology

for the construction of the model can reasonably range from the

simple to the complex. We propose to begin with basic

illustration of SSM to show the simplest concepts, how to gain

data using the metrics and how to utilize that data. We will then

expand the basic model.

SSM are piloted to the components of a system design. Fig.1

shows an instance of organization of the components. We

observe for component A and we can define three measures.

The first measure is "FanIn." This is basically a count of the

number of components which can call, or pass control, to

component A. The second is "FanOut." This is the count of the

number of components which are called by component A. The

third measure is derived from the first two by using the

following formula. We will call this computation the statistical

stream index of module A, abbreviated to SS(A). Let us describe

our methodology in detail as follows.

We propose the statistical metrics assessment formula based on

geometrical progression. Let us write all the geometrical

progression for n terms as,

ar0, ar1, ar2 , ar3 ………. ar,n-2 , arn-1

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

47

Fig 1: Components & Complexity

We propose the statistical metrics assessment formula based on

geometrical progression. Let us write all the geometrical

progression for n terms as,

ar
 0

, ar
 1

, ar
 2

, ar
 3

 ………. ar
 n-2 , ar n-1

 (1)

where r ≠ 0, is the common ratio and „a’ is a scale factor, equal

to the sequence's start value.

The n-th term of a geometric progression with initial value „a‟

and common ratio „r‟ is given by

an=ar
n-1

Our statistical stream approach is based on the mathematical fact

of Geometrical Progression as described above; that is, the

general form can be represented as the geometric progression.

In our case we have taken:

a= (FanIn(A) * FanOut(A)) n-1 (2)

where n is a fixed constant value for a particular series for all

the terms

r= ─1/ ((FanIn(A) * FanOut(A)) (3)

n= the number of components involved in FanIn and FanOut

 (4)

Now we take an example. The Fig.1 shows a typical

collaboration of the software components. Let us write the value

for „n‟ as per equation stated in (4).

n=3 (in our case we see in Fig.1 that the component A has 3

links attached to it; 0, 1 & 2 respectively) (5)

So for the value of n=3 equation (1) becomes

ar
 0

, ar
 1

, ar
 2

Let us compute the value of „a‟ for n=3

a= [(FanIn(A) * FanOut(A))
 n-1

]

= [(FanIn(A) * FanOut(A))
3-1

]

= [(FanIn(A) * FanOut(A))
 2

We can now represent three terms as below

a1 = a*r
0

= [(FanIn(A) * FanOut(A))
2
] r

0

= [(FanIn(A) * FanOut(A))
2
]*1

= [(FanIn(A) * FanOut(A)) 2 (6)

a2 =a*r
1

= [(FanIn(A) * FanOut(A)) 2] * r
1

=[(FanIn(A) * FanOut(A)) 2] * [─1/ ((FanIn(A)* FanOut(A))]

= - [(FanIn(A) * FanOut(A))] (7)

a3 =a*r
2

= [(FanIn(A) * FanOut(A)) 2] * r
2

=[(FanIn(A) * FanOut(A))
2
] * [─1/ ((FanIn(A) *

FanOut(A))]
2

= 1 (8)

Arranging up the values of a1, a2 and a3 from (6), (7) and (8) we

get the expression for statistical metrics index as

SS (A) = a1+ a2+ a3

That is

(FanIn(A) * FanOut(A)) 2 - (FanIn(A) * FanOut(A)) + 1

The value of FanIn(A) * FanOut(A) can be treated as a constant

K so we may further write statistical stream index as:

SS (A) = K 2 -K+1;

In Fig.1 we find that the value of K is 1*2=2, so the complexity

will be as:

SS (A) = 2
2
- 2 + 1 = 3;

Similarly if n=4, then the statistical stream index can be derived

using the following expression as;

SS (A) = K
3
- K

 2
 +K-1; (9)

We should make a note that there is power component. This

power containment indicates the nonlinearity of the complexity.

The hypothesis is that if some component A is additionally

complex than other component B then component B is much

more complex rather than just a little bit more complex than

component A. Given the supposition that we could raise to a

power three or four or anything we want but on the standard that

the simpler the model the better, then two is a good enough

choice. From our point of view rising to, two makes it easier, as

we will see, to pick out the potential bad guys. That is a good

enough reason and we will leave it to the practitioners to

concern about the finer detail.

0

1 2

A

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

48

3. POWER COMPONENT
We should make a note that there is power component. This

power containment indicates the nonlinearity of the complexity.

The hypothesis is that if some component A is additionally

complex than other component B then component B is much

more complex rather than just a little bit more complex than

component A. Given the supposition that we could raise to a

power three or four or anything we want but on the standard that

the simpler the model the better, then two is a good enough

choice. From our point of view rising to, two makes it easier, as

we will see, to pick out the potential bad guys. That is a good

enough reason and we will leave it to the practitioners to

concern about the finer detail.

4. GUIDELINES FOR SSM
Statistical stream metrics can be piloted for any functional

decomposition of a software system. We may consider structure

charts, data flow diagrams and software development life cycle

block diagrams. Apparently we may have to adapt terminology

to suit the notation being used. For example, in a data flow

diagram we do not have "calls;" instead we have data flows

between processes. The principle is the same. One of the easiest

applications we have come across is to use statistical stream

metrics on the hierarchical directory structure as used in

configuration amd change management system this is a fine case

of the synergy that can sometimes be found to function within

software engineering.

Statistical stream metrics provide a useful purpose right from

high level design to the way down to low-level design when we

can start to use A&D metrics discussed in previous section.

Given the functional hierarchy we see that there is one

additional attribute possessed by each component, that is its

level in the hierarchy. The following is a step-by-step guide to

deriving these most simple of SSM.

1. The level at which the component is in the design

hierarchy should be noted.

2. FanIn is the number of message calls received by the

component. On the level 1, we may have a single

topmost component. This component may not have

any FanIn, so we may assign a FanIn value of 1 to

this component.

3. For every component, count the number of calls from

that component. For components that do not

communicate or call the other components, we can

award a value of one to that FanOut.

4. The SS index value has to be calculated for every

component by the use the above formula.

5. The sum of the SS values for all components contained

by every level is calculated. This can be called as the

LEVEL SUM.

6. The sum of the SS values for the total system design is

calculated. We will call this the SYSTEM SUM.

In the analysis phase we can continue as further,

7. Each level may be checked on the basis of SS values

along with FanIn and FanOut values.

8. The LEVEL SUM values at every stage are designed

using a histogram or line plot

If our systems are superior to the ones we have seen then it will

clearly get longer but remember that once done it is very easy to

keep up to date. We should be able to automate the calculations

depending on the environmental conditions.

Having got the data, we now need to do something with it. We

must realize that, for statistical stream metrics, there are no

absolute values of good or bad. Statistical stream metrics are

comparative indicators. This means that value for our system

may be higher than for a system we have but this does not mean

that our system is worse. If we receive a high value of metrics

then it does not necessarily mean that the code or component

will not be or less reliable and will be difficult to maintain. It

will be less reliable and less maintainable than its counterparts.

In most systems, less reliable and less maintainable implies that

it is most probably going to cost large amounts of money to fix

and enhance. Most probably it could even be a terrifying

component.

5. HANDLING FANIN & FANOUT
Statistical A bad component is the one that causes the system

administrator nightmares. Because he or she knows that if that

component is modified or edited, it causes the whole system to

crash. Then it will take weeks to put it back in place because

Fred designed it and Fred was weird. Fred also left five years

ago! So the strength of statistical stream metrics is not in the

numbers themselves but in how we use the data.

If we find more than 25% of the components with high value of

the FanIn, FanOut and SS then we should rework on the values.

If this collection is more or less than the 25% direct then do not

worry about it. Also this should be noted that rather than getting

fussy about 25% figure we should concentrate on high metric

values.

High FanIn values indicate that there is less cohesion in the

module. It may well be that we have not split out the functions

to a great degree. Essentially, these components are called

recurrently because they are doing more than one job. High

levels of FanOut also point out a lack of cohesion or missed

levels of abstraction. It is found that it is better to prefer FanOut

rather than FanIn. But we should not disgrace FanIn

[Mitchell,,2005].

High SS values means that there are highly coupled components.

We need to look at these components for the FanIn and FanOut

values to check out to reduce the complexity level. Sometimes

we may hit a "traffic center." We have a potential problem area.

If it is large component, it may be very much error-prone. If the

complication cannot be reduced then at least we have to make

sure that the component is tested thoroughly.

When we observe the LEVEL SUM plot; we should be able to

see the values with a rather smooth curve illustrating controlled

growth in data flow across the levels. If the values increase

suddenly across levels is an indication of missed level of

abstraction contained by the general design. It is found that

where the design has less ten levels, we can consider count of

components simply at each level that works fine.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

49

The final item of data we have is the SYSTEM SUM value. This

gives us an overall complexity rating for the design in terms of

statistical stream metrics. There are a number of alternative

design proposals [Kharb,2008]. Statistical stream metrics give

users the opportunity to increase confidence in the choice they

eventually make by quantifying aspects of complexity.

It should be noted that in order to use it for an organization the

model will have to be tailored to the design mechanism of the

organization. The basic difference involving the simple and the

sophisticated statistical stream models lies in the definition of

FanIn and FanOut.

For a component A, let:

a = Count of the quantity of components that call A.

b = Check the upper hierarchy components and see that how

many of the upper hierarchy components are connected to

the component A down in the hierarchy to see that how

many parameters does component A receives.

c = Check the lower hierarchy components and see that how

many of the lower hierarchy components are connected to

the component A up in the hierarchy to pass parameters to

the component A.

d = Quantity of data elements read by component A.

Then:

FanIn(A) = a + b + c + d,

Also let:

e = Count of the quantity of components called by A.

f = Check the upper hierarchy components and see that how

many of the upper hierarchy components are connected to

the component A down in the hierarchy to see how many

lower level parameters are passed from the component A.

g = Check the lower hierarchy components and see that how

many of the lower hierarchy components are connected to

the component A up in the hierarchy to see how many upper

level components receive parameters from the component

A.

h = Quantity of data elements written to by A.

Then:

FanOut(A) = e + f + g + h

The derivation, analysis and interpretation remain the same,

even if there are changes to the basic definitions. We must say

that our advice to any organization starting to apply statistical

stream metrics would be to build up confidence by using the

simpler form. If these work for our organization then leave it at

that. Further advisable is that if simple form does not work out

then only we should go for the sophisticated or complex form.

We are encouraged by the fact that there have been a number of

experimental validations done by us, of statistical stream metrics

that seem to support the claims made for them. These results

have been encouraging. Statistical stream metrics have are easy

to be used and provides number of benefits so far as design and

complexity are concerned.

6. DECOMPOSING HIERARCHY
In this section we will show that splitting the Fans we can

reduce the complexity further. The designer should attempt for

the development software structure with lower FanOut in the

higher levels of hierarchy and more FanIn in the bottom levels

of the hierarchy. A few examples of common modules which

result in high FanIn include input & output modules,

[Bucchiarone,2006].

Decomposing can be used to resolve the problem of unnecessary

FanOut. An intermediary module can be used to factor out

modules with strong cohesion and loose coupling. Consider

when there are many lower level modules as shown in the Fig.2.

As per the guidelines we have already discussed, it is always

assumed that FanIn is not less than 1 in any case. So if there is

no FanIn, we assign a value of 1.

Let us now compute the complexity of the module A.

SS (A) = 4
4
- 4

3
+ 4

2 – 4 +1;

SS (A) = 256 – 64 + 16 – 4 +1;

SS (A) = 205;

Fig 2: Several FANOUTs

This is pretty high. So in order to reduce it we can decompose

the modular hierarchy as below shown in the Fig.3. We

introduce an intermediate level and incorporate a module called

B. Now the number of the lower level modules are shared or

linked by two modules A and B. As a result complexity or

coupling among the modules is decomposed. We find that in

stead of four lower level modules coupled to a single high level

module; now two lower level modules are linked to top level

module and one intermediate module.

In the example (Fig.3 on the next column), FanOut is reduced by

creating a module B to reduce the number of modules invoked

directly by module A. In this example we see that without

decomposing or splitting (using our statistical stream method)

the FanOut from module A the complexity obtained is 205.

Outcome: Let us compute the index for the example shown in

Fig.3, decomposing the FanOuts. Now we discuss the

decomposed components. After decomposing (using our

statistical stream method) component A in to the components A

and B we get the following index. We find that there will be 2

components attached to A and 2 components will be attached to

B.

A

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

50

SS (A) = (1*3)2-(1*3) +1

SS (A) = 32-3+1

SS (A) = 9-3+1

SS (A) = 7

Fig 3: Decomposing FANOUTs

Similarly the SS index for the component B will be also 7. So

the total complexity will be 7+7 = 14. So the total complexity

will be the sum of the two that is; 7+ 7= 14. This is pretty low as

compared to the original FanOut index arrangement without

decomposing. The original we computed was 83. This is true

other way round, also for the FanIns. If we split FanIns then also

we will find that the complexity index is reduced.

This method is better than structured, cyclomatic complexity

and essential complexity method as in this method it is easy to

understand the rules and assess the complexity empirically and

numerically. Further this method is more important as it focuses

on component technology and better suitable for component

based software development. So we may understand that this

approach will be useful for object oriented paradigm. Finally as

most of the software development is based on components and

objects so it is very helpful in the regard that during design we

can compute the complexity of components. Likewise it further

adds to understand the collaboration among components based

on the computed complexity so that we can also understand the

complexity or risk involved in a particular implementation or

programming environment.

7. COMPARING RESULTS
If we compare these results with the structure metrics

complexity calculation done by Kafura then we find that

statistical stream metrics is better approach [Henry,1981],

[Kafura,1985]. Also mathematically geometric progression

expresses the nonlinear nature of the coupling among

components. So making use of this index is appreciable and

anticipated. Let us first compute the complexity index as per the

empirical formulae proposed by Henry and Kafura. In Fig.1, the

complexity for the component A will be as follows.

Complexity (Kafura)

 =(FanIn(A) * FanOut(A)) 2

= (1*2) 2

= 9

After this approach was found inconclusive, unrealistic and

unreasonable the modifications were done. This approach was

okay with the lower number of components but failed to give the

correct results when the development was done with high

number of components. Later on Henry and Selig [Henry,1999]

suggested that apart from intra component connectivity there

should be an element of internal component complexity. The

new formula proposed was as follows.

Complexity(Henry) = Ci * (FanIn(A) * FanOut(A)) 2

Where, Ci is the internal (cyclomatic) complexity of the code.

This value can be computed by McCabe formulae

[McCabe,1976]. Suppose that the internal flowgraph of a code

fragment is as shown in the Fig.4. The cyclomatic complexity

will be;

Ci = e - n + 2;

Ci = 8 – 7 + 2;

Ci = 3

So finally the complexity becomes as;

Complexity(Henry) = Ci * (FanIn(A) * FanOut(A)) 2

Complexity(Henry) = 3 * 9

Complexity(Henry) = 27

Still it was found that this value is not acceptable as the real

complexity is different. Our statistical stream metrics produce

the realistic value due to considering nonlinear nature of the

component collaboration. Complexity increases

 Fig 4: Flowgraph of Component

A

B

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

51

Also computing the value of the complexity using both internal

and external complexity at the same time is not practical and

thus not justified. The basic reason is that program code design

and the component design are entirely different aspects of the

software development. The cyclomatic complexity helps to work

upon and thus reducing the complexity during the code (syntax)

design for a particular code fragment where as structure metrics

help to find out the complexity related to the calls given or

received by the whole deliverable components. The cyclomatic

complexity is useful for programmers and the structure metrics

is helpful to architects, managers and deployment and

maintenance team. In our statistical we have considered the

coupling exclusively and results are more logical and trusted.

The statistical stream metrics approach work fine with less

number and high number of components as well.

8. COCLUSION
The metrics and the associated techniques in this paper do not

give a total solution to the problem of complexity but they

provide a start, and one that does not cost much to spend. To

summarize this chapter, it is based on the assumption that

avoidable complexity costs our industry a great deal of money.

We can save money if we design hierarchy and complexity with

a word of caution and then we can deliver good product to our

testers and also to end users. This way we can save lots of

money also. The techniques involving the metrics provide the

opportunity to the organizations in order to improve quality and

process including design.

If we observe the code carefully we conclude that there is

redundancy of code or code fragments that may go up to 30%.

That is an awful lot of code to be there when it does not need to

be! To summarize, A&D metrics are found well established,

well proven foundation for techniques to manage complexity

and, hence, reliability and maintainability. Like them or not, we

have found that they work. These metrics do open some other

interesting options. The availability of the tools that support

metrics is good. These are easily found through the web. A

number of such tools also facilitate the automatic generation of

unit test cases. This can offer a significant saving on testing

effort.

Statistical stream metrics developed by us are of unique type (as

compared to the existing available metrics) but, there exist some

unwillingness in the industry to make use of statistical stream

metrics. Probably the managers feel they are a bit "techie." Most

probably they feel that they are not yet ready to use complicated

techniques like statistical stream metrics. We expect that this

concise research of the measures has shown that they are

practical and pragmatic techniques of assuring quality

[Sharma,2009] .

The foundation of statistical stream metrics is based upon the

principle of FanIn & FanOut or component coupling. Most of

the systems consist of components and it is the software

performance that these components actually do. The way

components are linked or associated together pretty much effect

the complexity of a software product. If a component has to do a

number of separate tasks it is said to be lacking in "cohesion."

Also, systems are highly coupled, if the components within the

system communicate data extensively with other components.

Systems theory approach talks about that the components which

are highly coupled and are less cohesive. These sorts of

components with more coupling and less cohesion may be less

reliable and difficult to maintain than those components that are

loosely coupled and highly cohesive.

9. REFERENCES
[1] Bucchiarone A, Polini A, Pelliccione P, Tivoli M,

“Towards an Architectural Approach for the Dynamic and

Automatic Composition of Software Components,”

Workshop On Role of Software Architecture For Testing

And Analysis, Portland, Maine, USA, July 17-20, 2006, pp

12-21

[2] Dantsin E, Eiter T, Gottlob G, Voronkov A, “Complexity

and expressive power of logic programming,” ACM

Computing Surveys (CSUR) , Vol. 33, No. 3 , September

2001, pp. 374-425

[3] Henry S M, and Kafura D, "Software Structure Metrics

Based on Information Flow," IEEE Transactions on

Software Engineering, Vol. SE-7, 1981, pp. 510–518.

[4] Henry S M, Selig C, “Predicting Source-Code Complexity

at the Design Stage,” IEEE Software, IEEE Computer

Society, March 1990, pp. 36–44.

[5] Kafura D, Canning J, “A Validation of Software Metrics

Using Many Metrics and Two Resources,” The 8th

International Conference on Software Engineering,

London, UK, August 28-30, 1985, IEEE, pp. 378 – 385.

[6] Kharb L, Singh R, “Complexity Metrics for Component-

Oriented Software Systems,” ACM SIGSOFT Software

Engineering Notes, Vol. 33, No. 2, March 2008, Article

No. 4

[7] Knuth D E, “Computer programming as an art,”

Communications of the ACM, Vol. 17, No. 12, December

1974, Pages: 667 - 673

[8] Lyu M R, “Software Reliability Engineering: A Roadmap,”

Future of Software Engineering, Minneapolis, MN, USA,

May 23 - 25, 2007, pp.153-170

[9] Mathias K S, James H. C, Hendrix D,. Barowski L A, “The

role of software measures and metrics in studies of program

comprehension,” The 37th annual Southeast regional

conference, Mobile, AL, USA, April 15-18, 1999, Article

No.: 13

[10] McCabe T J, “A Complexity Measure,” IEEE Transactions

on Software Engineering, Vol. 2, No. 4, December 1976,

pp. 308–320.

[11] McCabe T J, Butler C W, “Design Complexity

Measurement And Testing,” Communications of the ACM,

Vol. 32, No. 12, December 1989, pp. 1415 - 1425

[12] Mitchell A, Power J F, “Using Object-Level Run-Time

Metrics To Study Coupling Between Objects,” ACM

Symposium on Applied computing 2005, Santa Fe, New

Mexico, USA, March 13-17, 2005, pp. 1456 - 1462

[13] Morasca S, “Refining The Axiomatic Definition of Internal

Software Attributes,” Second ACM-IEEE International

Symposium on Empirical Software Engineering and

Measurement, Kaiserslautern, Germany, October 9-10,

2008, pp. 188-197

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

52

[14] Nagappan N, Murphy B, Basili V, “The Influence of

Organizational Structure on Software Quality: An

Empirical Case Study,” 30th International Conference on

Software Engineering, Leipzig, Germany, May 10-18,

2008, pp. 521-530

[15] Olender K M, Osterweil L J, “Interprocedural static

analysis of sequencing constraints,” Transactions on

Software Engineering and Methodology (TOSEM) , Vol.1,

No. 1, January 1992, pp. 21 - 52

[16] Pandey R K, “Managing Software Design Complexity:

Facade Vs Role-Based Design,” SIGSOFT Software

Engineering Notes, Vol. 34, No. 1, January 2009, pp. 1-4

[17] Rensink A, Zimakova M, “Towards Model Structuring

Based on Flow Diagram Decomposition,” The 1st

Workshop on Behaviour Modelling in Model-Driven

Architecture, Enschede, The Netherlands, Article

No.5

[18] Sharma M, Chandwani M, “Statistical Stream Metrics for

Improving Quality of Analysis & Design,”

communicated.

[19] Stein C, Etzkorn L, Utley L, “ Computing Software Metrics

From Design Documents,” The 42nd Annual Southeast

Regional Conference, Huntsville, Alabama, USA, April

2004, pp. 146 – 151

[20] Virani S, Etzkorn L, Gholston S, Farrington P, Utley D,

Fortune J, “Investigation of Domain Effects on Software,”

The 47th Annual Southeast Regional Conference, Clemson,

South Carolina, USA, March 19-21, 2009, Article No.: 37

[21]Yourdon E, Constantine L, “Structured Design:

Fundamentals of a Discipline of Computer Program and

Systems Design,” Prentice-Hall, Inc., February 1979

