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ABSTRACT 

The Statistical stream metrics developed by us are of unique 

type (as compared to the existing available metrics) and we 

propose these metrics as the solution towards software quality. 

Probably the managers feel they are a bit "techie." We expect 

that this concise research of the measures has shown that they 

are practical and pragmatic techniques of assuring quality. The 

foundation of statistical stream metrics is based upon the 

principle of FanIn & FanOut or component coupling. Most of 

the systems consist of components and it is the software 

performance that these components actually do. The way 

components are linked or associated together pretty much effect 

the complexity of a software product. If a component has to do a 

number of separate tasks it is said to be lacking in "cohesion." 

Also, systems are highly coupled, if the components within the 

system communicate data extensively with other components. 

Systems theory approach talks about that the components which 

are highly coupled and are less cohesive. These sorts of 

components with more coupling and less cohesion may be less 

reliable and difficult to maintain than those components that are 

loosely coupled and highly cohesive. 
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1. INTRODUCTION 
The set of metrics we have developed extends the structural 

metrics and are based on coupling of the software components. 

It is structured and placed as it generally falls under the category 

of metrics with stream of statistical information. At the 

conceptual level our statistical stream metrics (SSM) are not 

difficult to understand; it is when we come to apply them that 

the fun can start. It is good to have practical and realistic 

approach to achieve results.  

The basis of SSM is founded upon the following working 

premise. Software products are made up of components and the 

software functionality is produced by the interaction between the 

components. The way they are fitted together that influence the 

complexity of a system. If a component has to do several 

discrete tasks it is said to be deficient in "cohesion." Systems are 

highly coupled, if the components within the system give and 

accept data with other components. Systems theory approach 

talks about that the components that are having more of coupled 

among each other fall short of cohesion and thus these 

components have poor reliability. The components with low 

coupling are more trusted and easy to maintain. 

2. STATISTICAL STREAM METRICS 

FORMULATION 
Let us now consider the definition of the terms cohesion, 

coupling and component. Cohesion can be defined as the intra 

components complexity that is calls inside the component itself. 

Coupling is the degree of connection among one component and 

others in the same system. A component is any element known 

by decomposing a (software) system into its elemental parts. 

The systems approach maps to software systems particularly 

easily as most engineers use currently. At least recognizable 

with, top-down design techniques that create hierarchical 

arrangements of system components are popular. Rapid 

engineering is one of the approaches picking up very fast subject 

to the fact that we should produce proper documentation, and 

maintainability. Here again, SSM can be used. The amount of 

cohesion and coupling among components is analyzed and 

represented as the statistical stream metrics. The methodology 

for the construction of the model can reasonably range from the 

simple to the complex. We propose to begin with basic 

illustration of SSM to show the simplest concepts, how to gain 

data using the metrics and how to utilize that data. We will then 

expand the basic model. 

SSM are piloted to the components of a system design. Fig.1 

shows an instance of organization of the components. We 

observe for component A and we can define three measures. 

The first measure is "FanIn." This is basically a count of the 

number of components which can call, or pass control, to 

component A. The second is "FanOut." This is the count of the 

number of components which are called by component A. The 

third measure is derived from the first two by using the 

following formula. We will call this computation the statistical 

stream index of module A, abbreviated to SS(A). Let us describe 

our methodology in detail as follows. 

We propose the statistical metrics assessment formula based on 

geometrical progression. Let us write all the geometrical 

progression for n terms as, 

ar0, ar1, ar2 , ar3 ………. ar,n-2 , arn-1                                 
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Fig 1: Components & Complexity 

We propose the statistical metrics assessment formula based on 

geometrical progression. Let us write all the geometrical 

progression for n terms as, 

ar
 0

, ar
 1

, ar
 2

, ar
 3

 ………. ar
 n-2  , ar n-1

 (1) 

where r ≠ 0, is the common ratio and „a’ is a scale factor, equal 

to the sequence's start value. 

The n-th term of a geometric progression with initial value „a‟ 

and common ratio „r‟ is given by 

an=ar
n-1

 

Our statistical stream approach is based on the mathematical fact 

of Geometrical Progression as described above; that is, the 

general form can be represented as the geometric progression. 

In our case we have taken: 

a= (FanIn(A) * FanOut(A)) n-1            (2) 

where n is a fixed  constant value for a particular series for all 

the terms 

r= ─1/ ((FanIn(A) * FanOut(A))                                     (3) 

n= the number of components involved in FanIn and FanOut 

 (4) 

Now we take an example. The Fig.1 shows a typical 

collaboration of the software components. Let us write the value 

for „n‟ as per equation stated in (4). 

n=3 (in our case we see in Fig.1 that the component A has 3 

links attached to it; 0, 1 & 2 respectively)                             (5) 

So for the value of n=3 equation (1) becomes 

ar
 0

, ar
 1

, ar
 2

 

Let us compute the value of „a‟ for n=3 

a= [(FanIn(A) * FanOut(A))
 n-1

] 

= [(FanIn(A) * FanOut(A))
3-1

] 

= [(FanIn(A) * FanOut(A))
 2

 

 

 

We can now represent three terms as below 

a1 = a*r
0
 

= [(FanIn(A) * FanOut(A))
2
] r

0 

= [(FanIn(A) * FanOut(A))
2
]*1 

= [(FanIn(A) * FanOut(A)) 2             (6) 

a2 =a*r
1
 

= [(FanIn(A) * FanOut(A)) 2] * r
1 

=[(FanIn(A) * FanOut(A)) 2] * [ ─1/ ((FanIn(A)* FanOut(A)) ] 

= - [(FanIn(A) * FanOut(A))]                  (7) 

a3 =a*r
2
 

= [(FanIn(A) * FanOut(A)) 2] * r
2
 

=[(FanIn(A) * FanOut(A))
2
] *  [ ─1/ ((FanIn(A) * 

FanOut(A))]
2
 

= 1                        (8) 

Arranging up the values of a1, a2 and a3 from (6), (7) and (8) we 

get the expression for statistical metrics index as 

SS (A) = a1+ a2+ a3 

That is 

(FanIn(A) * FanOut(A)) 2 - (FanIn(A) * FanOut(A)) + 1 

The value of FanIn(A) * FanOut(A) can be treated as a constant 

K so we may further write statistical stream index as: 

SS (A) = K 2 -K+1; 

 

In Fig.1 we find that the value of K is 1*2=2, so the complexity 

will be as: 

SS (A) = 2
2
- 2 + 1 = 3; 

Similarly if n=4, then the statistical stream index can be derived 

using the following expression as; 

SS (A) = K
3
- K

 2
 +K-1;                                                           (9) 

We should make a note that there is power component. This 

power containment indicates the nonlinearity of the complexity. 

The hypothesis is that if some component A is additionally 

complex than other component B then component B is much 

more complex rather than just a little bit more complex than 

component A. Given the supposition that we could raise to a 

power three or four or anything we want but on the standard that 

the simpler the model the better, then two is a good enough 

choice. From our point of view rising to, two makes it easier, as 

we will see, to pick out the potential bad guys. That is a good 

enough reason and we will leave it to the practitioners to 

concern about the finer detail. 

0 

1 2 

A 
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3. POWER COMPONENT 
We should make a note that there is power component. This 

power containment indicates the nonlinearity of the complexity. 

The hypothesis is that if some component A is additionally 

complex than other component B then component B is much 

more complex rather than just a little bit more complex than 

component A. Given the supposition that we could raise to a 

power three or four or anything we want but on the standard that 

the simpler the model the better, then two is a good enough 

choice. From our point of view rising to, two makes it easier, as 

we will see, to pick out the potential bad guys. That is a good 

enough reason and we will leave it to the practitioners to 

concern about the finer detail. 

4. GUIDELINES FOR SSM 
Statistical stream metrics can be piloted for any functional 

decomposition of a software system. We may consider structure 

charts, data flow diagrams and software development life cycle 

block diagrams. Apparently we may have to adapt terminology 

to suit the notation being used. For example, in a data flow 

diagram we do not have "calls;" instead we have data flows 

between processes. The principle is the same. One of the easiest 

applications we have come across is to use statistical stream 

metrics on the hierarchical directory structure as used in 

configuration amd change management system this is a fine case 

of the synergy that can sometimes be found to function within 

software engineering. 

Statistical stream metrics provide a useful purpose right from 

high level design to the way down to low-level design when we 

can start to use A&D metrics discussed in previous section. 

Given the functional hierarchy we see that there is one 

additional attribute possessed by each component, that is its 

level in the hierarchy.  The following is a step-by-step guide to 

deriving these most simple of  SSM. 

1. The level at which the component is in the design 

hierarchy should be noted. 

2. FanIn is the number of message calls received by the 

component. On the level 1, we may have a single 

topmost component. This component may not have 

any FanIn, so we may assign a FanIn value of 1 to 

this component.  

3. For every component, count the number of calls from 

that component. For components that do not 

communicate or call the other components, we can 

award a value of one to that FanOut. 

4. The SS index value has to be calculated for every 

component by the use the above formula. 

5. The sum of the SS values for all components contained 

by every level is calculated. This can be called as the 

LEVEL SUM. 

6. The sum of the SS values for the total system design is 

calculated. We will call this the SYSTEM SUM. 

In the analysis phase we can continue as further,  

7. Each level may be checked on the basis of SS values 

along with FanIn and FanOut values. 

8. The LEVEL SUM values at every stage are designed 

using a histogram or line plot 

If our systems are superior to the ones we have seen then it will 

clearly get longer but remember that once done it is very easy to 

keep up to date. We should be able to automate the calculations 

depending on the environmental conditions. 

Having got the data, we now need to do something with it. We 

must realize that, for statistical stream metrics, there are no 

absolute values of good or bad. Statistical stream metrics are 

comparative indicators. This means that value for our system 

may be higher than for a system we have but this does not mean 

that our system is worse. If we receive a high value of metrics 

then it does not necessarily mean that the code or component 

will not be or less reliable and will be difficult to maintain. It 

will be less reliable and less maintainable than its counterparts. 

In most systems, less reliable and less maintainable implies that 

it is most probably going to cost large amounts of money to fix 

and enhance. Most probably it could even be a terrifying 

component. 

5. HANDLING FANIN & FANOUT 
Statistical A bad component is the one that causes the system 

administrator nightmares. Because he or she knows that if that 

component is modified or edited, it causes the whole system to 

crash. Then it will take weeks to put it back in place because 

Fred designed it and Fred was weird. Fred also left five years 

ago! So the strength of statistical stream metrics is not in the 

numbers themselves but in how we use the data. 

If we find more than 25% of the components with high value of 

the FanIn, FanOut and SS then we should rework on the values.  

If this collection is more or less than the 25% direct then do not 

worry about it. Also this should be noted that rather than getting 

fussy about 25% figure we should concentrate on high metric 

values. 

High FanIn values indicate that there is less cohesion in the 

module. It may well be that we have not split out the functions 

to a great degree. Essentially, these components are called 

recurrently because they are doing more than one job. High 

levels of FanOut also point out a lack of cohesion or missed 

levels of abstraction. It is found that it is better to prefer FanOut 

rather than FanIn. But we should not disgrace FanIn 

[Mitchell,,2005]. 

High SS values means that there are highly coupled components. 

We need to look at these components for the FanIn and FanOut 

values to check out to reduce the complexity level. Sometimes 

we may hit a "traffic center." We have a potential problem area. 

If it is large component, it may be very much error-prone. If the 

complication cannot be reduced then at least we have to make 

sure that the component is tested thoroughly. 

When we observe the LEVEL SUM plot; we should be able to 

see the values with a rather smooth curve illustrating controlled 

growth in data flow across the levels. If the values increase 

suddenly across levels is an indication of missed level of 

abstraction contained by the general design. It is found that 

where the design has less ten levels, we can consider count of 

components simply at each level that works fine.   
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The final item of data we have is the SYSTEM SUM value. This 

gives us an overall complexity rating for the design in terms of 

statistical stream metrics. There are a number of alternative 

design proposals [Kharb,2008]. Statistical stream metrics give 

users the opportunity to increase confidence in the choice they 

eventually make by quantifying aspects of complexity.  

It should be noted that in order to use it for an organization the 

model will have to be tailored to the design mechanism of the 

organization. The basic difference involving the simple and the 

sophisticated statistical stream models lies in the definition of 

FanIn and FanOut. 

For a component A, let: 

a = Count of the quantity of components that call A. 

b = Check the upper hierarchy components and see that how 

many of the upper hierarchy components are connected to 

the component A down in the hierarchy to see that how 

many parameters does component A receives.  

c = Check the lower hierarchy components and see that how 

many of the lower hierarchy components are connected to 

the component A up in the hierarchy to pass parameters to 

the component A. 

d = Quantity of data elements read by component A. 

Then:  

FanIn(A) = a + b + c + d,  

Also let: 

e = Count of the quantity of components called by A. 

f = Check the upper hierarchy components and see that how 

many of the upper hierarchy components are connected to 

the component A down in the hierarchy to see how many 

lower level parameters are passed from the component A. 

g = Check the lower hierarchy components and see that how 

many of the lower hierarchy components are connected to 

the component A up in the hierarchy to see how many upper 

level components receive parameters from the component 

A.  

h = Quantity of data elements written to by A. 

Then: 

FanOut(A) = e + f + g + h 

The derivation, analysis and interpretation remain the same, 

even if there are changes to the basic definitions. We must say 

that our advice to any organization starting to apply statistical 

stream metrics would be to build up confidence by using the 

simpler form. If these work for our organization then leave it at 

that.  Further advisable is that if simple form does not work out 

then only we should go for the sophisticated or complex form.  

We are encouraged by the fact that there have been a number of 

experimental validations done by us, of statistical stream metrics 

that seem to support the claims made for them. These results 

have been encouraging. Statistical stream metrics have are  easy 

to be used and provides number of benefits so far as design and 

complexity are concerned.  

6. DECOMPOSING HIERARCHY 
In this section we will show that splitting the Fans we can 

reduce the complexity further. The designer should attempt for 

the development software structure with lower FanOut in the 

higher levels of  hierarchy and more FanIn in the bottom levels 

of the hierarchy.  A few examples of common modules which 

result in high FanIn include input & output modules, 

[Bucchiarone,2006].   

Decomposing can be used to resolve the problem of unnecessary 

FanOut. An intermediary module can be used to factor out 

modules with strong cohesion and loose coupling. Consider 

when there are many lower level modules as shown in the Fig.2. 

As per the guidelines we have already discussed, it is always 

assumed that FanIn is not less than 1 in any case. So if there is 

no FanIn, we assign a value of 1. 

Let us now compute the complexity of the module A. 

SS (A) = 4
4
- 4

3
+ 4

2 – 4 +1; 

SS (A) = 256 – 64 + 16 – 4 +1; 

SS (A) = 205; 

 

Fig 2: Several FANOUTs 

This is pretty high. So in order to reduce it we can decompose 

the modular hierarchy as below shown in the Fig.3. We 

introduce an intermediate level and incorporate a module called 

B. Now the number of the lower level modules are shared or 

linked by two modules A and B. As a result complexity or 

coupling among the modules is decomposed. We find that in 

stead of four lower level modules coupled to a single high level 

module; now two lower level modules are linked to top level 

module and one intermediate module. 

In the example (Fig.3 on the next column), FanOut is reduced by 

creating a module B to reduce the number of modules invoked 

directly by module A. In this example we see that without 

decomposing or splitting (using our statistical stream method) 

the FanOut from module A the complexity obtained is 205. 

Outcome: Let us compute the index for the example shown in 

Fig.3, decomposing the FanOuts. Now we discuss the 

decomposed components. After decomposing (using our 

statistical stream method) component A in to the components A 

and B we get the following index. We find that there will be 2 

components attached to A and 2 components will be attached to 

B. 

A 
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SS (A) = (1*3)2-(1*3) +1 

SS (A) = 32-3+1 

SS (A) = 9-3+1 

SS (A) = 7 

 

Fig 3: Decomposing FANOUTs 

Similarly the SS  index for the component B will be also 7. So 

the total complexity will be 7+7 = 14. So the total complexity 

will be the sum of the two that is; 7+ 7= 14. This is pretty low as 

compared to the original FanOut index arrangement without 

decomposing. The original we computed was 83. This is true 

other way round, also for the FanIns. If we split FanIns then also 

we will find that the complexity index is reduced.  

This method is better than structured, cyclomatic complexity 

and essential complexity method as in this method it is easy to 

understand the rules and assess the complexity empirically and 

numerically. Further this method is more important as it focuses 

on component technology and better suitable for component 

based software development. So we may understand that this 

approach will be useful for object oriented paradigm. Finally as 

most of the software development is based on components and 

objects so it is very helpful in the regard that during design we 

can compute the complexity of components. Likewise it further 

adds to understand the collaboration among components based 

on the computed complexity so that we can also understand the 

complexity or risk involved in a particular implementation or 

programming environment.  

7. COMPARING RESULTS 
If we compare these results with the structure metrics 

complexity calculation done by Kafura then we find that 

statistical stream metrics is better approach [Henry,1981], 

[Kafura,1985]. Also mathematically geometric progression 

expresses the nonlinear nature of the coupling among 

components. So making use of this index is appreciable and 

anticipated. Let us first compute the complexity index as per the 

empirical formulae proposed by Henry and Kafura. In Fig.1, the 

complexity for the component A will be as follows. 

 

 

 

 

 

Complexity (Kafura) 

 =(FanIn(A) * FanOut(A)) 2 

= (1*2) 2 

= 9 

After this approach was found inconclusive, unrealistic and 

unreasonable the modifications were done. This approach was 

okay with the lower number of components but failed to give the 

correct results when the development was done with high 

number of components. Later on Henry and Selig [Henry,1999] 

suggested that apart from intra component connectivity there 

should be an element of internal component complexity. The 

new formula proposed was as follows. 

Complexity(Henry) = Ci * (FanIn(A) * FanOut(A)) 2 

Where, Ci is the internal (cyclomatic) complexity of the code. 

This value can be computed by McCabe formulae 

[McCabe,1976]. Suppose that the internal flowgraph of a code 

fragment is as shown in the Fig.4. The cyclomatic complexity 

will be; 

Ci = e - n + 2; 

Ci = 8 – 7 + 2; 

Ci = 3 

So finally the complexity becomes as; 

Complexity(Henry) = Ci * (FanIn(A) * FanOut(A)) 2 

Complexity(Henry) = 3 * 9 

Complexity(Henry) = 27  

Still it was found that this value is not acceptable as the real 

complexity is different. Our statistical stream metrics produce 

the realistic value due to considering nonlinear nature of the 

component collaboration. Complexity increases 

   
      
 Fig 4: Flowgraph of Component 

 

A 

B 
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Also computing the value of the complexity using both internal 

and external complexity at the same time is not practical and 

thus not justified. The basic reason is that program code design 

and the component design are entirely different aspects of the 

software development. The cyclomatic complexity helps to work 

upon and thus reducing the complexity during the code (syntax) 

design for a particular code fragment where as structure metrics 

help to find out the complexity related to the calls given or 

received by the whole deliverable components. The cyclomatic 

complexity is useful for programmers and the structure metrics 

is helpful to architects, managers and deployment and 

maintenance team. In our statistical we have considered the 

coupling exclusively and results are more logical and trusted. 

The statistical stream metrics approach work fine with less 

number and high number of components as well. 

8. COCLUSION 
The metrics and the associated techniques in this paper do not 

give a total solution to the problem of complexity but they 

provide a start, and one that does not cost much to spend. To 

summarize this chapter, it is based on the assumption that 

avoidable complexity costs our industry a great deal of money. 

We can save money if we design hierarchy and complexity with 

a word of caution and then we can deliver good product to our 

testers and also to end users. This way we can save lots of 

money also. The techniques involving the metrics provide the 

opportunity to the organizations in order to improve quality and 

process including design.  

If we observe the code carefully we conclude that there is 

redundancy of code or code fragments that may go up to 30%. 

That is an awful lot of code to be there when it does not need to 

be! To summarize, A&D metrics are found well established, 

well proven foundation for techniques to manage complexity 

and, hence, reliability and maintainability. Like them or not, we 

have found that they work. These metrics do open some other 

interesting options. The availability of the tools that support 

metrics is good. These are easily found through the web. A 

number of such tools also facilitate the automatic generation of 

unit test cases. This can offer a significant saving on testing 

effort. 

Statistical stream metrics developed by us are of unique type (as 

compared to the existing available metrics) but, there exist some 

unwillingness in the industry to make use of statistical stream 

metrics. Probably the managers feel they are a bit "techie." Most 

probably they feel that they are not yet ready to use complicated 

techniques like statistical stream metrics. We expect that this 

concise research of the measures has shown that they are 

practical and pragmatic techniques of assuring quality 

[Sharma,2009] . 

The foundation of statistical stream metrics is based upon the 

principle of FanIn & FanOut or component coupling. Most of 

the systems consist of components and it is the software 

performance that these components actually do. The way 

components are linked or associated together pretty much effect 

the complexity of a software product. If a component has to do a 

number of separate tasks it is said to be lacking in "cohesion." 

Also, systems are highly coupled, if the components within the 

system communicate data extensively with other components. 

Systems theory approach talks about that the components which 

are highly coupled and are less cohesive. These sorts of 

components with more coupling and less cohesion may be less 

reliable and difficult to maintain than those components that are 

loosely coupled and highly cohesive. 
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