
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

33

DNA Sequence Assembly using Particle

Swarm Optimization

Ravi Shankar Verma

National Institute of
Technology
Raipur, India

Vikas Singh
ABV- Indian Institute of

Information Technology and
management, Gwalior, India

Sanjay Kumar
National Institute of

Technology
Raipur, India

ABSTRACT

DNA sequence assembly problem is a very complex problem of

computational biology. DNA sequence assembly is a NP hard

problem there is no single solution available for this kind of

problems. DNA sequence assembly refers to aligning and

merging fragments of a much longer DNA sequence in order to

reconstruct the original sequence. In this paper a solution is

proposed for DNA sequence assembly problem using Particle

Swarm Optimization (PSO) with Shortest Position Value (SPV)

rule. DNA sequence assembly problem is a discrete optimization

problem, so there is need of discrete optimization algorithm to

solve it. In this paper continuous version of PSO is used with

SPV rule to solve the DNA sequence assembly problem. SPV

rule transforms continuous version of PSO to discrete version.

Proposed methodology is named as DSAPSO. To check the

efficiency of proposed methodology the results of DSAPSO is

compared with the results of genetic algorithm (GA).

General Terms

Nature Inspired Algorithms, optimization problem,

Computational Biology.

Keywords

DNA sequence assembly, Particle Swarm Optimization, PSO,

Swarm Intelligence, SPV, Bioinformatics.

1. INTRODUCTION
The current challenge in the field of biology is the enormous

amount of existing data. This data is complex and unformatted.

Also this data is doubled in every two years. The bioinformatics

is the interdisciplinary research area of biology & computer

science. It uses the computer science methods, models and

sophisticated algorithms to solve the biological problems that

are related to huge data analysis, gene annotation, pattern

reorganization and many more.

The one of the most common problem in biology is DNA

sequence assembly problem. In DNA sequence assembly

problem, DNA sequence is breaks into number of fragments and

after removing duplicate sequences obtain a common consensus

sequence. DNA sequence assembly problem is very complex

problem and take more computational time to obtain consensus

sequence. DNA sequence assembly problem is NP hard problem

because there are lots of solutions available for this kind of

problem. Many literatures provide solutions for DNA sequence

assembly problem. Christian Burks [4] is widely held that DNA

sequencing throughput will have to be increased by orders of

magnitude to complete the task in the time frame of 15 years

that was laid out for the Human Genome Project, and that such

dramatic increases will rely in large part on automating the

several experimental and interpretive steps involved in DNA

sequencing. Over the past decade a number of fragment

assembly packages have been developed and used to sequence

different organisms. The most popular packages are PHRAP [5]

is a program for assembling shotgun DNA sequence data.

TIGR assembler [6] overcomes several major obstacles to

assembling DNA sequence. STROLL [7] implemented a

reliable technique to sequence DNA using primer walking

approach. CAP3 [8] includes a number of improvements and

new features to improve DNA sequence assembly. Celera

assembler [9] developed at Celera for the 2001 publication of

the first draft human genome sequence. EULER [10] is an

approach to fragment assembly that abandons the classical

"overlap - layout - consensus" paradigm that is used in all

currently available assembly tools. Allex, C. F., Baldwin, S. F.,

Sbavlik, J. W. and Blamer, F. R. [11] is improving the quality of

automatic DNA sequence assembly using fluorescent trace-data

classifications. Wilks, C.and Khuri, S. [12] proposed "A

Structured Pattern Matching Approach to Shotgun Sequence

Assembly," (AMASS) created by Sun Kim.

Many heuristic approaches are applied in DNA Sequence

Assembly which are improved the process of DNA Sequence

Assembly one of them is Genetic Algorithm. Parsons, R. and

Forrest, S. and Burks, C. [13] presents that the genetic algorithm

is a promising method for fragment assembly problems,

achieving usable solutions quickly. Parsons, R.J. and Forrest, S.

and Burks, C. [14] study different genetic algorithm operators

for one permutation problem associated with the Human

Genome Project—the assembly of DNA sequence fragments

from a parent clone whose sequence is unknown into a

consensus sequence corresponding to the parent sequence.

Parsons, R.J. and Johnson, M.E. [15] discussed the new results,

the modifications to the previous genetic algorithm used, the

experimental design process by which the new results were

obtained, the questions raised by these results, and some

preliminary attempts to explain these results. Kim, K. and

Mohan, CK [16] presents a fragment assembler using a new

parallel hierarchical adaptive variation of evolutionary

algorithms. The innovative features include a new measure for

evaluating sequence assembly quality and the development of a

hybrid algorithm. Fang, S.C. and Wang, Y. and Zhong, J. [17]

approach maximizes the similarity (overlaps) between given

fragments and a candidate sequence. It considers both whole

fragments and the single basepair similarities in the sequence.

Special genetic operators are designed to speed up the searching

process. Kikuchi, S.and Chakraborty, G. [18] added two

http://www.celera.com/

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

34

heuristic ideas with GA to make it more efficient. One is

chromosome reduction (CRed) step which shorten the length of

the chromosomes, participating in genetic search, to improve the

efficiency. The other is chromosome refinement (CRef) step

which is a greedy heuristics, rearranging the bits using domain

knowledge, to locally improve the fitness of chromosomes.

Luque, G. and Alba, E. [19] present several methods, a

canonical genetic algorithm, a CHC method, a scatter search

algorithm, and a simulated annealing, to solve accurately

problem instances that are 77K base pairs long. Meksangsouy,

P. and Chaiyaratana, N. [20] proposed an asymmetric ordering

representation where a path co-operatively generated by all ants

in the colony represents the search solution. Zhao, Y. and Ma, P.

and Lan, J. and Liang, C. and Ji, G. [21] improved sequence

alignment method based on the ant colony algorithm. The new

method could avoid a local optimum and remove especially the

paths scores of great difference by regulating the initial and final

positions of ants and by modifying pheromones in different

times.

There are few literatures available which represent solution for

DNA Sequence Assembly problem using metaheuristic and

nature inspired algorithms. PSO algorithm comes under nature

inspired algorithm and it is very effective technique to solve an

optimization problem. It has been proven that PSO solves

Optimization problem efficiently and gives the optimum result.

PSO algorithm used to solve computational biology problem and

gives better result than the conventional methods. DNA

sequence assembly problem is not solved previously by PSO

algorithm that’s why we have intention to apply PSO algorithm

for DNA Sequence Assembly problem.

2. DNA SEQUENCE ASSEMBLY

PROBLEM
Deoxyribonucleic acid (DNA) is a nucleic acid that contains the

genetic instructions used in the development and functioning of

all known living organisms and some viruses. The main role of

DNA molecules in living organism is the long-term storage of

information.

 DNA sequence is represented by a string of characters drawn

from a four-letter alphabet (A, C, G, and T) corresponding to

the four monomeric bases of which the DNA polymer is

composed. A piece, or fragment, corresponds in our context to a

substring of 100-1000 bases. Overlap strength and offset

relationships between pairs of fragments, used to drive the

assembly of the fragments into a global layout, is based on

comparison of character strings. The output generated by

sequencing represents a consensus on the order of 1000-

1,000,000 bases long, generated by voting in aligned columns of

bases resulting from the layout.

The assembly problem is a combinatorial optimization problem

where the aim of the search is to find the right order and

orientation of each fragment in the fragment ordering sequence

that leads to the formation of a consensus sequence.

Figure 1, shows the basic DNA sequence assembly process. Fig

1(A) represents 6 different DNA fragment taken from large

human DNA sequence STIM1. STIM1 DNA sequence is taken

from NCBI. After getting 6 fragment from large DNA sequence

file arrangement of fragments is needed to calculate consensus

sequence.

Fig 1: (A) Shows the 6 fragments taken from the file STIM1

DNA sequence (B) Show the fragment order to calculate

consensus fragment sequence (C) Common Consensus

sequence calculated.

Fig 1(B) represents the order of fragments, fragments are

arranged in a manner that suffix of one fragment is compared

with prefix of another fragment. Matched nucleotides are

removed and remaining nucleotides are considered as consensus

sequence. Fig 1(C) represents the calculated consensus

sequence.

3. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) is a population based

stochastic optimization technique for the solution of continuous

optimization problems. It is inspired by social behaviors in

flocks of birds and schools of fish. In PSO, a set of agents called

particles will search for good solutions to a given continuous

optimization problem. PSO has been applied in many different

problems and has successfully solved this problem better than

other algorithms.

The particle swarm optimization algorithm, originally

introduced in terms of social and cognitive behavior by Kennedy

and Eberhart [1], solves problems in many fields, especially

engineering and computer science. The power of the technique

is its fairly simple computations and sharing of information

within the algorithm as it derives its internal communications

from the social behavior of individuals. The individuals, called

particles henceforth, are flown through the multi-dimensional

search space with each particle representing a possible solution

to the multi-dimensional optimization problem. Each solution’s

fitness is based on a performance function related to the

optimization problem being solved.

The movement of the particles is influenced by two factors using

information from iteration-to-iteration as well as particle-to-

particle. As a result of iteration-to-iteration information, the

particle stores in its memory the best solution visited so far,

called pbest, and experiences an attraction towards this solution

as it traverses through the solution search space. As a result of

the particle-to-particle information, the particle stores in its

memory the best solution visited by any particle, and

(A)
 F1: AGAAAGT

 F2: TCAGTCTG

 F3: AAATGA
 F4: CAGGGT

 F5: TTTGG

 F6: TTGGTTACT

(B)
 AGAAAGT

 TCAGTCTG
 AAATGA

 CAGGGT
 TTTGG

 TTGGTTACT

(C)
 AGAAAGTCAGTCTGAAATGACAGGGTTTGGTTACT

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

35

experiences an attraction towards this solution, called gbest, as

well. The first and second factors are called cognitive and social

components, respectively. After iteration, the pbest and gbest are

updated for each particle if a better or more dominating solution

(in terms of fitness) is found. This process continues, iteratively,

until either the desired result is converged upon, or it’s

determined that an acceptable solution cannot be found within

computational limits.

For an n-dimensional search space, the i-th particle of the swarm

is represented by a n- dimensional vector, Xi = (xi1, xi2, …,xin)
T.

The velocity of this particle is represented by another n-

dimensional vector Vi = (vi1, vi2,…,vin)
T. The previously best

visited position of the i-th particle is denoted as Pi = (pi1, pi2,

…,pin)
T. ‘g’ is the index of the best particle in the swarm. The

velocity of the i-th particle is updated using the velocity update

equation given by

)()(2211 idgdidididid xprcxprcvv ,

 (1)

and the position is updated using

ididid vxx

 (2)

Where d = 1, 2… n represents the dimension and i = 1, 2… S

represents the particle index. S is the size of the swarm and c1

and c2 are constants, called cognitive and social scaling

parameters respectively (usually, c1= c2; r1, r2 are random

numbers drawn from a uniform distribution). Eq. (1) and (2)

define the classical version of PSO algorithm. A constant, Vmax,

was introduced to arbitrarily limit the velocities of the particles

and improve the resolution of the search. The maximum velocity

Vmax, serves as a constraint to control the global exploration

ability of particle swarm. Further, the concept of an inertia

weight was developed to better control exploration and

exploitation. The motivation was to be able to eliminate the need

for Vmax. The inclusion of an inertia weight in the particle

swarm optimization algorithm was first reported in the literature

[2].

The resulting velocity update equation becomes:

)()(* 2211 idgdidididid xprcxprcvwv

 (3)

Eberhart and Shi, [3] indicate that the optimal strategy is to

initially set w to 0.9 and reduce it linearly to 0.4, allowing initial

exploration followed by acceleration toward an improved global

optimum.

4. METHODOLOGY
In this paper we have proposed a solution for DNA sequence

assembly problem using particle swarm optimization. For

solving any optimization problem we have to first formulate the

problem according to optimization problem. In this case first we

formulate the DNA sequence assembly problem according to

PSO algorithm. Next subsection describes how we formulate the

DNA sequence assembly problem.

To solve the problem, representation of the individual and

fitness value is required. PSO algorithm is based on population

(candidate solution) and each population have its own fitness

value according to which it is compared from others, so we have

to first represent the DNA sequence assembly problem in terms

of PSO algorithm.

4.1 Individual Representation
In DNA sequence assembly problem inputs are the set of

fragments which need to be assembled and build a common

sequence which does not have any repeated pattern. The

common sequence is considered as output for DNA sequence

assembly problem. To find out the function or property of

specific genes, the reading of nucleotide or chemical base (A, T,

C, G) sequence is done. Large nucleotide sequences are called

DNA sequence. The large DNA sequence consists of repeated

patterns of nucleotide that’s why the DNA sequence becomes

large. In DNA sequence assembly repeated patterns are removed

and one consensus sequence builds.

 In DNA sequence assembly large DNA sequence of a particular

gene is taken for assembly process. Large DNA file is split

randomly in different fragments of DNA sequence which are

used in assembly process. After getting the set of fragment,

fragments are aligned and the longest match between the suffix

of one sequence and the prefix of another is determine. All

possible pair combination of fragments is compared and

matching score is determined. On the basis of matching score

fragment order is determined. At last the consensus sequence is

found out from the fragment order. We have performed

experiments with the nucleotide sequences of

homosapiens(human) and mouse viz. MACF1, TNFRSF19 and

Zfa. The DNA data is taken from the NCBI.

We have solved DNA sequence assembly problem using the

continuous version of PSO. In DNA sequence assembly problem

fragment order in which fragments are aligned is very important

but very hard to find the best order from the large possible

combinations of fragment order. Using PSO we determine the

fragment order. PSO is based on the concept of population and

each individual represents a solution for a problem. In case of

DNA sequence assembly problem each individual of PSO

represents the fragment order on which fragments are aligned to

find out a consensus sequence. Each individual has certain

dimension value for DNA sequence assembly problem each

individual has a dimension value equal to the number of

fragments taken for assembly.

 DNA sequence assembly problem is a discrete optimization

problem. In the proposed solution continuous version of PSO is

used instead of discrete version. To change the continuous

version to real version for DNA sequence assembly problem

SPV rule is used. Using the SPV (shortest position value) rule

continuous position generated by PSO is converted to discrete

value.

Each individual or particle of PSO is represented by a Position

vector Xid= { x1,x2,x3,......xd } where i is the particular individual

and d represents the dimension index. Each individual of PSO

contain the real value for a particular dimension and on the basis

of this real values new sequence vector is generated using

shortest position value rule (SPV). New generated sequence

vector using SPV is represented as Sid= [fi1,fi2,…….fid]. Sid is a

fragment order of i particle in the processing order containing d

dimension and fi1, fi2 represent the fragment number in a

fragment order.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

36

For example the individual generated by PSO is Xid= {4.83, -.55,

1.90, 4.46, 1.05, 2.47, -1.28, 0.192, 3.56, 2.28} which has

dimension value equal to 10 that means the number of fragments

taken is 10. It is clear that Xid contains the real values and for

DNA sequence assembly we need fragment sequence order from

the set of possible combination of fragment order. SPV rule is

used to generate the new sequence vector Sid. Dimension values

of Xid is used to generate sequence vector, the dimension index

which has the shortest value in Xid represents the first fragment

that is f0, second shortest value represents the second fragment

and so on. The sequence vector Sid generated for Xid using SPV

is {9, 1, 4, 8, 3, 6, 0, 2, 7, 5} here 9 represents the fragment 10

and 1 represents the fragment 2 and so on. Sid represents the

fragment order in which fragments are aligned for determining

the consensus sequence. For each individual of PSO, sequence

vector is calculated using the SPV rule.

4.2 Fitness Function
After representation of each individual we have to calculate

fitness value of each individual. On the basis of fitness value we

determine the optimal solution. In case of DNA sequence

assembly problem optimal solution is the maximum matching

score of fragment order.

First we have to align the fragments according to the fragment

order Sid then longest match between the suffix of one fragment

and the prefix of another is determine. Matching score is

calculated by counting the matching nucleotide of fragments.

The matching score for a pair of fragment is calculated using eq.

(4).

 (4)

In eq. (4) scorei,i+1 is a matching score of two consecutive

fragments of sequence vector Sid, i and i+1 is the index of

sequence vector Sid. After calculating the score of fragment pair

total score is calculated for a particular individual of PSO. Total

score is calculated by eq. (5).

 (5)

In eq. (5) denotes the fitness value for individual i of

PSO. In eq. (5) max denotes that our objective is to maximize

the value of . Individual who has the maximum value of

 is considered as optimum solution. Fitness function is the

summation of all scores calculated by eq. (4) for an individual.

4.3 DSAPSO: DNA Sequence Assembly

using PSO Algorithm
We have used particle swarm optimization algorithm to solve

DNA sequence assembly problem. In DNA sequence assembly

problem inputs are different number of fragment and output is

the common sequence which does not have repeated

nucleotides. DNA sequence assembly problem is a discrete

optimization problem but we have used real version of particle

swarm optimization. Real coded PSO is converted to discrete

version using shortest position value (SPV) rule. The problem is

first formulated according to PSO algorithm. Each individual of

PSO represents a solution and has a dimension value. For DNA

sequence assembly dimension of PSO individual is equal to the

number of fragments taken.

PSO with SPV works in two phases one is initialization phase

and other is PSO update phase. In initialization phase

individuals are initialized and in update phase solutions are

update and new solutions are generated. SPV rule is used to

convert the real coded values to discrete values.

First set of solutions are taken randomly within the search space

and the fragment order is calculated using the randomly initiated

particle using SPV rule. The fitness value is calculated using the

fitness equation and the best solution is noted. Next update of

the particles is performed using the PSO update equation and the

new fragment order is calculated using the SPV rule. Fitness of

updated particles is calculated and the best solutions are noted.

This process runs until the maximum function evaluation

reached and the best fragment order is noted on the basis of

fitness function of individuals. At last on the basis of fragment

order fragments are arranged so that matching nucleotides are

removed and common consensus sequence are calculated.

5. EXPERIMENT RESULT &

DISCUSSION
This section describes the experimental setup and result obtained

after the experiment. We have taken thee DNA sequences for

experiment. For each data set we run DSAPSO 30 times with

different function evaluation values. The algorithm is simulated

using Visual C++. To check the efficiency of proposed

DSAPSO algorithm we compare the result of our proposed

algorithm with the results of genetic algorithm.

5.1 Experimental Setup
To work algorithm in efficient manner first the parameter related

with algorithms need to be set. DSAPSO algorithm has a few

control parameters: Maximum number of function evaluation

(MaxEval), we have tested our algorithms for three different

function evaluation value 3000, 5000 and 10000. For experiment

we have taken the swarm size or number of individual is equal

to 30. In DNA sequence assembly problem individual dimension

is equal to the number of fragments. We have tested our

algorithms for different number of fragment i.e. dimensions

value 10, 15, and 30 and. Size of a fragment is different for

different fragment from 50 to 100. Another control parameter is

number of runs and we have taken its value in our experiment as

30. It must be noted that each run contains maximum function

evaluation. The next control parameter is the value of c1 & c2

which we have taken as 1.14. And w (Inertia weight) is also a

control parameter and we have taken its value as 0.7. DNA

sequence we used for experiment is MACF1, TNFRSF19 and

Zfa. We calculated the consensus sequence for the number of

fragments 10, 20 and 30. The best function values of the best

solutions found in 30 runs by the algorithm for different

dimensions have been recorded.

5.2 Real Data Set Used
We used the three real DNA sequence data set as a benchmark

for DNA sequence assembly problem. The three real data sets

MACF1, TNFRSF19 and Zfa are taken from the National Center

for Biotechnology Information (NCBI) [22]. Table 1 shows the

data sets name and size of each data set used. The three data sets

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

37

correspond to alive beings. More concretely, two of the data sets

are from the human and one from the mouse. Moreover, we

selected data sets with different number of sequences and with

different sizes (nucleotides per sequence) to ensure that our

algorithm works with several types of instances.

Table 1. Real Data Set Used

Data Set Size Source

MACF1 19626 Human

TNFRSF19 4371 Human

Zfa 3469 Mouse

5.3 Analysis or Discussion of Experiment
In this section we analyze the result obtained by our algorithm.

Here we have shown the comparison of our technique with

genetic algorithm. To test the efficiency of proposed DSAPSO

algorithm we have compared the results of DSAPSO with

genetic algorithm.

We have performed several experiments in order to obtain the

best configuration for our algorithm. We have compared the

fitness value or matching score value evaluated by DSAPSO and

GA. We have tested results for three different set of DNA

sequence. Different number of fragments is taken to check the

efficiency of algorithm. The parameter for genetic algorithm is

taken standard and the result calculated by genetic algorithm is

compared with the particle swarm optimization. Real version of

PSO and genetic algorithm is used to solve DNA sequence

assembly problem.

TABLE 2. Matching Score comparison using dataset

MACF1

 Number of Fragments

 10 15 30

DATA

SET

MaxE

val

DSA

PSO
GA

DSA

PSO
GA

DSA

PSO
GA

MACF

1

3000 14 14 20 14 30 28

5000 16 15 23 16 39 36

10000 20 16 25 19 40 37

TABLE 3. Matching Score comparison using dataset

TNFRSF19

 Number of Fragments

 10 15 30

DATA

SET

MaxE

val

DSA

PSO
GA

DSA

PSO
GA

DSA

PSO
GA

TNFRS

F19

3000 16 7 96 39 112 94

5000 55 10 102 41 115 102

10000 97 30 110 44 125 116

TABLE 4. Matching Score comparison using dataset Zfa

 Number of Fragments

 10 15 30

DATA

SET

MaxE

val

DSA

PSO
GA

DSA

PSO
GA

DSA

PSO
GA

Zfa

3000 47 23 75 68 164 116

5000 52 25 91 72 182 155

10000 74 25 118 73 227 167

It is clear from the table 2, 3 and 4 that PSO with SPV performs

better than the genetic algorithm. PSO with SPV gives the better

matching score than the GA. We have performed experiments

with different real DNA sequence found by NCBI and table 2, 3

and 4 represents the solution for the three real DNA data

(MACF1, TNFRSF19 and Zfa). Our algorithm performs better

for every DNA data than the GA. It is also clear from the tables

that as the function evaluation increase the matching scores are

also increased.

6. CONCLUTION & FUTURE WORK
It can be concluded from the above results that the DSAPSO is

very effective in finding the solution to the DNA Sequence

Assembly problem. We have adjusted all the parameters to

obtain the best configuration of the algorithm for this problem.

We have used three different types of real data set to ensure the

effectiveness of our algorithm. The data sets are taken from

National Center for Biotechnology Information (NCBI). First

the PSO generates the random solution from the search space

and each individual contains the real values. Problem of DNA

sequence assembly is a discrete optimization problem so value

generated by PSO is changed to the discrete for changing the

real value to discrete SPV rule is used. The fitness value is

considered as the addition of the matching score of consecutive

fragment from the sequence order generated by the SPV rule

using the position value of PSO. PSO updates its solution in

each iteration and new real value generated. After modification

of PSO individual, SPV is used to generate new fragment order

to arrange the fragments for calculating the matching scores.

Fitness values are calculated for the entire updated individual.

This process continues till the maximum number of function

evaluation reached. At last the global best fragment order is

consider for the calculation of consensus sequence. Then results

are compared with the results of genetic algorithm.

In future we have intension to apply various nature inspired

algorithms for DNA sequence assembly problem and compare

their results with our proposed DSAPSO algorithms result.

Hybridization of algorithm may give the better result than the

previous existing algorithms so we also want to hybridize our

proposed algorithm with some other existing algorithms. PSO is

present in various variants so we can also try to apply PSO

variants to solve the DNA sequence assembly problem.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.10, August 2011

38

7. REFRENCES
[1] Kennedy, J. and Eberhart, R. ―Particle swarm

optimization‖, Neural Networks, 1995. Proceedings. IEEE

International Conference on, Vol. 4, pp. 1942—1948, 1995.

[2] Shi, Y. and Eberhart, R. ―A modified particle swarm

optimizer‖, Evolutionary Computation Proceedings, 1998.

IEEE World Congress on Computational Intelligence. The

1998 IEEE International Conference on, pp. 69—73, 1998.

[3] Eberhart, R.C. and Shi, Y. ―Comparing inertia weights and

constriction factors in particle swarm optimization‖,

Evolutionary Computation, 2000. Proceedings of the 2000

Congress on, Vol. 1, pp. 80—84, 2000.

[4] Burks, C. ―DNA sequence assembly‖, Engineering in

Medicine and Biology Magazine, IEEE, Vol. 13, pp.

771—773, 1994.

[5] P. Green. Phrap. http://www.phrap.org/.

[6] G.G. Sutton, O. White, M.D. Adams, and A.R. Kerlavage.

―TIGR Assembler: A new tool for assembling large

shotgun sequencing projects‖, Genome Science & Tech.,

Vol. 1, pp. 9–19, 1995.

[7] T. Chen and S. Skiena. ―Trie-based data structures for

sequence assembly‖, Combinatorial Pattern Matching, pp.

206–223, 1998.

[8] X. Huang and A. Madan. ―CAP3: A DNA sequence

assembly program‖, Genome Research, Vol. 9, pp. 868–

877, 1999.

[9] E.W. Myers. ―Towards simplifying and accurately

formulating fragment assembly‖, Journal of Computational

Biology, Vol. 2, pp. 275–290, 2000.

[10] P.A. Pevzner. ―Computational molecular biology: An

algorithmic approach‖, The MIT Press, Vol. 1, 2000.

[11] Allex, C.F. and Baldwin, S.F. and Shavlik, J.W. and

Blattner, F.R. ―Improving the quality of automatic DNA

sequence assembly using fluorescent trace-data

classifications‖, Proceedings, Fourth International

Conference on Intelligent Systems for Molecular Biology,

pp. 3—14, 1996.

[12] Wilks, C. and Khuri, S. ―A fast shotgun assembly

heuristic‖, Computational Systems Bioinformatics

Conference, Workshops and Poster Abstracts, IEEE, pp.

122—123, 2005.

[13] Parsons, R. and Forrest, S. and Burks, C. ―Genetic

algorithms for DNA sequence assembly‖, Proceedings of

the First International Conference on Intelligent Systems

for Molecular Biology (ISMB-93), pp. 310—318, 1993.

[14] Parsons, R.J. and Forrest, S. and Burks, C. ―Genetic

algorithms, operators, and DNA fragment assembly‖,

Machine Learning, Vol. 21, pp. 11—33, 1995.

[15] Parsons, R.J. and Johnson, M.E. ―DNA sequence assembly

and genetic algorithms--new results and puzzling insights‖,

Proceedings of the Third International Conference on

Intelligent Systems for Molecular Biology (ISMB-95), pp.

277—284, 1995.

[16] Kim, K. and Mohan, CK ―Parallel hierarchical adaptive

genetic algorithm for fragment assembly‖, Evolutionary

Computation, 2003. CEC'03. The 2003 Congress on, Vol.

1, pp. 600—607, 2003.

[17] Fang, S.C. and Wang, Y. and Zhong, J. ―A Genetic

Algorithm Approach to Solving DNA Fragment Assembly

Problem‖, Journal of Computational and Theoretical

Nanoscience, Vol. 2, pp. 499—505, 2005.

[18] Kikuchi, S. and Chakraborty, G. ―Heuristically tuned GA to

solve genome fragment assembly problem‖, Evolutionary

Computation, 2006. CEC 2006. IEEE Congress on, pp.

1491—1498, 2006.

[19] Luque, G. and Alba, E. ―Metaheuristics for the DNA

fragment assembly problem‖, International Journal of

Computational Intelligence Research, Vol. 1, pp. 98—108,

2005.

[20] Meksangsouy, P. and Chaiyaratana, N. ―DNA fragment

assembly using an ant colony system algorithm‖,

Evolutionary Computation, 2003. CEC'03. The 2003

Congress on, Vol. 3, pp. 1756—1763, 2003.

[21] Zhao, Y. and Ma, P. and Lan, J. and Liang, C. and Ji, G.

―An Improved Ant Colony Algorithm for DNA Sequence

Alignment‖, 2008 International Symposium on Information

Science and Engineering, pp. 683—688, 2008.

[22] NCBI- http://www.ncbi.nlm.nih.gov/nuccore

