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ABSTRACT 

DNA sequence assembly problem is a very complex problem of 

computational biology. DNA sequence assembly is a NP hard 

problem there is no single solution available for this kind of 

problems. DNA sequence assembly refers to aligning and 

merging fragments of a much longer DNA sequence in order to 

reconstruct the original sequence. In this paper a solution is 

proposed for DNA sequence assembly problem using Particle 

Swarm Optimization (PSO) with Shortest Position Value (SPV) 

rule. DNA sequence assembly problem is a discrete optimization 

problem, so there is need of discrete optimization algorithm to 

solve it. In this paper continuous version of PSO is used with 

SPV rule to solve the DNA sequence assembly problem. SPV 

rule transforms continuous version of PSO to discrete version. 

Proposed methodology is named as DSAPSO. To check the 

efficiency of proposed methodology the results of DSAPSO is 

compared with the results of genetic algorithm (GA). 

General Terms 

Nature Inspired Algorithms, optimization problem, 

Computational Biology. 

Keywords 

DNA sequence assembly, Particle Swarm Optimization, PSO, 

Swarm Intelligence, SPV, Bioinformatics.  

1. INTRODUCTION 
The current challenge in the field of biology is the enormous 

amount of existing data. This data is complex and unformatted. 

Also this data is doubled in every two years. The bioinformatics 

is the interdisciplinary research area of biology & computer 

science. It uses the computer science methods, models and 

sophisticated algorithms to solve the biological problems that 

are related to huge data analysis, gene annotation, pattern 

reorganization and many more. 

The one of the most common problem in biology is DNA 

sequence assembly problem. In DNA sequence assembly 

problem, DNA sequence is breaks into number of fragments and 

after removing duplicate sequences obtain a common consensus 

sequence. DNA sequence assembly problem is very complex 

problem and take more computational time to obtain consensus 

sequence. DNA sequence assembly problem is NP hard problem 

because there are lots of solutions available for this kind of 

problem. Many literatures provide solutions for DNA sequence 

assembly problem. Christian Burks [4] is widely held that DNA 

sequencing throughput will have to be increased by orders of 

magnitude to complete the task in the time frame of 15 years 

that was laid out for the Human Genome Project, and that such 

dramatic increases will rely in large part on automating the 

several experimental and interpretive steps involved in DNA 

sequencing. Over the past decade a number of fragment 

assembly packages have been developed and used to sequence 

different organisms. The most popular packages are PHRAP [5] 

is a program for assembling shotgun DNA sequence data. 

TIGR assembler [6] overcomes several major obstacles to 

assembling DNA sequence. STROLL [7] implemented a 

reliable technique to sequence DNA using primer walking 

approach. CAP3 [8] includes a number of improvements and 

new features to improve DNA sequence assembly. Celera 

assembler [9] developed at Celera for the 2001 publication of 

the first draft human genome sequence. EULER [10] is an 

approach to fragment assembly that abandons the classical 

"overlap - layout - consensus" paradigm that is used in all 

currently available assembly tools. Allex, C. F., Baldwin, S. F., 

Sbavlik, J. W. and Blamer, F. R. [11] is improving the quality of 

automatic DNA sequence assembly using fluorescent trace-data 

classifications. Wilks, C.and Khuri, S. [12] proposed "A 

Structured Pattern Matching Approach to Shotgun Sequence 

Assembly," (AMASS) created by Sun Kim. 

Many heuristic approaches are applied in DNA Sequence 

Assembly which are improved the process of DNA Sequence 

Assembly one of them is Genetic Algorithm. Parsons, R. and 

Forrest, S. and Burks, C. [13] presents that the genetic algorithm 

is a promising method for fragment assembly problems, 

achieving usable solutions quickly. Parsons, R.J. and Forrest, S. 

and Burks, C. [14] study different genetic algorithm operators 

for one permutation problem associated with the Human 

Genome Project—the assembly of DNA sequence fragments 

from a parent clone whose sequence is unknown into a 

consensus sequence corresponding to the parent sequence. 

Parsons, R.J. and Johnson, M.E. [15] discussed  the new  results,  

the modifications  to the previous  genetic algorithm  used, the 

experimental  design process  by which  the new  results  were  

obtained, the questions  raised by these results,  and  some  

preliminary  attempts  to explain  these  results. Kim, K. and 

Mohan, CK [16] presents a fragment assembler using a new 

parallel hierarchical adaptive variation of evolutionary 

algorithms. The innovative features include a new measure for 

evaluating sequence assembly quality and the development of a 

hybrid algorithm. Fang, S.C. and Wang, Y. and Zhong, J. [17] 

approach maximizes the similarity (overlaps) between given 

fragments and a candidate sequence. It considers both whole 

fragments and the single basepair similarities in the sequence. 

Special genetic operators are designed to speed up the searching 

process. Kikuchi, S.and Chakraborty, G. [18]   added two 

http://www.celera.com/
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heuristic ideas with GA to make it more efficient. One is 

chromosome reduction (CRed) step which shorten the length of 

the chromosomes, participating in genetic search, to improve the 

efficiency. The other is chromosome refinement (CRef) step 

which is a greedy heuristics, rearranging the bits using domain 

knowledge, to locally improve the fitness of chromosomes. 

Luque, G. and Alba, E. [19] present several methods, a 

canonical genetic algorithm, a CHC method, a scatter search 

algorithm, and a simulated annealing, to solve accurately 

problem instances that are 77K base pairs long. Meksangsouy, 

P. and Chaiyaratana, N. [20] proposed an asymmetric ordering 

representation where a path co-operatively generated by all ants 

in the colony represents the search solution. Zhao, Y. and Ma, P. 

and Lan, J. and Liang, C. and Ji, G. [21] improved sequence 

alignment method based on the ant colony algorithm. The new 

method could avoid a local optimum and remove especially the 

paths scores of great difference by regulating the initial and final 

positions of ants and by modifying pheromones in different 

times. 

There are few literatures available which represent solution for 

DNA Sequence Assembly problem using metaheuristic and 

nature inspired algorithms. PSO algorithm comes under nature 

inspired algorithm and it is very effective technique to solve an 

optimization problem. It has been proven that PSO solves 

Optimization problem efficiently and gives the optimum result. 

PSO algorithm used to solve computational biology problem and 

gives better result than the conventional methods. DNA 

sequence assembly problem is not solved previously by PSO 

algorithm that’s why we have intention to apply PSO algorithm 

for DNA Sequence Assembly problem. 

2. DNA SEQUENCE ASSEMBLY 

PROBLEM 
Deoxyribonucleic acid (DNA) is a nucleic acid that contains the 

genetic instructions used in the development and functioning of 

all known living organisms and some viruses. The main role of 

DNA molecules in living organism is the long-term storage of 

information. 

 DNA sequence is represented by a string of characters drawn 

from a four-letter alphabet (A, C, G, and T) corresponding to 

the four monomeric bases of which the DNA polymer is 

composed. A piece, or fragment, corresponds in our context to a 

substring of 100-1000 bases. Overlap strength and offset 

relationships between pairs of fragments, used to drive the 

assembly of the fragments into a global layout, is based on 

comparison of character strings. The output generated by 

sequencing represents a consensus on the order of 1000-

1,000,000 bases long, generated by voting in aligned columns of 

bases resulting from the layout. 

The assembly problem is a combinatorial optimization problem 

where the aim of the search is to find the right order and 

orientation of each fragment in the fragment ordering sequence 

that leads to the formation of a consensus sequence. 

Figure 1, shows the basic DNA sequence assembly process. Fig 

1(A) represents 6 different DNA fragment taken from large 

human DNA sequence STIM1. STIM1 DNA sequence is taken 

from NCBI. After getting 6 fragment from large DNA sequence 

file arrangement of fragments is needed to calculate consensus 

sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: (A) Shows the 6 fragments taken from the file STIM1 

DNA sequence (B) Show the fragment order to calculate 

consensus fragment sequence (C) Common Consensus 

sequence calculated. 

Fig 1(B) represents the order of fragments, fragments are 

arranged in a manner that suffix of one fragment is compared 

with prefix of another fragment. Matched nucleotides are 

removed and remaining nucleotides are considered as consensus 

sequence. Fig 1(C) represents the calculated consensus 

sequence. 

3. PARTICLE SWARM OPTIMIZATION  
Particle swarm optimization (PSO) is a population based 

stochastic optimization technique for the solution of continuous 

optimization problems. It is inspired by social behaviors in 

flocks of birds and schools of fish. In PSO, a set of agents called 

particles will search for good solutions to a given continuous 

optimization problem. PSO has been applied in many different 

problems and has successfully solved this problem better than 

other algorithms. 

The particle swarm optimization algorithm, originally 

introduced in terms of social and cognitive behavior by Kennedy 

and Eberhart [1], solves problems in many fields, especially 

engineering and computer science. The power of the technique 

is its fairly simple computations and sharing of information 

within the algorithm as it derives its internal communications 

from the social behavior of individuals. The individuals, called 

particles henceforth, are flown through the multi-dimensional 

search space with each particle representing a possible solution 

to the multi-dimensional optimization problem. Each solution’s 

fitness is based on a performance function related to the 

optimization problem being solved.  

The movement of the particles is influenced by two factors using 

information from iteration-to-iteration as well as particle-to-

particle. As a result of iteration-to-iteration information, the 

particle stores in its memory the best solution visited so far, 

called pbest, and experiences an attraction towards this solution 

as it traverses through the solution search space. As a result of 

the particle-to-particle information, the particle stores in its 

memory the best solution visited by any particle, and 

(A) 
       F1: AGAAAGT 

       F2: TCAGTCTG 

       F3: AAATGA 
       F4: CAGGGT 

       F5: TTTGG 

       F6: TTGGTTACT 

 

(B) 
      AGAAAGT 

       TCAGTCTG 
                                          AAATGA 

                                          CAGGGT 
           TTTGG 

              TTGGTTACT 

 

(C) 
       AGAAAGTCAGTCTGAAATGACAGGGTTTGGTTACT 
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experiences an attraction towards this solution, called gbest, as 

well. The first and second factors are called cognitive and social 

components, respectively. After iteration, the pbest and gbest are 

updated for each particle if a better or more dominating solution 

(in terms of fitness) is found. This process continues, iteratively, 

until either the desired result is converged upon, or it’s 

determined that an acceptable solution cannot be found within 

computational limits. 

For an n-dimensional search space, the i-th particle of the swarm 

is represented by a n- dimensional vector, Xi = (xi1, xi2, …,xin)
T. 

The velocity of this particle is represented by another n-

dimensional vector Vi = (vi1, vi2,…,vin)
T. The previously best 

visited position of the i-th particle is denoted as Pi = (pi1, pi2, 

…,pin)
T. ‘g’ is the  index of the best particle in the swarm. The 

velocity of the i-th particle is updated using the velocity update 

equation given by   

)()( 2211 idgdidididid xprcxprcvv ,              

       (1) 

and the position is updated using  

ididid vxx
                  

                     (2) 

Where d = 1, 2… n represents the dimension and i = 1, 2… S 

represents the particle index. S is the size of the swarm and c1 

and c2 are constants, called cognitive and social scaling 

parameters respectively (usually, c1= c2; r1, r2 are random 

numbers drawn from a uniform distribution). Eq. (1) and (2) 

define the classical version of PSO algorithm. A constant, Vmax, 

was introduced to arbitrarily limit the velocities of the particles 

and improve the resolution of the search. The maximum velocity 

Vmax, serves as a constraint to control the global exploration 

ability of particle swarm. Further, the concept of an inertia 

weight was developed to better control exploration and 

exploitation. The motivation was to be able to eliminate the need 

for Vmax. The inclusion of an inertia weight in the particle 

swarm optimization algorithm was first reported in the literature 

[2]. 

The resulting velocity update equation becomes:                                       

)()(* 2211 idgdidididid xprcxprcvwv          

                  (3) 

Eberhart and Shi, [3] indicate that the optimal strategy is to 

initially set w to 0.9 and reduce it linearly to 0.4, allowing initial 

exploration followed by acceleration toward an improved global 

optimum. 

4. METHODOLOGY 
In this paper we have proposed a solution for DNA sequence 

assembly problem using particle swarm optimization. For 

solving any optimization problem we have to first formulate the 

problem according to optimization problem. In this case first we 

formulate the DNA sequence assembly problem according to 

PSO algorithm. Next subsection describes how we formulate the 

DNA sequence assembly problem. 

To solve the problem, representation of the individual and 

fitness value is required. PSO algorithm is based on population 

(candidate solution) and each population have its own fitness 

value according to which it is compared from others, so we have 

to first represent the DNA sequence assembly problem in terms 

of PSO algorithm. 

4.1 Individual Representation 
In DNA sequence assembly problem inputs are the set of 

fragments which need to be assembled and build a common 

sequence which does not have any repeated pattern. The 

common sequence is considered as output for DNA sequence 

assembly problem. To find out the function or property of 

specific genes, the reading of nucleotide or chemical base (A, T, 

C, G) sequence is done. Large nucleotide sequences are called 

DNA sequence. The large DNA sequence consists of repeated 

patterns of nucleotide that’s why the DNA sequence becomes 

large. In DNA sequence assembly repeated patterns are removed 

and one consensus sequence builds. 

 In DNA sequence assembly large DNA sequence of a particular 

gene is taken for assembly process. Large DNA file is split 

randomly in different fragments of DNA sequence which are 

used in assembly process. After getting the set of fragment, 

fragments are aligned and the longest match between the suffix 

of one sequence and the prefix of another is determine. All 

possible pair combination of fragments is compared and 

matching score is determined. On the basis of matching score 

fragment order is determined. At last the consensus sequence is 

found out from the fragment order. We have performed 

experiments with the nucleotide sequences of 

homosapiens(human) and mouse viz. MACF1, TNFRSF19 and 

Zfa. The DNA data is taken from the NCBI. 

We have solved DNA sequence assembly problem using the 

continuous version of PSO. In DNA sequence assembly problem 

fragment order in which fragments are aligned is very important 

but very hard to find the best order from the large possible 

combinations of fragment order.  Using PSO we determine the 

fragment order. PSO is based on the concept of population and 

each individual represents a solution for a problem. In case of 

DNA sequence assembly problem each individual of PSO 

represents the fragment order on which fragments are aligned to 

find out a consensus sequence. Each individual has certain 

dimension value for DNA sequence assembly problem each 

individual has a dimension value equal to the number of 

fragments taken for assembly.  

 DNA sequence assembly problem is a discrete optimization 

problem. In the proposed solution continuous version of PSO is 

used instead of discrete version. To change the continuous 

version to real version for DNA sequence assembly problem 

SPV rule is used. Using the SPV (shortest position value) rule 

continuous position generated by PSO is converted to discrete 

value.  

Each individual or particle of PSO is represented by a Position 

vector Xid= { x1,x2,x3,......xd } where i is the particular individual 

and d represents the dimension index. Each individual of PSO 

contain the real value for a particular dimension and on the basis 

of this real values new sequence vector is generated using 

shortest position value rule (SPV). New generated sequence 

vector using SPV is represented as Sid= [fi1,fi2,…….fid]. Sid is a 

fragment order of i particle in the processing order containing d 

dimension and fi1, fi2 represent the fragment number in a 

fragment order.  
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For example the individual generated by PSO is Xid= {4.83, -.55, 

1.90, 4.46, 1.05, 2.47, -1.28, 0.192, 3.56, 2.28} which has 

dimension value equal to 10 that means the number of fragments 

taken is 10. It is clear that Xid contains the real values and for 

DNA sequence assembly we need fragment sequence order from 

the set of possible combination of fragment order.  SPV rule is 

used to generate the new sequence vector Sid. Dimension values 

of Xid is used to generate sequence vector, the dimension index 

which has the shortest value in Xid represents the first fragment 

that is f0, second shortest value represents the second fragment 

and so on. The sequence vector Sid generated for Xid using SPV 

is {9, 1, 4, 8, 3, 6, 0, 2, 7, 5} here 9 represents the fragment 10 

and 1 represents the fragment 2 and so on. Sid represents the 

fragment order in which fragments are aligned for determining 

the consensus sequence. For each individual of PSO, sequence 

vector is calculated using the SPV rule. 

4.2 Fitness Function 
After representation of each individual we have to calculate 

fitness value of each individual. On the basis of fitness value we 

determine the optimal solution. In case of DNA sequence 

assembly problem optimal solution is the maximum matching 

score of fragment order.  

First we have to align the fragments according to the fragment 

order Sid then longest match between the suffix of one fragment 

and the prefix of another is determine. Matching score is 

calculated by counting the matching nucleotide of fragments. 

The matching score for a pair of fragment is calculated using eq. 

(4).                                                           

    

      (4)  

In eq. (4) scorei,i+1 is a matching score of two consecutive 

fragments of sequence vector Sid, i and i+1 is the index of 

sequence vector Sid.  After calculating the score of fragment pair 

total score is calculated for a particular individual of PSO. Total 

score is calculated by eq. (5).  

          

 

                                          (5) 

In eq. (5)   denotes the fitness value for individual i of 

PSO. In eq. (5) max denotes that our objective is to maximize 

the value of . Individual who has the maximum value of 

 is considered as optimum solution. Fitness function is the 

summation of all scores calculated by eq. (4) for an individual.  

4.3 DSAPSO: DNA Sequence Assembly 

using PSO Algorithm 
We have used particle swarm optimization algorithm to solve 

DNA sequence assembly problem. In DNA sequence assembly 

problem inputs are different number of fragment and output is 

the common sequence which does not have repeated 

nucleotides. DNA sequence assembly problem is a discrete 

optimization problem but we have used real version of particle 

swarm optimization. Real coded PSO is converted to discrete 

version using shortest position value (SPV) rule. The problem is 

first formulated according to PSO algorithm. Each individual of  

PSO represents a solution and has a dimension value. For DNA 

sequence assembly dimension of PSO individual is equal to the 

number of fragments taken.  

PSO with SPV works in two phases one is initialization phase 

and other is PSO update phase. In initialization phase 

individuals are initialized and in update phase solutions are 

update and new solutions are generated. SPV rule is used to 

convert the real coded values to discrete values. 

First set of solutions are taken randomly within the search space 

and the fragment order is calculated using the randomly initiated 

particle using SPV rule.  The fitness value is calculated using the 

fitness equation and the best solution is noted. Next update of 

the particles is performed using the PSO update equation and the 

new fragment order is calculated using the SPV rule. Fitness of 

updated particles is calculated and the best solutions are noted.  

This process runs until the maximum function evaluation 

reached and the best fragment order is noted on the basis of 

fitness function of individuals. At last on the basis of fragment 

order fragments are arranged so that matching nucleotides are 

removed and common consensus sequence are calculated. 

5. EXPERIMENT RESULT & 

DISCUSSION 
This section describes the experimental setup and result obtained 

after the experiment. We have taken thee DNA sequences for 

experiment. For each data set we run DSAPSO 30 times with 

different function evaluation values. The algorithm is simulated 

using Visual C++. To check the efficiency of proposed 

DSAPSO algorithm we compare the result of our proposed 

algorithm with the results of genetic algorithm. 

5.1 Experimental Setup 
To work algorithm in efficient manner first the parameter related 

with algorithms need to be set. DSAPSO algorithm has a few 

control parameters: Maximum number of function evaluation 

(MaxEval), we have tested our algorithms for three different 

function evaluation value 3000, 5000 and 10000. For experiment 

we have taken the swarm size or number of individual is equal 

to 30. In DNA sequence assembly problem individual dimension 

is equal to the number of fragments. We have tested our 

algorithms for different number of fragment i.e. dimensions 

value 10, 15, and 30 and. Size of a fragment is different for 

different fragment from 50 to 100.  Another control parameter is 

number of runs and we have taken its value in our experiment as 

30. It must be noted that each run contains maximum function 

evaluation. The next control parameter is the value of   c1 & c2 

which we have taken as 1.14. And w (Inertia weight) is also a 

control parameter and we have taken its value as 0.7. DNA 

sequence we used for experiment is MACF1, TNFRSF19 and 

Zfa. We calculated the consensus sequence for the number of 

fragments 10, 20 and 30. The best function values of the best 

solutions found in 30 runs by the algorithm for different 

dimensions have been recorded. 

5.2 Real Data Set Used 
We used the three real DNA sequence data set as a benchmark 

for DNA sequence assembly problem. The three real data sets 

MACF1, TNFRSF19 and Zfa are taken from the National Center 

for Biotechnology Information (NCBI) [22]. Table 1 shows the 

data sets name and size of each data set used. The three data sets 
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correspond to alive beings. More concretely, two of the data sets 

are from the human and one from the mouse. Moreover, we 

selected data sets with different number of sequences and with 

different sizes (nucleotides per sequence) to ensure that our 

algorithm works with several types of instances. 

Table 1. Real Data Set Used 

 

Data Set Size Source 

MACF1 19626 Human 

TNFRSF19 4371 Human 

Zfa 3469 Mouse 

 

5.3 Analysis or Discussion of Experiment 
In this section we analyze the result obtained by our algorithm.  

Here we have shown the comparison of our technique with 

genetic algorithm. To test the efficiency of proposed DSAPSO 

algorithm we have compared the results of DSAPSO with 

genetic algorithm. 

We have performed several experiments in order to obtain the 

best configuration for our algorithm. We have compared the 

fitness value or matching score value evaluated by DSAPSO and 

GA. We have tested results for three different set of DNA 

sequence. Different number of fragments is taken to check the 

efficiency of algorithm. The parameter for genetic algorithm is 

taken standard and the result calculated by genetic algorithm is 

compared with the particle swarm optimization. Real version of 

PSO and genetic algorithm is used to solve DNA sequence 

assembly problem. 

 

TABLE 2. Matching Score comparison using dataset 

MACF1 

 

 Number of  Fragments 

 10 15 30 

DATA 

SET 

MaxE

val 

DSA

PSO 
GA 

DSA

PSO 
GA 

DSA

PSO 
GA 

MACF

1 

3000 14 14 20 14 30 28 

5000 16 15 23 16 39 36 

10000 20 16 25 19 40 37 

 

 

TABLE 3. Matching Score comparison using dataset 

TNFRSF19 

 

 Number of  Fragments 

 10 15 30 

DATA 

SET 

MaxE

val 

DSA

PSO 
GA 

DSA

PSO 
GA 

DSA

PSO 
GA 

TNFRS

F19 

3000 16 7 96 39 112 94 

5000 55 10 102 41 115 102 

10000 97 30 110 44 125 116 

 

TABLE 4. Matching Score comparison using dataset Zfa 

 

 Number of  Fragments 

 10 15 30 

DATA 

SET 

MaxE

val 

DSA

PSO 
GA 

DSA

PSO 
GA 

DSA

PSO 
GA 

Zfa 

3000 47 23 75 68 164 116 

5000 52 25 91 72 182 155 

10000 74 25 118 73 227 167 

 

It is clear from the table 2, 3 and 4 that PSO with SPV performs 

better than the genetic algorithm. PSO with SPV gives the better 

matching score than the GA. We have performed experiments 

with different real DNA sequence found by NCBI and table 2, 3 

and 4 represents the solution for the three real DNA data 

(MACF1, TNFRSF19 and Zfa). Our algorithm performs better 

for every DNA data than the GA. It is also clear from the tables 

that as the function evaluation increase the matching scores are 

also increased.  

6. CONCLUTION & FUTURE WORK 
It can be concluded from the above results that the DSAPSO is 

very effective in finding the solution to the DNA Sequence 

Assembly problem. We have adjusted all the parameters to 

obtain the best configuration of the algorithm for this problem. 

We have used three different types of real data set to ensure the 

effectiveness of our algorithm. The data sets are taken from 

National Center for Biotechnology Information (NCBI). First 

the PSO generates the random solution from the search space 

and each individual contains the real values. Problem of DNA 

sequence assembly is a discrete optimization problem so value 

generated by PSO is changed to the discrete for changing the 

real value to discrete SPV rule is used. The fitness value is 

considered as the addition of the matching score of consecutive 

fragment from the sequence order generated by the SPV rule 

using the position value of PSO. PSO updates its solution in 

each iteration and new real value generated. After modification 

of PSO individual, SPV is used to generate new fragment order 

to arrange the fragments for calculating the matching scores. 

Fitness values are calculated for the entire updated individual. 

This process continues till the maximum number of function 

evaluation reached.  At last the global best fragment order is 

consider for the calculation of consensus sequence. Then results 

are compared with the results of genetic algorithm. 

In future we have intension to apply various nature inspired 

algorithms for DNA sequence assembly problem and compare 

their results with our proposed DSAPSO algorithms result. 

Hybridization of algorithm may give the better result than the 

previous existing algorithms so we also want to hybridize our 

proposed algorithm with some other existing algorithms. PSO is 

present in various variants so we can also try to apply PSO 

variants to solve the DNA sequence assembly problem.  
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